Year 2021,
Volume: 3 Issue: 1, 33 - 38, 29.06.2021
Gülsev Dilber
,
Asiye Nas
,
Zekeriya Bıyıklıoğlu
Project Number
FHD-2018-7631
References
- [1] A. Arul, M. Christy, M. Y. Oh, Y. S. Lee, K. S. Nahm, Nanofiber Carbon-Supported Phthalocyanine Metal Complexes as Solid Electrocatalysts for Lithium-Air Batteries, Electrochim Acta, 218, 2016, 335-344.
- [2] Y. Xuan, L. Xie, X. Huang, B. Su, Molecular electrocatalysis of oxygen reduction by iron(II) phthalocyanine at the liquid/liquid interface, J Electroanal Chem, 766, 2016 37-43.
- [3] H. Karaca, Redox chemistry, spectroelectrochemistry and catalytic activity of novel synthesized phthalocyanines bearing four schiff bases on the periphery, J Organomet Chem, 822, 2016, 39-45.
- [4] I.A. Tarasyuk, I. A. Kuzmin, Y. S. Marfin, A. S. Vashurin, A. A. Voronina, E. V. Rumyantsev, Synthesis and catalytic properties of hybrid materials based on organically modified silica matrix with cobalt phthalocyanine, Synth Met, 217, 2016, 189-196.
- [5] N. Li, Z. Sun, R. Liu, L. Xu, K. Xu, X.-M. Song, Enhanced power conversion efficiency in phthalocyanine-sensitized solar cells by modifying TiO2 photoanode with polyoxometalate, Sol Energy Mater Sol Cells, 157, 2016, 853-860.
- [6] H. S. Majumdar, A. Bandyopadhyay, A. J. Pal, Data-storage devices based on layer-by-layer self-assembled films of a phthalocyanine derivative, Org Electron, 4, 2003, 39-44.
- [7] S.M.A. Pinto, V.A. Tomé, M. J.F. Calvete, M.M. Pereira, H.D. Burrows, A.M.S. Cardoso, A.Pallier, M. M. C.A. Castro, É. Tóth, C. F.G.C. Geraldes, The quest for biocompatible phthalocyanines for molecular imaging: Photophysics, relaxometry and cytotoxicity studies, J Inorg Biochem, 154, 2016, 50-59.
- [8] V.Chauke, ve T. Nyokong, Photocatalytic oxidation of 1-hexene using GaPc and InPc octasubstituted derivatives, J Mol Catal A-Chem, 289, 2008, 9-13.
- [9] Y. Zorlu, F. Dumoulin, D. Bouchu, V.Ahsen, D. Lafont, Monoglycoconjugated water-soluble phthalocyanines. Design and synthesis of potential selectively targeting PDT photosensitisers, Tetrahedron Lett, 51, 2010, 6615-6618.
- [10] T. Nyokong, Electronic spectral and electrochemical behaviour of near infrared absorbing metallophthalocyanines". In: Structure and Bonding: Functional Phthalocyanine Molecular Materials. Editors: J. Jianzhuang, 2010, Berlin, Springer.
- [11] Z. Biyiklioglu, O. Bekircan, Synthesis and electrochemical properties of axially disubstituted silicon phthalocyanine and peripherally tetra substituted manganese(III) phthalocyanine bearing 1,2,4-triazole substituents, Synth Met, 200, 2015, 148-155.
- [12] A. Nas, H.Kantekin, A. Koca, Novel 4-(2-(benzo[d]thiazol-2-yl)phenoxy) substituted phthalocyanine derivatives: Synthesis, electrochemical and in situ spectroelectrochemical characterization, J Organomet Chem, 757, 2014, 62-71.
- [13] Z. Bıyıklıoğlu, V. Çakır, D. Çakır, H. Kantekin, Crown ether-substituted water soluble phthalocyanines and their aggregation, electrochemical studies, J Organomet Chem, 749, 2014, 18-25.
- [14] E. T. Saka, G. Sarkı, H.Kantekin, A. Koca, Electrochemical, spectroelectrochemical and catalytical properties of new Cu(II) and Co(II) phthalocyanines, Synth Met, 214 ,2016, 82-91.
- [15] E.T. Saka, R. Z. U. Kobak, H. Alp, G. Sarkı, A. Koca, H. Kantekin, Electrochemical and spectroelectrochemical properties of new metal free, nickel(II), lead(II) and zinc(II) phthalocyanines, Synth Met, 217, 2016, 295-303.
- [16] Ö. İpsiz, H. Y. Yenilmez, K. Kaya, A. Koca, Z. A. Bayır, Carbazole-substituted metallo-phthalocyanines: Synthesis, electrochemical, and spectroelectrochemical properties, Synthetic Metals, 217, 2016, 94-101.
- [17] Ü. Demirbaş, R. Z. U. Kobak, H. T. Akçay, D. Ünlüer, A. Koca, F. Çelik, H. Kantekin, Synthesis, characterization, electrochemical and spectroelectrochemical properties of novel peripherally tetra-1,2,4-triazole substituted phthalocyanines, Synth Met, 215, 2016, 68-76.
