Review
BibTex RIS Cite
Year 2021, , 9 - 18, 29.06.2021
https://doi.org/10.51435/turkjac.938781

Abstract

References

  • Santos, K. L. M., Barros, R. M., da Silva Lima, D. P., Nunes, A. M. A., Sato, M. R., Faccio, R., ... & Junior, J. A. O. (2020). Prospective application of phthalocyanines in the photodynamic therapy against microorganisms and tumor cells: a mini-review. Photodiagnosis and Photodynamic Therapy, 102032.
  • Soncin, M., Fabris, C., Busetti, A., Dei, D., Nistri, D., Roncucci, G., & Jori, G. (2002). Approaches to selectivity in the Zn (II)–phthalocyanine-photosensitized inactivation of wild-type and antibiotic-resistant Staphylococcus aureus. Photochemical & Photobiological Sciences, 1(10), 815-819.
  • Zheng, B. D., He, Q. X., Li, X., Yoon, J., & Huang, J. D. (2021). Phthalocyanines as contrast agents for photothermal therapy. Coordination Chemistry Reviews, 426, 213548.
  • Ribeiro, C. P., & Lourenço, L. M. (2021). Overview of cationic phthalocyanines for effective photoinactivation of pathogenic microorganisms. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 100422.
  • Dalkılıç, Z., Lee, C. B., Choi, H., Nar, I., Yavuz, N. K., & Burat, A. K. (2020). Tetra and octa substituted Zn (II) and Cu (II) phthalocyanines: Synthesis, characterization and investigation as hole-transporting materials for inverted type-perovskite solar cells. Journal of Organometallic Chemistry, 922, 121419.
  • Martínez-Díaz, M. V., Ince, M., & Torres, T. (2011). Phthalocyanines: colorful macroheterocyclic sensitizers for dye-sensitized solar cells. Monatshefte für Chemie-Chemical Monthly, 142(7), 699-707.
  • Yüzer, A. C., Kurtay, G., İnce, T., Yurtdaş, S., Harputlu, E., Ocakoglu, K., ... & İnce, M. (2021). Solution-processed small-molecule organic solar cells based on non-aggregated zinc phthalocyanine derivatives: A comparative experimental and theoretical study. Materials Science in Semiconductor Processing, 129, 105777.
  • Kim, S. W., Kim, G., Moon, C. S., Yang, T. Y., & Seo, J. (2021). Metal‐Free Phthalocyanine as a Hole Transporting Material and a Surface Passivator for Efficient and Stable Perovskite Solar Cells. Small Methods, 2001248.
  • Husain, A., Ganesan, A., Sebastian, M., & Makhseed, S. (2021). Large ultrafast nonlinear optical response and excellent optical limiting behaviour in pyrene-conjugated zinc (II) phthalocyanines at a near-infrared wavelength. Dyes and Pigments, 184, 108787.
  • Qashou, S. I., El-Zaidia, E. F. M., Darwish, A. A. A., & Hanafy, T. A. (2019). Methylsilicon phthalocyanine hydroxide doped PVA films for optoelectronic applications: FTIR spectroscopy, electrical conductivity, linear and nonlinear optical studies. Physica B: Condensed Matter, 571, 93-100.
  • Tolbin, A. Y., Savelyev, M. S., Gerasimenko, A. Y., Tomilova, L. G., & Zefirov, N. S. (2016). Thermally stable J-type phthalocyanine dimers as new non-linear absorbers for low-threshold optical limiters. Physical Chemistry Chemical Physics, 18(23), 15964-15971. Del Mundo, I. M., Vasquez, K. M., & Wang, G. (2019). Modulation of DNA structure formation using small molecules. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1866(12), 118539.
  • Jalalvand, A. R. (2021). Chemometrics in investigation of small molecule-biomacromolecule interactions: A review. International Journal of Biological Macromolecules.
  • Rescifina, A., Zagni, C., Varrica, M. G., Pistarà, V., & Corsaro, A. (2014). Recent advances in small organic molecules as DNA intercalating agents: Synthesis, activity, and modeling. European journal of medicinal chemistry, 74, 95-115.
  • Awadasseid, A., Ma, X., Wu, Y., & Zhang, W. (2021). G-quadruplex stabilization via small-molecules as a potential anti-cancer strategy. Biomedicine & Pharmacotherapy, 139, 111550.
