Review
BibTex RIS Cite
Year 2021, , 1 - 8, 29.06.2021
https://doi.org/10.51435/turkjac.935765

Abstract

References

  • [1] M.A. Acquavia, L. Foti, R. Pascale, A. Nicolò, V. Brancaleone, T.R.I. Cataldi, G. Martelli, L. Scrano, G. Bianco, Detection and quantification of Covid-19 antiviral drugs in biological fluids and tissues, Talanta, 224, 2021, 121862.
  • [2] World Health Organization, A model quality assurance system for procurement agencies: recommendations for quality assurance systems focusing on prequalification of products and manufacturers, purchasing, storage and distribution of pharmaceutical products, 2007, https://apps.who.int/iris/handle/10665/69721.
  • [3] World Health Organization, Health topics: "Drugs (psychoactive)", 2021, https://www.who.int/health-topics/drugs-psychoactive#tab=tab_1.
  • [4] ICH Guideline Topic Q7, Good Manufacturing Practice for Active Pharmaceutical Ingredients, 2000, https://www.ema.europa.eu/en/documents/scientific-guideline/ich-q-7-good-manufacturing-practice-active-pharmaceutical-ingredients-step-5_en.pdf.
  • [5] S. Ahmed, M.S. Islam, B. Ullah, S. Kanti Biswas, M.A. Samad Azad, M.S. Hossain. A review article on pharmaceutical analysis of pharmaceutical industry according to pharmacopoeias, Oriental Journal of Chemistry, 36, 2020, 01–10.
  • [6] S. Allahverdiyeva, O. Yunusoğlu, Y. Yardım, Z. Şentürk. First electrochemical evaluation of favipiravir used as an antiviral option in the treatment of COVID-19: A study of its enhanced voltammetric determination in cationic surfactant media using a boron-doped diamond electrode, Analytica Chimica Acta, 1159, 2021, 338418.
  • [7] C.A. Devaux, J.-M. Rolain, P. Colson, D. Raoult. New insights on the antiviral effects of chloroquine against coronavirus: What to expect for COVID-19?, International Journal of Antimicrobial Agents, 55, 2020, 105938.
  • [8] World Health Organization, Questions and Answers: What is COVID-19? 2020 https://www.who.int/news-room/q-a-detail/coronavirus-disease-covid-19 .
  • [9] C. Sohrabi, Z. Alsafi, N. O'Neill, M. Khan, A. Kerwan, A. Al-Jabir, C. Iosifidis, R. Agha. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19), International Journal of Surgery, 76, 2020, 71–76.
  • [10] E. Dong, H. Du, L. Gardner. An interactive web-based dashboard to track COVID-19 in real time, The Lancet Infectious Diseases, 20 ,2020, 533–534.
  • [11] L.V. Kiew, C.Y. Chang, S.Y. Huang, P.W. Wang, C.H. Heh, C.T. Liu, C.H. Cheng, Y.X. Lu, Y.C. Chen, Y.X. Huang, S.Y. Chang, H.Y. Tsai, Y.A. Kung, PN. Huang, M.-H. Hsu, B.F. Leo, Y.Y. Foo, C.H. Su, K.C. Hsu, P.H. Huang, C.J. Ng, A. Kamarulzaman, C.J. Yuan, D.B. Shieh, S.R. Shih, L.Y. Chung, C.C. Chang, Development of flexible electrochemical impedance spectroscopy-based biosensing platform for rapid screening of SARS-CoV-2 inhibitors, Biosensors and Bioelectronics, 183 ,2021, 113213.
  • [12] Harrison, C. Coronavirus puts drug repurposing on the fast track, Nature Biotechnology, 38, 2020, 379-381.
  • [13] C. Axfors et al., . Mortality outcomes with hydroxychloroquine and chloroquine in COVID-19 from an international collaborative meta-analysis of randomized trials, Nature Communications, 12, 2021. doi:10.1038/s41467-021-22446-z.
  • [14] H. Pan, R. Peto, Q.A. Karim, M. Alejandria, A.M. Henao-Restrepo, C.H. García, M.-P. Kieny, R. Malekzadeh, S. Murthy, M.-P. Preziosi, S. Reddy, M.R. Periago, V. Sathiyamoorthy, J.-A. Røttingen, S. Swaminathan, Repurposed antiviral drugs for COVID-19 –interim WHO SOLIDARITY trial results, 2020, doi:10.1101/2020.10.15.20209817.
  • [15] A.R. Fehr, S. Perlman, Coronaviruses: An Overview of Their Replication and Pathogenesis, Methods in Molecular Biology, Editors: H. Maier, E. Bickerton, P. Britton, 2015, 1–23, USA, New-York.
  • [16] C.C. Lai, T.P. Shih, W.C. Ko, H.J. Tang, P.R. Hsueh. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges, International Journal of Antimicrobial Agents, 55, 2020, 105924.
  • [17] S.J. Chen, S.C. Wang, Y.C. Chen. Novel Antiviral Strategies in the Treatment of COVID-19: A Review, Microorganisms, 8, 2020, 1259.
  • [18] Y.A. Helmy, M. Fawzy, A. Elaswad, A. Sobieh, S.P. Kenney, A.A. Shehata. The COVID-19 Pandemic: A Comprehensive Review of Taxonomy, Genetics, Epidemiology, Diagnosis, Treatment, and Control, Journal of Clinical Medicine, 9, 2020, 1225.