- [18] A. Koca, H. A. Dinçer, H. Çerlek, A.Gül, M. B. Koçak, Spectroelectrochemical characterization and controlled potential chronocoulometric demetallation of tetra- and octa-substituted lead phthalocyanines, Electrochim Acta, 52, 2006, 1199-1205.
- [19] A. L. Uğur, A. Erdoğmuş, A. Koca, U. Avcıata, Synthesis, spectroscopic, electrochemical and spectroelectrochemical properties of metal free, manganese, and cobalt phthalocyanines bearing peripherally octakis-[4-(thiophen-3-yl)-phenoxy] substituents, Polyhedron, 29, 2010, 3310-3317.
- [20] H.R. P. Karaoğlu, A. Koca, M. B. Koçak, The synthesis and electrochemistry of novel, symmetrical, octasubstituted phthalocyanines, Synth Met, 182, 2013, 1-8.
- [21] A. Nas. The photo-physicochemical properties of an octa-substituted zinc phthalocyanine containing 1,2,4-triazole moieties, J Coord Chem, 69, 2016, 1326-1336.
- [22] G. Dilber, H. Altunparmak, A. Nas, H. Kantekin, M. Durmuş, The peripheral and non-peripheral 2H-benzotriazole substituted phthalocyanines: Synthesis, characterization, photophysical and photochemical studies of zinc derivatives, Spectrochim Acta A, 217, 2019, 128-140.
- [23] M.J. Stillman, T. Nyokong, Phthalocyanines: properties and applications, Editors: C. C. Leznoff, 1989, New York, VCH Publishers.
- [24] G. G. Köse, G. K. Karaoğlan, S. N. Işık, D. Akyüz, A. Koca, The Synthesis, Characterization, Electrochemical and Spectroelectrochemical Properties of Novel Unsymmetrical Phthalocyanines Containing Naphthoic Acid and Di-tert-butylphenoxy, Synth Met, 264, 2020, 116386.
New octa-benzothiazole substituted metal free and metallophthalocyanines: Synthesis, characterization and electrochemical studies
Year 2021,
Volume: 3 Issue: 1, 33 - 38, 29.06.2021
Gülsev Dilber
,
Asiye Nas
,
Zekeriya Bıyıklıoğlu
Abstract
The synthesis, spectroscopic and electrochemical properties of the following octa-benzothiazole substituted metal-free (4), cobalt(II) (5) and zinc (II) (6) phthalocyanines are reported for the first time. The novel phthalocyanines have been characterized by FT-IR, NMR spectroscopy, electronic spectroscopy and mass spectroscopy. Voltammetric analysis of benzothiazole group substituted phthalocyanines were determined by cyclic (CV) and square wave voltammetry (SWV). According to the results, phthalocyanines revealed metal and ligand-based quasi-reversible reduction and oxidation processes.
Supporting Institution
Karadeniz Technical University
Project Number
FHD-2018-7631
References
- [1] A. Arul, M. Christy, M. Y. Oh, Y. S. Lee, K. S. Nahm, Nanofiber Carbon-Supported Phthalocyanine Metal Complexes as Solid Electrocatalysts for Lithium-Air Batteries, Electrochim Acta, 218, 2016, 335-344.
- [2] Y. Xuan, L. Xie, X. Huang, B. Su, Molecular electrocatalysis of oxygen reduction by iron(II) phthalocyanine at the liquid/liquid interface, J Electroanal Chem, 766, 2016 37-43.
- [3] H. Karaca, Redox chemistry, spectroelectrochemistry and catalytic activity of novel synthesized phthalocyanines bearing four schiff bases on the periphery, J Organomet Chem, 822, 2016, 39-45.
- [4] I.A. Tarasyuk, I. A. Kuzmin, Y. S. Marfin, A. S. Vashurin, A. A. Voronina, E. V. Rumyantsev, Synthesis and catalytic properties of hybrid materials based on organically modified silica matrix with cobalt phthalocyanine, Synth Met, 217, 2016, 189-196.
- [5] N. Li, Z. Sun, R. Liu, L. Xu, K. Xu, X.-M. Song, Enhanced power conversion efficiency in phthalocyanine-sensitized solar cells by modifying TiO2 photoanode with polyoxometalate, Sol Energy Mater Sol Cells, 157, 2016, 853-860.
- [6] H. S. Majumdar, A. Bandyopadhyay, A. J. Pal, Data-storage devices based on layer-by-layer self-assembled films of a phthalocyanine derivative, Org Electron, 4, 2003, 39-44.
- [7] S.M.A. Pinto, V.A. Tomé, M. J.F. Calvete, M.M. Pereira, H.D. Burrows, A.M.S. Cardoso, A.Pallier, M. M. C.A. Castro, É. Tóth, C. F.G.C. Geraldes, The quest for biocompatible phthalocyanines for molecular imaging: Photophysics, relaxometry and cytotoxicity studies, J Inorg Biochem, 154, 2016, 50-59.