  • Huppert, J. L., & Balasubramanian, S. (2005). Prevalence of quadruplexes in the human genome. Nucleic acids research, 33(9), 2908-2916.
  • Summers, P. A., Lewis, B. W., Gonzalez-Garcia, J., Porreca, R. M., Lim, A. H., Cadinu, P., ... & Vilar, R. (2021). Visualising G-quadruplex DNA dynamics in live cells by fluorescence lifetime imaging microscopy. Nature communications, 12(1), 1-11.
  • Bochman, M. L., Paeschke, K., & Zakian, V. A. (2012). DNA secondary structures: stability and function of G-quadruplex structures. Nature Reviews Genetics, 13(11), 770-780.
  • Neidle, S. (2017). Quadruplex nucleic acids as targets for anticancer therapeutics. Nature Reviews Chemistry, 1(5), 1-10.
  • De Magis, A., Manzo, S. G., Russo, M., Marinello, J., Morigi, R., Sordet, O., & Capranico, G. (2019). DNA damage and genome instability by G-quadruplex ligands are mediated by R loops in human cancer cells. Proceedings of the National Academy of Sciences, 116(3), 816-825.
  • Keleş, T., Barut, B., Özel, A., & Biyiklioglu, Z. (2021). Design, synthesis and biological evaluation of water soluble and non-aggregated silicon phthalocyanines, naphthalocyanines against A549, SNU-398, SK-MEL128, DU-145, BT-20 and HFC cell lines as potential anticancer agents. Bioorganic Chemistry, 107, 104637.
  • Xiao, W., Guan, X., Huang, B., Ye, Q., Zhang, T., Chen, K., ... & Fu, F. (2021). Fluorinated dendritic silicon (IV) phthalocyanines nanoparticles: Synthesis, photoinduced intramolecular energy transfer and DNA interaction. Dyes and Pigments, 186, 109013.
  • Al-Raqa, S. Y., Khezami, K., Kaya, E. N., & Durmuş, M. (2021). A novel water soluble axially substituted silicon (IV) phthalocyanine bearing quaternized 4-(4-pyridinyl) phenol groups: synthesis, characterization, photophysicochemical properties and BSA/DNA binding behavior. Polyhedron, 194, 114937.
  • Uchiyama, M., Momotake, A., Ikeue, T., & Yamamoto, Y. (2020). Stepwise binding of a cationic phthalocyanine derivative to an all parallel-stranded tetrameric G-quadruplex DNA. Journal of Inorganic Biochemistry, 213, 111270.
  • Macii, F., Perez-Arnaiz, C., Arrico, L., Busto, N., Garcia, B., & Biver, T. (2020). Alcian blue pyridine variant interaction with DNA and RNA polynucleotides and G-quadruplexes: changes in the binding features for different biosubstrates. Journal of Inorganic Biochemistry, 212, 111199.
  • Amitha, G. S., & Vasudevan, S. (2020a). DNA binding and cleavage studies of novel Betti base substituted quaternary Cu (II) and Zn (II) phthalocyanines. Polyhedron, 190, 114773.
  • Çoban, Ö., Barut, B., Yalçın, C. Ö., Özel, A., & Bıyıklıoğlu, Z. (2020). Development and in vitro evaluation of BSA-coated liposomes containing Zn (II) phthalocyanine-containing ferrocene groups for photodynamic therapy of lung cancer. Journal of Organometallic Chemistry, 925, 121469.
  • Barut, B., Yalçın, C. Ö., Demirbaş, Ü., Akçay, H. T., Kantekin, H., & Özel, A. (2020). The novel Zn (II) phthalocyanines: Synthesis, characterization, photochemical, DNA interaction and cytotoxic/phototoxic properties. Journal of Molecular Structure, 1218, 128502.
  • Khezami, K., Harmandar, K., Bağda, E., Bağda, E., Şahin, G., Karakodak, N., ... & Durmuş, M. (2020). The new water soluble zinc (II) phthalocyanines substituted with morpholine groups-synthesis and optical properties. Journal of Photochemistry and Photobiology A: Chemistry, 401, 112736.
  • Lopes-Nunes, J., Carvalho, J., Figueiredo, J., Ramos, C. I., Lourenço, L. M., Tomé, J. P., ... & Cruz, C. (2020). Phthalocyanines for G-quadruplex aptamers binding. Bioorganic chemistry, 100, 103920.