  • [19] B. Udugama, P. Kadhiresan, H.N. Kozlowski, A. Malekjahani, M. Osborne, V.Y.C. Li, H. Chen, S. Mubareka, J.B. Gubbay, W.C.W. Chan. Diagnosing COVID-19, The Disease and Tools for Detection, ACS Nano, 14, 2020, 3822–3835.
  • [20] Y. Jin, H. Yang, W. Ji, W. Wu, S. Chen, W. Zhang, G. Duan. Virology, Epidemiology, Pathogenesis, and Control of COVID-19, Viruses, 12, 2020, 372.
  • [21] WHO Coronavirus Disease (COVID-2019) Dashboard, 2021, https://covid19.who.int.
  • [22] Y. Furuta, K. Takahashi, K. Shiraki, K. Sakamoto, D.F. Smee, D.L. Barnard, B.B. Gowen, J.G. Julander, J.D. Morrey. T-705 (favipiravir) and related compounds: Novel broad-spectrum inhibitors of RNA viral infections, Antiviral Research, 82, 2009, 95–102.
  • [23] Y. Du, X. Chen. Favipiravir: Pharmacokinetics and Concerns About Clinical Trials for 2019‐nCoV Infection, Clinical Pharmacology & Therapeutics, 108, 2020, 242–247.
  • [24] S. Bagheri Novir, M.R. Aram. Quantum mechanical studies of the adsorption of Remdesivir, as an effective drug for treatment of COVID-19, on the surface of pristine, COOH-functionalized and S-, Si- and Al- doped carbon nanotubes, Physica E: Low-dimensional Systems and Nanostructures, 129, 2021, 114668.
  • [25] V.V. Tkach, М.V. Kushnir, S.C. Oliveira, J.G. Ivanushko, A.V. Velyka, A.F. Molodianu, P.I. Yagodynets, Z.O. Kormosh, , L.V. Reis, O.V. Luganska, K.V. Palamarek, Y.L. Bredikhina. Theoretical Description for Anti-COVID-19 Drug Remdesivir Electrochemical Determination, Assisted by Squaraine Dye–Ag2O2 Composite, Biointerface Research in Applied Chemistry, 11, 2021, 9201-9208.
  • [26] Cao, Y. et al.A Trial of Lopinavir–Ritonavir in Adults Hospitalized with Severe Covid-19, New England Journal of Medicine, 382, 2020, 1787–1799.
  • [27] M. Costanzo, M.A.R. Giglio, G.N. Roviello. SARS-CoV-2: Recent reports on antiviral therapies based on lopinavir/ritonavir, darunavir/umifenovir, hydroxychloroquine, remdesivir, favipiravir and other drugs for the treatment of the new coronavirus, current medicinal chemistry, 27, 2020, 4536-4541.
  • [28] A. Shrivastava. Analytical methods for the determination of hydroxychloroquine in various matrices, International Journal of Applied Pharmaceutics, 12, 2020, 55-61.
  • [29] M.L.P.M. Arguelho, J.F. Andrade, N.R. Stradiotto. Electrochemical study of hydroxychloroquine and its determination in Plaquenil by differential pulse voltammetry, Journal of Pharmaceutical and Biomedical Analysis. 32, 2003, 269–275.
  • [30] A. Khoobi, S.M. Ghoreishi, M. Behpour. Sensitive and selective determination of hydroxychloroquine in the presence of uric acid using a new nanostructure self-assembled monolayer modified electrode: optimization by multivariate data analysis, The Analyst, 139, 2014, 4064–4072.
  • [31] R.T. Eastman, J.S. Roth, K.R. Brimacombe, A. Simeonov, M. Shen, S. Patnaik, M.D. Hall. Remdesivir: A Review of its discovery and development leading to emergency use authorization for treatment of COVID-19, ACS Central Science, 6, 2020, 672–683.
  • [32] J. Grein, et al. Compassionate Use of Remdesivir for Patients with Severe Covid-19, New England Journal of Medicine. 382, 2020, 2327–2336.
  • [33] J.H. Beigel, et al. Remdesivir for the Treatment of Covid-19 — Final Report, New England Journal of Medicine, 383, 2020, 1813–1826.
  • [34] S.C.J. Jorgensen, R. Kebriaei, L.D. Dresser. Remdesivir: Review of Pharmacology, Pre‐clinical Data, and Emerging Clinical Experience for COVID‐19, Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 40, 2020, 659–671.
  • [35] V. Avataneo, A. De Nicolò, J. Cusato, M. Antonucci, A. Manca, A. Palermiti, C. Waitt, S. Walimbwa, M. Lamorde, G. Di Perri, A. D’Avolio. Development and validation of a UHPLC-MS/MS method for quantification of the prodrug remdesivir and its metabolite GS-441524: a tool for clinical pharmacokinetics of SARS-CoV-2/COVID-19 and Ebola virus disease, Journal of Antimicrobial Chemotherapy, 75, 2020, 1772–1777.
  • [36] T.P. Sheahan, A.C. Sims, S.R. Leist, A. Schäfer, J. Won, A.J. Brown, S.A. Montgomery, A. Hogg, D. Babusis, M.O. Clarke, J.E. Spahn, L. Bauer, S. Sellers, D. Porter, J.Y. Feng, T. Cihlar, R. Jordan, M.R. Denison, R.S. Baric, Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV, Nature Communications, 11, 2020, 1-14.
