Research Article
BibTex RIS Cite
Year 2023, Volume: 5 Issue: 1, 17 - 24, 30.06.2023
https://doi.org/10.51435/turkjac.1294052

Abstract

References

  • WHO, WHO recommendations on postnatal care of the mother and newborn 2014, World Health Organization, Geneva, https://apps.who.int/iris/handle/10665/97603.
  • TDHS, 2018 Türkiye Demographic and Health Survey, Ankara, Türkiye, 2019. https://hips.hacettepe.edu.tr/en/menu/demographic and health survey serie-101.
  • Ş. Saçmacı, M. Saçmacı, Determination of Arsenic (III) and Total Arsenic at Trace Levels in Baby Food Samples via a New Functionalized Magnetic Graphane Oxide Nanocomposite, Biol Trace Elem Res, 199, 2021, 4856-4866.https://doi.org/10.1007/s12011-021-02754-7
  • N. Zand, B.Z. Chowdhry, F.B. Zotor, D.S. Wray, P. Amuna, F.S. Pullen, Essential and trace elements content of commercial infant foods in the UK, Food Chem, 128, 2011, 123-128. https://doi.org/10.1016/j.foodchem.2011.03.005
  • L.J. Taylor, M. Gallagher, F.S. McCullough, The role of parental influence and additional factors in the determination of food choices for pre‐school children, Int J Consumer Stud, 28, 2004, 337-346. https://doi.org/10.1111/j.1470-6431.2004.00391.x
  • M.M. Ghuniem, M.A. Khorshed, M.M. Khalil, Determination of some essential and toxic elements composition of commercial infant formula in the Egyptian market and their contribution to dietary intake of infants, Int J Environ Anal Chem, 100, 2020, 525-548. https://doi.org/10.1080/03067319.2019.1637426
  • A. Barclay, L. Weaver, Feeding the normal infant, child and adolescent, Medicine, 34, 2006, 551-556. https://doi.org/10.1053/j.mpmed.2006.09.010
  • E. Chajduk, M. Pyszynska, H. Polkowska-Motrenko, Determination of trace elements in infant formulas available on polish market, Biol Trace Elem Res, 186, 2018, 589-596. https://doi.org/10.1007/s12011-018-1339-5
  • L. Herreros-Chavez, A. Morales-Rubio, M. Cervera, Green methodology for quality control of elemental content of infant milk powder, LWT, 111, 2019, 484-489. https://doi.org/10.1016/j.lwt.2019.05.055
  • B. Başaran, An assessment of heavy metal level in infant formula on the market in Turkey and the hazard index, J Food Compos Anal, 105, 2022, 104258. https://doi.org/10.1016/j.jfca.2021.104258
  • A. Kiani, M. Arabameri, M. Moazzen, N. Shariatifar, S. Aeenehvand, G.J. Khaniki, M. Abdel-Wahhab, S. Shahsavari, Probabilistic health risk assessment of trace elements in baby food and milk powder using ICP-OES method, Biol Trace Elem Res, 200, 2022, 2486-2497. https://doi.org/10.1007/s12011-021-02808-w
  • V. Sirot, T. Traore, T. Guérin, L. Noël, M. Bachelot, J.-P. Cravedi, A. Mazur, P. Glorennec, P. Vasseur, J. Jean, French infant total diet study: exposure to selected trace elements and associated health risks, Food Chem Toxicol, 120, 2018, 625-633. https://doi.org/10.1016/j.fct.2018.07.062
  • C. Vella, E. Attard, Consumption of minerals, toxic metals and hydroxymethylfurfural: Analysis of infant foods and formulae, Toxics, 7, 2019, 33. https://doi.org/10.3390/toxics7020033
  • G.Y. Mohamed, M. Soliman, S.A. Issa, N.M. Mohamed, M. Al-Abyad, Trace elements assessment and natural radioactivity levels of infant formulas consumed in Egypt, J Radioanal Nucl Chem, 330, 2021, 1127-1136. https://doi.org/10.1007/s10967-021-08042-x
  • T.G. Kazi, N. Jalbani, J.A. Baig, M.B. Arain, H.I. Afridi, M.K. Jamali, A.Q. Shah, A.N. Memon, Evaluation of toxic elements in baby foods commercially available in Pakistan, Food Chem, 119, 2010, 1313-1317. https://doi.org/10.1016/j.foodchem.2009.09.003
  • S. Bağdat, E. Köse Baran, F. Tokay, Element fractionation analysis for infant formula and food additives by inductively coupled plasma optical emission spectrometry, Int J Food Sci Technol, 49, 2014, 392-398. https://doi.org/10.1111/ijfs.12312
  • T.G. Kazi, N. Jalbani, J.A. Baig, H.I. Afridi, G.A. Kandhro, M.B. Arain, M.K. Jamali, A.Q. Shah, Determination of toxic elements in infant formulae by using electrothermal atomic absorption spectrometer, Food Chem Toxicol, 47, 2009, 1425-1429. https://doi.org/10.1016/j.fct.2009.03.025
  • F. Salah, I. Esmat, A. Mohamed, Heavy metals residues and trace elements in milk powder marketed in Dakahlia Governorate, International Food Research Journal, 20, 2013, 1807-1812.