  • Ballı, Z., Arslantaş, A., Solǧun, D. G., & Ağırtaş, M. S. (2020). DNA binding studies of the 2, 10, 16, 24–tetrakis (phenoxy-3-methoxybenzoic acid) phthalocyaninato) Co (II) and Cu (II) compounds. SN Applied Sciences, 2(5), 1-10.
  • Uchiyama, M., Momotake, A., Kobayashi, N., & Yamamoto, Y. (2020). Specific binding of an anionic phthalocyanine derivative to G-quadruplex DNAs. Chemistry Letters, 49(5), 530-533.
  • Yalazan, H., Barut, B., Ertem, B., Yalçın, C. Ö., Ünver, Y., Özel, A., ... & Kantekin, H. (2020). DNA interaction and anticancer properties of new peripheral phthalocyanines carrying tosylated 4-morpholinoaniline units. Polyhedron, 177, 114319.
  • Yan, S., Guo, H., Su, J., Chen, J., Song, X., Huang, M., ... & Chen, Z. (2020). Effects of hydroxyl radicals produced by a zinc phthalocyanine photosensitizer on tumor DNA. Dyes and Pigments, 173, 107894.
  • Wang, Z., Li, J., Liu, J., Wang, L., Lu, Y., & Liu, J. P. (2020). Molecular insight into the selective binding between human telomere G‐quadruplex and a negatively charged stabilizer. Clinical and Experimental Pharmacology and Physiology, 47(5), 892-902.
  • Amitha, G. S., & Vasudevan, S. (2020b). DNA/BSA binding studies of peripherally tetra substituted neutral azophenoxy zinc phthalocyanine. Polyhedron, 175, 114208.
  • Baran, A., Col, S., Karakılıç, E., & Özen, F. (2020). Photophysical, photochemical and DNA binding studies of prepared phthalocyanines. Polyhedron, 175, 114205.
  • Kasyanenko, N. A., Tikhomirov, R. A., Bakulev, V. M., Demidov, V. N., Chikhirzhina, E. V., & Moroshkina, E. B. (2019). DNA complexes with cobalt (II) phthalocyanine disodium disulfonate. ACS omega, 4(16), 16935-16942.
  • McRae, E. K., Nevonen, D. E., McKenna, S. A., & Nemykin, V. N. (2019). Binding and photodynamic action of the cationic zinc phthalocyanines with different types of DNA toward understanding of their cancer therapy activity. Journal of inorganic biochemistry, 199, 110793.
  • Keleş, T., Barut, B., Özel, A., & Biyiklioglu, Z. (2019). Synthesis of water soluble silicon phthacyanine, naphthalocyanine bearing pyridine groups and investigation of their DNA interaction, topoisomerase inhibition, cytotoxic effects and cell cycle arrest properties. Dyes and Pigments, 164, 372-383.
  • Uslan, C., Köksoy, B., Durmuş, M., İşleyen, N. D., Öztürk, Y., Çakar, Z. P., ... & Sesalan, B. S. (2019). The synthesis and investigation of photochemical, photophysical and biological properties of new lutetium, indium, and zinc phthalocyanines substituted with PEGME-2000 blocks. JBIC Journal of Biological Inorganic Chemistry, 24(2), 191-210.
  • Demirbaş, Ü., Barut, B., Özel, A., Çelik, F., Kantekin, H., & Sancak, K. (2019). Synthesis, characterization and DNA interaction properties of the novel peripherally tetra 4-(3-methyl-4-(3-morpholinopropyl)-5-oxo-4, 5-dihydro-1H-1, 2, 4-triazol-1-yl) substituted water soluble Zn (II) and Cu (II) phthalocyanines. Journal of Molecular Structure, 1177, 571-578.
  • Ramos, C. I., Almeida, S. P., Lourenço, L. M., Pereira, P. M., Fernandes, R., Faustino, M. A. F., ... & Neves, M. G. P. M. S. (2019). Multicharged phthalocyanines as selective ligands for G-quadruplex DNA structures. Molecules, 24(4), 733.
  • Demirbaş, Ü. (2019). Synthesis, characterization, and investigation of singlet oxygen, DNA interaction, and topoisomerase I inhibition properties of novel zinc (II) phthalocyanine. Turkish Journal of Chemistry, 43(6), 1646-1655.
  • Baş, H., Barut, B., Biyiklioglu, Z., & Özel, A. (2019). Synthesis, DNA interaction, topoisomerase I, II inhibitory and cytotoxic effects of water soluble silicon (IV) phthalocyanine and napthalocyanines bearing 1-acetylpiperazine units. Dyes and Pigments, 160, 136-144.