  • [37] C.J. Gordon, E.P. Tchesnokov, E. Woolner, J.K. Perry, J.Y. Feng, D.P. Porter, M. Götte. Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency, Journal of Biological Chemistry, 295, 2020, 6785–6797.
  • [38] M. Sisay. Available evidence and ongoing clinical trials of remdesivir: Could it be a promising therapeutic option for COVID-19?, Frontiers in Pharmacology, 11, 2020, 1-6.
  • [39] F.M. El-Badawy, M.A. Mohamed, H.S. El-Desoky. Fabrication of an electrochemical sensor based on manganese oxide nanoparticles supported on reduced graphene oxide for determination of subnanomolar level of anti-hepatitis C daclatasvir in the formulation and biological models, Microchemical Journal, 157, 2020, 104914.
  • [40] P. Ranganathan, B. Mutharani, S.-M. Chen, P. Sireesha. Polystyrene:β-Cyclodextrin Inclusion Complex-Supported Y2O3-Based Electrochemical Sensor: Effective and Simultaneous Determination of 4-Aminoantipyrine and Acyclovir Drugs, The Journal of Physical Chemistry C, 123, 2019, 12211–12222.
  • [41] Annu, S. Sharma, R. Jain, A.N. Raja. Review - pencil graphite electrode: An emerging sensing material, Journal of the Electrochemical Society. 167, 2020, 037501.
  • [42] Q. Wang, Y. Zhao, X. Chen, A. Hong, Virtual screening of approved clinic drugs with main protease (3CLpro) reveals potential inhibitory effects on SARS-CoV-2, Journal of Biomolecular Structure and Dynamics. 2020, 1–11, 1817786.
  • [43] Y.W. Chen, C.P.B. Yiu, K.Y. Wong. Prediction of the SARS-CoV-2 (2019-nCoV) 3C-like protease (3CLpro) structure: virtual screening reveals velpatasvir, ledipasvir, and other drug repurposing candidates, F1000Research, 9, 2020, 129.
  • [44] WHO discontinues hydroxychloroquine and lopinavir/ritonavir treatment arms for COVID-19, 2020. https://www.who.int/news/item/04-07-2020-who-discontinues-hydroxychloroquine-and-lopinavir-ritonavir-treatment-arms-for-covid-19
  • [45] Republic of Turkey, Ministry of Health, Discontiues hydroxychloroquine treatment in COVID-19 in guide for treatment of adult patients with COVID-19, 2021. https://covid19.saglik.gov.tr/Eklenti/40719/0/covid-19rehberieriskinhastayonetimivetedavipdf.pdf
  • [46] J.S. Kang, M.H. Lee. Overview of Therapeutic Drug Monitoring, The Korean Journal of Internal Medicine, 24, 2009, 1.
  • [47] N.M. Cassiano, V.V. Lima, R.V. Oliveira, A.C. De Pietro, Q.B. Cass. Development of restricted-access media supports and their application to the direct analysis of biological fluid samples via high-performance liquid chromatography, Analytical and Bioanalytical Chemistry, 384, 2006, 1462–1469.
  • [48] I. Bulduk. HPLC-UV method for quantification of favipiravir in pharmaceutical formulations, Acta Chromatographica, 33, 2020, 209–215.
  • [49] S.M. Megahed, A.A. Habib, S.F. Hammad, A.H. Kamal. Experimental design approach for development of spectrofluorimetric method for determination of favipiravir; a potential therapeutic agent against COVID-19 virus: Application to spiked human plasma, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 249, 2021, 119241.
  • [50] E. Marchei, R. Pacifici, G. Tossini, R. Di Fava, L. Valvo, P. Zuccaro. Simultaneous liquid chromatographic determination of indinavir, saquinavir, and ritonavir in human plasma with combined ultraviolet absorbance and electrochemical detection, Journal of Liquid Chromatography & Related Technologies, 24, 2001, 2325–2336.
  • [51] K.A. Mahmoud, J.H.T. Luong. Impedance Method for Detecting HIV-1 Protease and Screening For Its Inhibitors Using Ferrocene−Peptide Conjugate/Au Nanoparticle/Single-Walled Carbon Nanotube Modified Electrode, Analytical Chemistry, 80, 2008, 7056–7062.
  • [52] M.H. Mashhadizadeh, M. Akbarian, Voltammetric determination of some anti-malarial drugs using a carbon paste electrode modified with Cu(OH)2 nano-wire, Talanta. 78, 2009, 1440–1445.
  • [53] P.B. Deroco, F.C. Vicentini, G.G. Oliveira, R.C. Rocha-Filho, O. Fatibello-Filho. Square-wave voltammetric determination of hydroxychloroquine in pharmaceutical and synthetic urine samples using a cathodically pretreated boron-doped diamond electrode, Journal of Electroanalytical Chemistry, 719, 2014, 19–23.
  • [54] M.M. Khalil, Y.M. Issa, G.A. El Sayed. Modified carbon paste and polymeric membrane electrodes for determination of hydroxychloroquine sulfate in pharmaceutical preparations and human urine, RSC Advances, 5, 2015, 83657–83667.