  • S. Saracoglu, K.O. Saygi, O.D. Uluozlu, M. Tuzen, M. Soylak, Determination of trace element contents of baby foods from Turkey, Food Chem, 105, 2007, 280-285. https://doi.org/10.1016/j.foodchem.2011.01.062
  • K. Ljung, B. Palm, M. Grandér, M. Vahter, High concentrations of essential and toxic elements in infant formula and infant foods–A matter of concern, Food Chem, 127, 2011, 943-951. https://doi.org/10.1016/j.foodchem.2011.01.062
  • H. Chen, Y. Yao, C. Zhang, J. Ping, Determination of Heavy Metal Ions in Infant Milk Powder Using a Nanoporous Carbon Modified Disposable Sensor, Foods, 12, 2023, 730. https://doi.org/10.1016/j.foodchem.2020.128692
  • T. Gunicheva, Advisability of X‐ray fluorescence analysis of dry residue of cow milk applied to monitor environment, X‐Ray Spectrometry: An International Journal, 39, 2010, 22-27. https://doi.org/10.1002/xrs.1225
  • L. Perring, J. Blanc, Faster measurement of minerals in milk powders: comparison of a high power wavelength dispersive XRF system with ICP-AES and potentiometry reference methods, Food Anal Method, 1, 2008, 205-213. https://doi.org/10.1007/s12161-008-9030-7
  • L. Balcaen, L. Moens, F. Vanhaecke, Determination of isotope ratios of metals (and metalloids) by means of inductively coupled plasma-mass spectrometry for provenancing purposes—A review, Spectrochim. Acta B: At. Spectrosc., 65, 2010, 769-786. https://doi.org/10.1016/j.sab.2010.06.005
  • B. Welz, High-resolution continuum source AAS: the better way to perform atomic absorption spectrometry, Anal Bioanal Chem, 381, 2005, 69-71. https://doi.org/10.1007/s00216-004-2891-8
  • R.R. Gamela, E.G. Barrera, Á.T. Duarte, W. Boschetti, M.M. da Silva, M.G.R. Vale, M.B. Dessuy, Fast sequential determination of Zn, Fe, Mg, Ca, Na, and K in infant formulas by high-resolution continuum source flame atomic absorption spectrometry using ultrasound-assisted extraction, Food Analytical Methods, 12, 2019, 1420-1428. https://doi.org/10.1007/s12161-019-01478-8
  • C. Su, N. Zheng, Y. Gao, S. Huang, X. Yang, Z. Wang, H. Yang, J. Wang, Content and dietary exposure assessment of toxic elements in infant formulas from the Chinese market, Foods, 9, 2020, 1839. https://doi.org/10.3390/foods9121839
  • J. Elaridi, H. Dimassi, O. Al Yamani, M. Estephan, H.F. Hassan, Determination of lead, cadmium and arsenic in infant formula in the Lebanese market, Food Control, 123, 2021, 107750. https://doi.org/10.1016/j.foodcont.2020.107750
  • EPA, Regional Screening Level (RSL) Summary Table 2011. https://epa-prgs.ornl.gov/chemicals/download/master_sl_table_run_JUN2011.pdf
  • EPA, Integrated Risk Information System 2016, https://www.epa.gov/iris/
  • EPA, Regional screening levels (RSLs) equations, Access address: https://www. epa. gov/risk/regional-screeninglevels-rsls-equations, 2019.