The recent studies about the interaction of phthalocyanines with DNA

Year 2021, , 9 - 18, 29.06.2021
https://doi.org/10.51435/turkjac.938781

Abstract

Cancer is one of the major diseases affecting all humanity with high mortality rates worldwide. Its treatment is difficult, long-term and expensive. Due to its side effects, it is troublesome for both the patient and their attendants. Cancer treatment is basically divided into three: surgery, chemotherapy and radiotherapy. Photodynamic therapy offers one of the most important and promising treatment methods, especially in recent years. Photodynamic therapy takes the steps of administering the photo-sensitizing compound to the body and stimulating it with a light of appropriate wavelength after its accumulation in the target tissue. With the formation of complex processes that take place in the target area with the reactive oxygen species formed by the stimulated compounds, death or the inhibition of the proliferation of the cells causes situations such as the destruction of the target tissue.
Phthalocyanines constitute an important group of photo-sensitizers used in photodynamic therapy. Stability of these compounds and their strong absorption close to therapeutic window make these compounds important. With large Π systems, they can bind with many biological macromolecules, including DNA, with high affinity by many mechanisms, including the Π - Π stacking.
This review article describes the last three years of studies in the WOS database about the interactions of phthalocyanines with DNA. The interactions of phthalocyanines with DNA are important as they can make a difference in the proliferation of tumor cells. On the other hand, DNA replication and transcription has increased due to the increasing metabolic rate of these cells. The DNA double strand opened during replication, and gene expression allows the formation of different secondary structures such as hairpin, triple, junctions, and G-quadruplex. The interaction of G-quadruplex DNA structures with these compounds, which can be formed in the guanine-rich regions of the DNA sequences opened in these processes, has been described in studies.