A review on recent electroanalytical methods for the analysis of antiviral COVID-19 drugs

Year 2021, , 1 - 8, 29.06.2021
https://doi.org/10.51435/turkjac.935765

Abstract

Currently, there are no specific drugs for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, designated as coronavirus disease 2019 (COVID-19). Several therapeutic options including antiviral, antithrombotic, immunosuppressive, and anti-rheumatic drugs are researched all over the world. Analytical methods are needed in every step of innovation, research, development, and manufacturing process of pharmaceuticals, therefore new analytical methods for pharmaceuticals are developed and validated increasingly over time. In this review, recent reports on electroanalytical techniques for the determination of selected COVID-19 drugs, favipiravir (FAV), remdesivir (REM), lopinavir (LOP) / ritonavir (RIT), and hydroxychloroquine (HCQ) were emphasized. Electroanalysis of antiviral active pharmaceutical ingredients carried out at various modified or non-modified electrodes by cyclic voltammetry (CV), linear sweep voltammetry (LSV), differential pulse voltammetry (DPV), and square wave voltammetry (SWV) were compiled from the literature. The effects of supporting electrolyte and pH on the current and potential of the analytical signal were evaluated. Scan rate results obtained by the CV method showed whether the redox process of the drug active ingredient diffusion or adsorption controlled at the electrode used in the selected solvent-supporting electrolyte and pH systems. Linearity range and the limit of detection (LOD) of applied electroanalytical methods were compared by combining the results obtained from drug active ingredients given in references.