- [8] V.Chauke, ve T. Nyokong, Photocatalytic oxidation of 1-hexene using GaPc and InPc octasubstituted derivatives, J Mol Catal A-Chem, 289, 2008, 9-13.
- [9] Y. Zorlu, F. Dumoulin, D. Bouchu, V.Ahsen, D. Lafont, Monoglycoconjugated water-soluble phthalocyanines. Design and synthesis of potential selectively targeting PDT photosensitisers, Tetrahedron Lett, 51, 2010, 6615-6618.
- [10] T. Nyokong, Electronic spectral and electrochemical behaviour of near infrared absorbing metallophthalocyanines". In: Structure and Bonding: Functional Phthalocyanine Molecular Materials. Editors: J. Jianzhuang, 2010, Berlin, Springer.
- [11] Z. Biyiklioglu, O. Bekircan, Synthesis and electrochemical properties of axially disubstituted silicon phthalocyanine and peripherally tetra substituted manganese(III) phthalocyanine bearing 1,2,4-triazole substituents, Synth Met, 200, 2015, 148-155.
- [12] A. Nas, H.Kantekin, A. Koca, Novel 4-(2-(benzo[d]thiazol-2-yl)phenoxy) substituted phthalocyanine derivatives: Synthesis, electrochemical and in situ spectroelectrochemical characterization, J Organomet Chem, 757, 2014, 62-71.
- [13] Z. Bıyıklıoğlu, V. Çakır, D. Çakır, H. Kantekin, Crown ether-substituted water soluble phthalocyanines and their aggregation, electrochemical studies, J Organomet Chem, 749, 2014, 18-25.
- [14] E. T. Saka, G. Sarkı, H.Kantekin, A. Koca, Electrochemical, spectroelectrochemical and catalytical properties of new Cu(II) and Co(II) phthalocyanines, Synth Met, 214 ,2016, 82-91.
- [15] E.T. Saka, R. Z. U. Kobak, H. Alp, G. Sarkı, A. Koca, H. Kantekin, Electrochemical and spectroelectrochemical properties of new metal free, nickel(II), lead(II) and zinc(II) phthalocyanines, Synth Met, 217, 2016, 295-303.
- [16] Ö. İpsiz, H. Y. Yenilmez, K. Kaya, A. Koca, Z. A. Bayır, Carbazole-substituted metallo-phthalocyanines: Synthesis, electrochemical, and spectroelectrochemical properties, Synthetic Metals, 217, 2016, 94-101.
- [17] Ü. Demirbaş, R. Z. U. Kobak, H. T. Akçay, D. Ünlüer, A. Koca, F. Çelik, H. Kantekin, Synthesis, characterization, electrochemical and spectroelectrochemical properties of novel peripherally tetra-1,2,4-triazole substituted phthalocyanines, Synth Met, 215, 2016, 68-76.
- [18] A. Koca, H. A. Dinçer, H. Çerlek, A.Gül, M. B. Koçak, Spectroelectrochemical characterization and controlled potential chronocoulometric demetallation of tetra- and octa-substituted lead phthalocyanines, Electrochim Acta, 52, 2006, 1199-1205.
- [19] A. L. Uğur, A. Erdoğmuş, A. Koca, U. Avcıata, Synthesis, spectroscopic, electrochemical and spectroelectrochemical properties of metal free, manganese, and cobalt phthalocyanines bearing peripherally octakis-[4-(thiophen-3-yl)-phenoxy] substituents, Polyhedron, 29, 2010, 3310-3317.
- [20] H.R. P. Karaoğlu, A. Koca, M. B. Koçak, The synthesis and electrochemistry of novel, symmetrical, octasubstituted phthalocyanines, Synth Met, 182, 2013, 1-8.
- [21] A. Nas. The photo-physicochemical properties of an octa-substituted zinc phthalocyanine containing 1,2,4-triazole moieties, J Coord Chem, 69, 2016, 1326-1336.
- [22] G. Dilber, H. Altunparmak, A. Nas, H. Kantekin, M. Durmuş, The peripheral and non-peripheral 2H-benzotriazole substituted phthalocyanines: Synthesis, characterization, photophysical and photochemical studies of zinc derivatives, Spectrochim Acta A, 217, 2019, 128-140.
- [23] M.J. Stillman, T. Nyokong, Phthalocyanines: properties and applications, Editors: C. C. Leznoff, 1989, New York, VCH Publishers.
- [24] G. G. Köse, G. K. Karaoğlan, S. N. Işık, D. Akyüz, A. Koca, The Synthesis, Characterization, Electrochemical and Spectroelectrochemical Properties of Novel Unsymmetrical Phthalocyanines Containing Naphthoic Acid and Di-tert-butylphenoxy, Synth Met, 264, 2020, 116386.