References

  • Santos, K. L. M., Barros, R. M., da Silva Lima, D. P., Nunes, A. M. A., Sato, M. R., Faccio, R., ... & Junior, J. A. O. (2020). Prospective application of phthalocyanines in the photodynamic therapy against microorganisms and tumor cells: a mini-review. Photodiagnosis and Photodynamic Therapy, 102032.
  • Soncin, M., Fabris, C., Busetti, A., Dei, D., Nistri, D., Roncucci, G., & Jori, G. (2002). Approaches to selectivity in the Zn (II)–phthalocyanine-photosensitized inactivation of wild-type and antibiotic-resistant Staphylococcus aureus. Photochemical & Photobiological Sciences, 1(10), 815-819.
  • Zheng, B. D., He, Q. X., Li, X., Yoon, J., & Huang, J. D. (2021). Phthalocyanines as contrast agents for photothermal therapy. Coordination Chemistry Reviews, 426, 213548.
  • Ribeiro, C. P., & Lourenço, L. M. (2021). Overview of cationic phthalocyanines for effective photoinactivation of pathogenic microorganisms. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 100422.
  • Dalkılıç, Z., Lee, C. B., Choi, H., Nar, I., Yavuz, N. K., & Burat, A. K. (2020). Tetra and octa substituted Zn (II) and Cu (II) phthalocyanines: Synthesis, characterization and investigation as hole-transporting materials for inverted type-perovskite solar cells. Journal of Organometallic Chemistry, 922, 121419.
  • Martínez-Díaz, M. V., Ince, M., & Torres, T. (2011). Phthalocyanines: colorful macroheterocyclic sensitizers for dye-sensitized solar cells. Monatshefte für Chemie-Chemical Monthly, 142(7), 699-707.
  • Yüzer, A. C., Kurtay, G., İnce, T., Yurtdaş, S., Harputlu, E., Ocakoglu, K., ... & İnce, M. (2021). Solution-processed small-molecule organic solar cells based on non-aggregated zinc phthalocyanine derivatives: A comparative experimental and theoretical study. Materials Science in Semiconductor Processing, 129, 105777.
  • Kim, S. W., Kim, G., Moon, C. S., Yang, T. Y., & Seo, J. (2021). Metal‐Free Phthalocyanine as a Hole Transporting Material and a Surface Passivator for Efficient and Stable Perovskite Solar Cells. Small Methods, 2001248.
  • Husain, A., Ganesan, A., Sebastian, M., & Makhseed, S. (2021). Large ultrafast nonlinear optical response and excellent optical limiting behaviour in pyrene-conjugated zinc (II) phthalocyanines at a near-infrared wavelength. Dyes and Pigments, 184, 108787.
  • Qashou, S. I., El-Zaidia, E. F. M., Darwish, A. A. A., & Hanafy, T. A. (2019). Methylsilicon phthalocyanine hydroxide doped PVA films for optoelectronic applications: FTIR spectroscopy, electrical conductivity, linear and nonlinear optical studies. Physica B: Condensed Matter, 571, 93-100.
  • Tolbin, A. Y., Savelyev, M. S., Gerasimenko, A. Y., Tomilova, L. G., & Zefirov, N. S. (2016). Thermally stable J-type phthalocyanine dimers as new non-linear absorbers for low-threshold optical limiters. Physical Chemistry Chemical Physics, 18(23), 15964-15971. Del Mundo, I. M., Vasquez, K. M., & Wang, G. (2019). Modulation of DNA structure formation using small molecules. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1866(12), 118539.
  • Jalalvand, A. R. (2021). Chemometrics in investigation of small molecule-biomacromolecule interactions: A review. International Journal of Biological Macromolecules.
  • Rescifina, A., Zagni, C., Varrica, M. G., Pistarà, V., & Corsaro, A. (2014). Recent advances in small organic molecules as DNA intercalating agents: Synthesis, activity, and modeling. European journal of medicinal chemistry, 74, 95-115.
  • Awadasseid, A., Ma, X., Wu, Y., & Zhang, W. (2021). G-quadruplex stabilization via small-molecules as a potential anti-cancer strategy. Biomedicine & Pharmacotherapy, 139, 111550.
  • Huppert, J. L., & Balasubramanian, S. (2005). Prevalence of quadruplexes in the human genome. Nucleic acids research, 33(9), 2908-2916.
  • Summers, P. A., Lewis, B. W., Gonzalez-Garcia, J., Porreca, R. M., Lim, A. H., Cadinu, P., ... & Vilar, R. (2021). Visualising G-quadruplex DNA dynamics in live cells by fluorescence lifetime imaging microscopy. Nature communications, 12(1), 1-11.
  • Bochman, M. L., Paeschke, K., & Zakian, V. A. (2012). DNA secondary structures: stability and function of G-quadruplex structures. Nature Reviews Genetics, 13(11), 770-780.
  • Neidle, S. (2017). Quadruplex nucleic acids as targets for anticancer therapeutics. Nature Reviews Chemistry, 1(5), 1-10.
  • De Magis, A., Manzo, S. G., Russo, M., Marinello, J., Morigi, R., Sordet, O., & Capranico, G. (2019). DNA damage and genome instability by G-quadruplex ligands are mediated by R loops in human cancer cells. Proceedings of the National Academy of Sciences, 116(3), 816-825.
  • Keleş, T., Barut, B., Özel, A., & Biyiklioglu, Z. (2021). Design, synthesis and biological evaluation of water soluble and non-aggregated silicon phthalocyanines, naphthalocyanines against A549, SNU-398, SK-MEL128, DU-145, BT-20 and HFC cell lines as potential anticancer agents. Bioorganic Chemistry, 107, 104637.
  • Xiao, W., Guan, X., Huang, B., Ye, Q., Zhang, T., Chen, K., ... & Fu, F. (2021). Fluorinated dendritic silicon (IV) phthalocyanines nanoparticles: Synthesis, photoinduced intramolecular energy transfer and DNA interaction. Dyes and Pigments, 186, 109013.
  • Al-Raqa, S. Y., Khezami, K., Kaya, E. N., & Durmuş, M. (2021). A novel water soluble axially substituted silicon (IV) phthalocyanine bearing quaternized 4-(4-pyridinyl) phenol groups: synthesis, characterization, photophysicochemical properties and BSA/DNA binding behavior. Polyhedron, 194, 114937.