References

  • [1] M.A. Acquavia, L. Foti, R. Pascale, A. Nicolò, V. Brancaleone, T.R.I. Cataldi, G. Martelli, L. Scrano, G. Bianco, Detection and quantification of Covid-19 antiviral drugs in biological fluids and tissues, Talanta, 224, 2021, 121862.
  • [2] World Health Organization, A model quality assurance system for procurement agencies: recommendations for quality assurance systems focusing on prequalification of products and manufacturers, purchasing, storage and distribution of pharmaceutical products, 2007, https://apps.who.int/iris/handle/10665/69721.
  • [3] World Health Organization, Health topics: "Drugs (psychoactive)", 2021, https://www.who.int/health-topics/drugs-psychoactive#tab=tab_1.
  • [4] ICH Guideline Topic Q7, Good Manufacturing Practice for Active Pharmaceutical Ingredients, 2000, https://www.ema.europa.eu/en/documents/scientific-guideline/ich-q-7-good-manufacturing-practice-active-pharmaceutical-ingredients-step-5_en.pdf.
  • [5] S. Ahmed, M.S. Islam, B. Ullah, S. Kanti Biswas, M.A. Samad Azad, M.S. Hossain. A review article on pharmaceutical analysis of pharmaceutical industry according to pharmacopoeias, Oriental Journal of Chemistry, 36, 2020, 01–10.
  • [6] S. Allahverdiyeva, O. Yunusoğlu, Y. Yardım, Z. Şentürk. First electrochemical evaluation of favipiravir used as an antiviral option in the treatment of COVID-19: A study of its enhanced voltammetric determination in cationic surfactant media using a boron-doped diamond electrode, Analytica Chimica Acta, 1159, 2021, 338418.
  • [7] C.A. Devaux, J.-M. Rolain, P. Colson, D. Raoult. New insights on the antiviral effects of chloroquine against coronavirus: What to expect for COVID-19?, International Journal of Antimicrobial Agents, 55, 2020, 105938.
  • [8] World Health Organization, Questions and Answers: What is COVID-19? 2020 https://www.who.int/news-room/q-a-detail/coronavirus-disease-covid-19 .
  • [9] C. Sohrabi, Z. Alsafi, N. O'Neill, M. Khan, A. Kerwan, A. Al-Jabir, C. Iosifidis, R. Agha. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19), International Journal of Surgery, 76, 2020, 71–76.
  • [10] E. Dong, H. Du, L. Gardner. An interactive web-based dashboard to track COVID-19 in real time, The Lancet Infectious Diseases, 20 ,2020, 533–534.
  • [11] L.V. Kiew, C.Y. Chang, S.Y. Huang, P.W. Wang, C.H. Heh, C.T. Liu, C.H. Cheng, Y.X. Lu, Y.C. Chen, Y.X. Huang, S.Y. Chang, H.Y. Tsai, Y.A. Kung, PN. Huang, M.-H. Hsu, B.F. Leo, Y.Y. Foo, C.H. Su, K.C. Hsu, P.H. Huang, C.J. Ng, A. Kamarulzaman, C.J. Yuan, D.B. Shieh, S.R. Shih, L.Y. Chung, C.C. Chang, Development of flexible electrochemical impedance spectroscopy-based biosensing platform for rapid screening of SARS-CoV-2 inhibitors, Biosensors and Bioelectronics, 183 ,2021, 113213.
  • [12] Harrison, C. Coronavirus puts drug repurposing on the fast track, Nature Biotechnology, 38, 2020, 379-381.
  • [13] C. Axfors et al., . Mortality outcomes with hydroxychloroquine and chloroquine in COVID-19 from an international collaborative meta-analysis of randomized trials, Nature Communications, 12, 2021. doi:10.1038/s41467-021-22446-z.
  • [14] H. Pan, R. Peto, Q.A. Karim, M. Alejandria, A.M. Henao-Restrepo, C.H. García, M.-P. Kieny, R. Malekzadeh, S. Murthy, M.-P. Preziosi, S. Reddy, M.R. Periago, V. Sathiyamoorthy, J.-A. Røttingen, S. Swaminathan, Repurposed antiviral drugs for COVID-19 –interim WHO SOLIDARITY trial results, 2020, doi:10.1101/2020.10.15.20209817.
  • [15] A.R. Fehr, S. Perlman, Coronaviruses: An Overview of Their Replication and Pathogenesis, Methods in Molecular Biology, Editors: H. Maier, E. Bickerton, P. Britton, 2015, 1–23, USA, New-York.
  • [16] C.C. Lai, T.P. Shih, W.C. Ko, H.J. Tang, P.R. Hsueh. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges, International Journal of Antimicrobial Agents, 55, 2020, 105924.
  • [17] S.J. Chen, S.C. Wang, Y.C. Chen. Novel Antiviral Strategies in the Treatment of COVID-19: A Review, Microorganisms, 8, 2020, 1259.
  • [18] Y.A. Helmy, M. Fawzy, A. Elaswad, A. Sobieh, S.P. Kenney, A.A. Shehata. The COVID-19 Pandemic: A Comprehensive Review of Taxonomy, Genetics, Epidemiology, Diagnosis, Treatment, and Control, Journal of Clinical Medicine, 9, 2020, 1225.
  • [19] B. Udugama, P. Kadhiresan, H.N. Kozlowski, A. Malekjahani, M. Osborne, V.Y.C. Li, H. Chen, S. Mubareka, J.B. Gubbay, W.C.W. Chan. Diagnosing COVID-19, The Disease and Tools for Detection, ACS Nano, 14, 2020, 3822–3835.
  • [20] Y. Jin, H. Yang, W. Ji, W. Wu, S. Chen, W. Zhang, G. Duan. Virology, Epidemiology, Pathogenesis, and Control of COVID-19, Viruses, 12, 2020, 372.
  • [21] WHO Coronavirus Disease (COVID-2019) Dashboard, 2021, https://covid19.who.int.
  • [22] Y. Furuta, K. Takahashi, K. Shiraki, K. Sakamoto, D.F. Smee, D.L. Barnard, B.B. Gowen, J.G. Julander, J.D. Morrey. T-705 (favipiravir) and related compounds: Novel broad-spectrum inhibitors of RNA viral infections, Antiviral Research, 82, 2009, 95–102.
  • [23] Y. Du, X. Chen. Favipiravir: Pharmacokinetics and Concerns About Clinical Trials for 2019‐nCoV Infection, Clinical Pharmacology & Therapeutics, 108, 2020, 242–247.
  • [24] S. Bagheri Novir, M.R. Aram. Quantum mechanical studies of the adsorption of Remdesivir, as an effective drug for treatment of COVID-19, on the surface of pristine, COOH-functionalized and S-, Si- and Al- doped carbon nanotubes, Physica E: Low-dimensional Systems and Nanostructures, 129, 2021, 114668.
  • [25] V.V. Tkach, М.V. Kushnir, S.C. Oliveira, J.G. Ivanushko, A.V. Velyka, A.F. Molodianu, P.I. Yagodynets, Z.O. Kormosh, , L.V. Reis, O.V. Luganska, K.V. Palamarek, Y.L. Bredikhina. Theoretical Description for Anti-COVID-19 Drug Remdesivir Electrochemical Determination, Assisted by Squaraine Dye–Ag2O2 Composite, Biointerface Research in Applied Chemistry, 11, 2021, 9201-9208.
  • [26] Cao, Y. et al.A Trial of Lopinavir–Ritonavir in Adults Hospitalized with Severe Covid-19, New England Journal of Medicine, 382, 2020, 1787–1799.
  • [27] M. Costanzo, M.A.R. Giglio, G.N. Roviello. SARS-CoV-2: Recent reports on antiviral therapies based on lopinavir/ritonavir, darunavir/umifenovir, hydroxychloroquine, remdesivir, favipiravir and other drugs for the treatment of the new coronavirus, current medicinal chemistry, 27, 2020, 4536-4541.
  • [28] A. Shrivastava. Analytical methods for the determination of hydroxychloroquine in various matrices, International Journal of Applied Pharmaceutics, 12, 2020, 55-61.
  • [29] M.L.P.M. Arguelho, J.F. Andrade, N.R. Stradiotto. Electrochemical study of hydroxychloroquine and its determination in Plaquenil by differential pulse voltammetry, Journal of Pharmaceutical and Biomedical Analysis. 32, 2003, 269–275.
  • [30] A. Khoobi, S.M. Ghoreishi, M. Behpour. Sensitive and selective determination of hydroxychloroquine in the presence of uric acid using a new nanostructure self-assembled monolayer modified electrode: optimization by multivariate data analysis, The Analyst, 139, 2014, 4064–4072.
  • [31] R.T. Eastman, J.S. Roth, K.R. Brimacombe, A. Simeonov, M. Shen, S. Patnaik, M.D. Hall. Remdesivir: A Review of its discovery and development leading to emergency use authorization for treatment of COVID-19, ACS Central Science, 6, 2020, 672–683.
  • [32] J. Grein, et al. Compassionate Use of Remdesivir for Patients with Severe Covid-19, New England Journal of Medicine. 382, 2020, 2327–2336.
  • [33] J.H. Beigel, et al. Remdesivir for the Treatment of Covid-19 — Final Report, New England Journal of Medicine, 383, 2020, 1813–1826.
  • [34] S.C.J. Jorgensen, R. Kebriaei, L.D. Dresser. Remdesivir: Review of Pharmacology, Pre‐clinical Data, and Emerging Clinical Experience for COVID‐19, Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 40, 2020, 659–671.
  • [35] V. Avataneo, A. De Nicolò, J. Cusato, M. Antonucci, A. Manca, A. Palermiti, C. Waitt, S. Walimbwa, M. Lamorde, G. Di Perri, A. D’Avolio. Development and validation of a UHPLC-MS/MS method for quantification of the prodrug remdesivir and its metabolite GS-441524: a tool for clinical pharmacokinetics of SARS-CoV-2/COVID-19 and Ebola virus disease, Journal of Antimicrobial Chemotherapy, 75, 2020, 1772–1777.
  • [36] T.P. Sheahan, A.C. Sims, S.R. Leist, A. Schäfer, J. Won, A.J. Brown, S.A. Montgomery, A. Hogg, D. Babusis, M.O. Clarke, J.E. Spahn, L. Bauer, S. Sellers, D. Porter, J.Y. Feng, T. Cihlar, R. Jordan, M.R. Denison, R.S. Baric, Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV, Nature Communications, 11, 2020, 1-14.
  • [37] C.J. Gordon, E.P. Tchesnokov, E. Woolner, J.K. Perry, J.Y. Feng, D.P. Porter, M. Götte. Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency, Journal of Biological Chemistry, 295, 2020, 6785–6797.