  • Uchiyama, M., Momotake, A., Ikeue, T., & Yamamoto, Y. (2020). Stepwise binding of a cationic phthalocyanine derivative to an all parallel-stranded tetrameric G-quadruplex DNA. Journal of Inorganic Biochemistry, 213, 111270.
  • Macii, F., Perez-Arnaiz, C., Arrico, L., Busto, N., Garcia, B., & Biver, T. (2020). Alcian blue pyridine variant interaction with DNA and RNA polynucleotides and G-quadruplexes: changes in the binding features for different biosubstrates. Journal of Inorganic Biochemistry, 212, 111199.
  • Amitha, G. S., & Vasudevan, S. (2020a). DNA binding and cleavage studies of novel Betti base substituted quaternary Cu (II) and Zn (II) phthalocyanines. Polyhedron, 190, 114773.
  • Çoban, Ö., Barut, B., Yalçın, C. Ö., Özel, A., & Bıyıklıoğlu, Z. (2020). Development and in vitro evaluation of BSA-coated liposomes containing Zn (II) phthalocyanine-containing ferrocene groups for photodynamic therapy of lung cancer. Journal of Organometallic Chemistry, 925, 121469.
  • Barut, B., Yalçın, C. Ö., Demirbaş, Ü., Akçay, H. T., Kantekin, H., & Özel, A. (2020). The novel Zn (II) phthalocyanines: Synthesis, characterization, photochemical, DNA interaction and cytotoxic/phototoxic properties. Journal of Molecular Structure, 1218, 128502.
  • Khezami, K., Harmandar, K., Bağda, E., Bağda, E., Şahin, G., Karakodak, N., ... & Durmuş, M. (2020). The new water soluble zinc (II) phthalocyanines substituted with morpholine groups-synthesis and optical properties. Journal of Photochemistry and Photobiology A: Chemistry, 401, 112736.
  • Lopes-Nunes, J., Carvalho, J., Figueiredo, J., Ramos, C. I., Lourenço, L. M., Tomé, J. P., ... & Cruz, C. (2020). Phthalocyanines for G-quadruplex aptamers binding. Bioorganic chemistry, 100, 103920.
  • Ballı, Z., Arslantaş, A., Solǧun, D. G., & Ağırtaş, M. S. (2020). DNA binding studies of the 2, 10, 16, 24–tetrakis (phenoxy-3-methoxybenzoic acid) phthalocyaninato) Co (II) and Cu (II) compounds. SN Applied Sciences, 2(5), 1-10.
  • Uchiyama, M., Momotake, A., Kobayashi, N., & Yamamoto, Y. (2020). Specific binding of an anionic phthalocyanine derivative to G-quadruplex DNAs. Chemistry Letters, 49(5), 530-533.
  • Yalazan, H., Barut, B., Ertem, B., Yalçın, C. Ö., Ünver, Y., Özel, A., ... & Kantekin, H. (2020). DNA interaction and anticancer properties of new peripheral phthalocyanines carrying tosylated 4-morpholinoaniline units. Polyhedron, 177, 114319.
  • Yan, S., Guo, H., Su, J., Chen, J., Song, X., Huang, M., ... & Chen, Z. (2020). Effects of hydroxyl radicals produced by a zinc phthalocyanine photosensitizer on tumor DNA. Dyes and Pigments, 173, 107894.
  • Wang, Z., Li, J., Liu, J., Wang, L., Lu, Y., & Liu, J. P. (2020). Molecular insight into the selective binding between human telomere G‐quadruplex and a negatively charged stabilizer. Clinical and Experimental Pharmacology and Physiology, 47(5), 892-902.
  • Amitha, G. S., & Vasudevan, S. (2020b). DNA/BSA binding studies of peripherally tetra substituted neutral azophenoxy zinc phthalocyanine. Polyhedron, 175, 114208.
  • Baran, A., Col, S., Karakılıç, E., & Özen, F. (2020). Photophysical, photochemical and DNA binding studies of prepared phthalocyanines. Polyhedron, 175, 114205.
  • Kasyanenko, N. A., Tikhomirov, R. A., Bakulev, V. M., Demidov, V. N., Chikhirzhina, E. V., & Moroshkina, E. B. (2019). DNA complexes with cobalt (II) phthalocyanine disodium disulfonate. ACS omega, 4(16), 16935-16942.
  • McRae, E. K., Nevonen, D. E., McKenna, S. A., & Nemykin, V. N. (2019). Binding and photodynamic action of the cationic zinc phthalocyanines with different types of DNA toward understanding of their cancer therapy activity. Journal of inorganic biochemistry, 199, 110793.
  • Keleş, T., Barut, B., Özel, A., & Biyiklioglu, Z. (2019). Synthesis of water soluble silicon phthacyanine, naphthalocyanine bearing pyridine groups and investigation of their DNA interaction, topoisomerase inhibition, cytotoxic effects and cell cycle arrest properties. Dyes and Pigments, 164, 372-383.
  • Uslan, C., Köksoy, B., Durmuş, M., İşleyen, N. D., Öztürk, Y., Çakar, Z. P., ... & Sesalan, B. S. (2019). The synthesis and investigation of photochemical, photophysical and biological properties of new lutetium, indium, and zinc phthalocyanines substituted with PEGME-2000 blocks. JBIC Journal of Biological Inorganic Chemistry, 24(2), 191-210.
  • Demirbaş, Ü., Barut, B., Özel, A., Çelik, F., Kantekin, H., & Sancak, K. (2019). Synthesis, characterization and DNA interaction properties of the novel peripherally tetra 4-(3-methyl-4-(3-morpholinopropyl)-5-oxo-4, 5-dihydro-1H-1, 2, 4-triazol-1-yl) substituted water soluble Zn (II) and Cu (II) phthalocyanines. Journal of Molecular Structure, 1177, 571-578.
  • Ramos, C. I., Almeida, S. P., Lourenço, L. M., Pereira, P. M., Fernandes, R., Faustino, M. A. F., ... & Neves, M. G. P. M. S. (2019). Multicharged phthalocyanines as selective ligands for G-quadruplex DNA structures. Molecules, 24(4), 733.
  • Demirbaş, Ü. (2019). Synthesis, characterization, and investigation of singlet oxygen, DNA interaction, and topoisomerase I inhibition properties of novel zinc (II) phthalocyanine. Turkish Journal of Chemistry, 43(6), 1646-1655.
  • Baş, H., Barut, B., Biyiklioglu, Z., & Özel, A. (2019). Synthesis, DNA interaction, topoisomerase I, II inhibitory and cytotoxic effects of water soluble silicon (IV) phthalocyanine and napthalocyanines bearing 1-acetylpiperazine units. Dyes and Pigments, 160, 136-144.
There are 44 citations in total.