  • [38] M. Sisay. Available evidence and ongoing clinical trials of remdesivir: Could it be a promising therapeutic option for COVID-19?, Frontiers in Pharmacology, 11, 2020, 1-6.
  • [39] F.M. El-Badawy, M.A. Mohamed, H.S. El-Desoky. Fabrication of an electrochemical sensor based on manganese oxide nanoparticles supported on reduced graphene oxide for determination of subnanomolar level of anti-hepatitis C daclatasvir in the formulation and biological models, Microchemical Journal, 157, 2020, 104914.
  • [40] P. Ranganathan, B. Mutharani, S.-M. Chen, P. Sireesha. Polystyrene:β-Cyclodextrin Inclusion Complex-Supported Y2O3-Based Electrochemical Sensor: Effective and Simultaneous Determination of 4-Aminoantipyrine and Acyclovir Drugs, The Journal of Physical Chemistry C, 123, 2019, 12211–12222.
  • [41] Annu, S. Sharma, R. Jain, A.N. Raja. Review - pencil graphite electrode: An emerging sensing material, Journal of the Electrochemical Society. 167, 2020, 037501.
  • [42] Q. Wang, Y. Zhao, X. Chen, A. Hong, Virtual screening of approved clinic drugs with main protease (3CLpro) reveals potential inhibitory effects on SARS-CoV-2, Journal of Biomolecular Structure and Dynamics. 2020, 1–11, 1817786.
  • [43] Y.W. Chen, C.P.B. Yiu, K.Y. Wong. Prediction of the SARS-CoV-2 (2019-nCoV) 3C-like protease (3CLpro) structure: virtual screening reveals velpatasvir, ledipasvir, and other drug repurposing candidates, F1000Research, 9, 2020, 129.
  • [44] WHO discontinues hydroxychloroquine and lopinavir/ritonavir treatment arms for COVID-19, 2020. https://www.who.int/news/item/04-07-2020-who-discontinues-hydroxychloroquine-and-lopinavir-ritonavir-treatment-arms-for-covid-19
  • [45] Republic of Turkey, Ministry of Health, Discontiues hydroxychloroquine treatment in COVID-19 in guide for treatment of adult patients with COVID-19, 2021. https://covid19.saglik.gov.tr/Eklenti/40719/0/covid-19rehberieriskinhastayonetimivetedavipdf.pdf
  • [46] J.S. Kang, M.H. Lee. Overview of Therapeutic Drug Monitoring, The Korean Journal of Internal Medicine, 24, 2009, 1.
  • [47] N.M. Cassiano, V.V. Lima, R.V. Oliveira, A.C. De Pietro, Q.B. Cass. Development of restricted-access media supports and their application to the direct analysis of biological fluid samples via high-performance liquid chromatography, Analytical and Bioanalytical Chemistry, 384, 2006, 1462–1469.
  • [48] I. Bulduk. HPLC-UV method for quantification of favipiravir in pharmaceutical formulations, Acta Chromatographica, 33, 2020, 209–215.
  • [49] S.M. Megahed, A.A. Habib, S.F. Hammad, A.H. Kamal. Experimental design approach for development of spectrofluorimetric method for determination of favipiravir; a potential therapeutic agent against COVID-19 virus: Application to spiked human plasma, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 249, 2021, 119241.
  • [50] E. Marchei, R. Pacifici, G. Tossini, R. Di Fava, L. Valvo, P. Zuccaro. Simultaneous liquid chromatographic determination of indinavir, saquinavir, and ritonavir in human plasma with combined ultraviolet absorbance and electrochemical detection, Journal of Liquid Chromatography & Related Technologies, 24, 2001, 2325–2336.
  • [51] K.A. Mahmoud, J.H.T. Luong. Impedance Method for Detecting HIV-1 Protease and Screening For Its Inhibitors Using Ferrocene−Peptide Conjugate/Au Nanoparticle/Single-Walled Carbon Nanotube Modified Electrode, Analytical Chemistry, 80, 2008, 7056–7062.
  • [52] M.H. Mashhadizadeh, M. Akbarian, Voltammetric determination of some anti-malarial drugs using a carbon paste electrode modified with Cu(OH)2 nano-wire, Talanta. 78, 2009, 1440–1445.
  • [53] P.B. Deroco, F.C. Vicentini, G.G. Oliveira, R.C. Rocha-Filho, O. Fatibello-Filho. Square-wave voltammetric determination of hydroxychloroquine in pharmaceutical and synthetic urine samples using a cathodically pretreated boron-doped diamond electrode, Journal of Electroanalytical Chemistry, 719, 2014, 19–23.
  • [54] M.M. Khalil, Y.M. Issa, G.A. El Sayed. Modified carbon paste and polymeric membrane electrodes for determination of hydroxychloroquine sulfate in pharmaceutical preparations and human urine, RSC Advances, 5, 2015, 83657–83667.
There are 54 citations in total.

Details

Primary Language English
Subjects Analytical Chemistry
Journal Section Rewiev
Authors

Deniz Emre 0000-0003-0493-8154

Nuran Özaltın 0000-0003-1137-0595

Selehattin Yılmaz 0000-0003-4607-3523

Publication Date June 29, 2021
Submission Date May 10, 2021
Acceptance Date June 5, 2021
Published in Issue Year 2021

Cite

APA Emre, D., Özaltın, N., & Yılmaz, S. (2021). A review on recent electroanalytical methods for the analysis of antiviral COVID-19 drugs. Turkish Journal of Analytical Chemistry, 3(1), 1-8. https://doi.org/10.51435/turkjac.935765
AMA Emre D, Özaltın N, Yılmaz S. A review on recent electroanalytical methods for the analysis of antiviral COVID-19 drugs. TurkJAC. June 2021;3(1):1-8. doi:10.51435/turkjac.935765
Chicago Emre, Deniz, Nuran Özaltın, and Selehattin Yılmaz. “A Review on Recent Electroanalytical Methods for the Analysis of Antiviral COVID-19 Drugs”. Turkish Journal of Analytical Chemistry 3, no. 1 (June 2021): 1-8. https://doi.org/10.51435/turkjac.935765.
EndNote Emre D, Özaltın N, Yılmaz S (June 1, 2021) A review on recent electroanalytical methods for the analysis of antiviral COVID-19 drugs. Turkish Journal of Analytical Chemistry 3 1 1–8.
IEEE D. Emre, N. Özaltın, and S. Yılmaz, “A review on recent electroanalytical methods for the analysis of antiviral COVID-19 drugs”, TurkJAC, vol. 3, no. 1, pp. 1–8, 2021, doi: 10.51435/turkjac.935765.
ISNAD Emre, Deniz et al. “A Review on Recent Electroanalytical Methods for the Analysis of Antiviral COVID-19 Drugs”. Turkish Journal of Analytical Chemistry 3/1 (June 2021), 1-8. https://doi.org/10.51435/turkjac.935765.
JAMA Emre D, Özaltın N, Yılmaz S. A review on recent electroanalytical methods for the analysis of antiviral COVID-19 drugs. TurkJAC. 2021;3:1–8.
MLA Emre, Deniz et al. “A Review on Recent Electroanalytical Methods for the Analysis of Antiviral COVID-19 Drugs”. Turkish Journal of Analytical Chemistry, vol. 3, no. 1, 2021, pp. 1-8, doi:10.51435/turkjac.935765.
Vancouver Emre D, Özaltın N, Yılmaz S. A review on recent electroanalytical methods for the analysis of antiviral COVID-19 drugs. TurkJAC. 2021;3(1):1-8.



6th International Environmental Chemistry Congress (EnviroChem)

https://www.envirochem.org.tr/