Details

Primary Language English
Subjects Analytical Chemistry
Journal Section Rewiev
Authors

Esra Bağda 0000-0003-1900-4944

Efkan Bağda 0000-0002-3925-3430

Publication Date June 29, 2021
Submission Date May 18, 2021
Acceptance Date June 13, 2021
Published in Issue Year 2021

Cite

APA Bağda, E., & Bağda, E. (2021). The recent studies about the interaction of phthalocyanines with DNA. Turkish Journal of Analytical Chemistry, 3(1), 9-18. https://doi.org/10.51435/turkjac.938781
AMA Bağda E, Bağda E. The recent studies about the interaction of phthalocyanines with DNA. TurkJAC. June 2021;3(1):9-18. doi:10.51435/turkjac.938781
Chicago Bağda, Esra, and Efkan Bağda. “The Recent Studies about the Interaction of Phthalocyanines With DNA”. Turkish Journal of Analytical Chemistry 3, no. 1 (June 2021): 9-18. https://doi.org/10.51435/turkjac.938781.
EndNote Bağda E, Bağda E (June 1, 2021) The recent studies about the interaction of phthalocyanines with DNA. Turkish Journal of Analytical Chemistry 3 1 9–18.
IEEE E. Bağda and E. Bağda, “The recent studies about the interaction of phthalocyanines with DNA”, TurkJAC, vol. 3, no. 1, pp. 9–18, 2021, doi: 10.51435/turkjac.938781.
ISNAD Bağda, Esra - Bağda, Efkan. “The Recent Studies about the Interaction of Phthalocyanines With DNA”. Turkish Journal of Analytical Chemistry 3/1 (June 2021), 9-18. https://doi.org/10.51435/turkjac.938781.
JAMA Bağda E, Bağda E. The recent studies about the interaction of phthalocyanines with DNA. TurkJAC. 2021;3:9–18.
MLA Bağda, Esra and Efkan Bağda. “The Recent Studies about the Interaction of Phthalocyanines With DNA”. Turkish Journal of Analytical Chemistry, vol. 3, no. 1, 2021, pp. 9-18, doi:10.51435/turkjac.938781.
Vancouver Bağda E, Bağda E. The recent studies about the interaction of phthalocyanines with DNA. TurkJAC. 2021;3(1):9-18.



6th International Environmental Chemistry Congress (EnviroChem)

https://www.envirochem.org.tr/