  • M. Sager, C. McCulloch, D. Schoder, Heavy metal content and element analysis of infant formula and milk powder samples purchased on the Tanzanian market: International branded versus black market products, Food Chem, 255, 2018, 365-371. https://doi.org/10.1016/j.foodchem.2018.02.058
  • M. Aliasgharpour, Zn Status in gastroenteritis children under five years old, Int. J Med Investig, 4, 2015, 180-182. https://doi.org/10.4103/ijpvm.IJPVM_48_19
  • M.J. Kwon, M.I. Boyanov, J.-S. Yang, S. Lee, Y.H. Hwang, J.Y. Lee, B. Mishra, K.M. Kemner, Transformation of zinc-concentrate in surface and subsurface environments: Implications for assessing zinc mobility/toxicity and choosing an optimal remediation strategy, Environ Pollut, 226, 2017, 346-355. https://doi.org/10.1016/j.envpol.2017.01.066
  • G. Lutfullah, A.A. Khan, A.Y. Amjad, S. Perveen, Comparative study of heavy metals in dried and fluid milk in Peshawar by atomic absorption spectrophotometry, Sci World J, 2014, 2014, 1-5. https://doi.org/10.1155/2014/715845
  • T. Eticha, M. Afrasa, G. Kahsay, H. Gebretsadik, Infant exposure to metals through consumption of formula feeding in Mekelle, Ethiopia, Int J Anal Chem, 2018, 2018, 1-5. https://doi.org/10.1155/2018/2985698
  • A. Alemu, Levels of Essential and Toxic Metals in Commercial Powdered Infant Formulas, Addis Ababa University, 2008.
  • O. Aguzue, S. Kakulu, S. Thomas, Flame atomic absorption spectrophotometric determination of heavy metals in selected infant formula in the Nigerian Market, Arch Appl Sci Res, 6, 2014, 128-132.
  • M. Pandelova, W.L. Lopez, B. Michalke, K.-W. Schramm, Ca, Cd, Cu, Fe, Hg, Mn, Ni, Pb, Se, and Zn contents in baby foods from the EU market: Comparison of assessed infant intakes with the present safety limits for minerals and trace elements, J Food Compos Anal, 27, 2012, 120-127. https://doi.org/10.1016/j.jfca.2012.04.011
  • FAO/WHO, Summary of Evaluations Performed by the Joint FAO/WHO Expert Committee on Food Additives (JECFA) 1956-2003 (First through Sixty-First Meetings), FAO and WHO, 2004.
  • A. Singh, R.S. Kumar, Role of Nickel in animal performance: A review, The Pharma Innovation Journal, SP 10, 2021, 643-646.
  • A. Mehri, Trace elements in human nutrition (II)–an update, I J Preven Medic, 11, 2020, 1-17. 10.4103/ijpvm.IJPVM_48_19)
  • M. Shahid, S. Shamshad, M. Rafiq, S. Khalid, I. Bibi, N.K. Niazi, C. Dumat, M.I. Rashid, Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review, Chemosphere, 178, 2017, 513-533. https://doi.org/10.1016/j.chemosphere.2017.03.074
  • EFSA, Statement on tolerable weekly intake for cadmium, 2011. https://www.efsa.europa.eu/en/efsajournal/pub/1975.
  • B. Başaran, An assessment of heavy metal level in infant formula on the market in Turkey and the hazard index, Journal of Food Composition and Analysis, 105, 2022, 104258. (https://doi.org/10.1016/j.jfca.2021.104258
  • A. Domínguez, S. Paz, C. Rubio, A. Gutiérrez, D. González-Weller, C. Revert, A. Hardisson, Essential and toxic metals in infant formula from the European Community, Open Access J. Toxicol, 2, 2017, 555585.
  • M. Mania, M. Wojciechowska-Mazurek, K. Starska, M. Rebeniak, T. Szynal, A. Strzelecka, J. Postupolski, Toxic Elements in Commercial Infant Food, Estimated Dietary Intake, and Risk Assessment in Poland, Polish Journal of Environmental Studies, 24, 2015, 2525-2536. https://doi.org/10.15244/pjoes/59306
  • K. Schümann, The toxicological estimation of the heavy metal content (Cd, Hg, Pb) in food for infants and small children, Z Ernahrungswiss, 29, 1990, 54-73. https://doi.org/10.1007/BF02019535
  • CAC, General Standard for Contaminants and Toxins in Food and Feed. CXS193-1995 amended in 2019., 2019. http://www.fao.org/fao-who-codexalimentarius/codex-texts/list-standards/en/.
  • EU, Commission Regulation (EU) 2015/1005 of 25 June 2015 Amending Regulation (EC) No 1881/2006 As Regards Maximum Levels of Lead in Certain Foodstuffs 2015. Available web site: http://eur-lex.europa.eu/oj/direct-access.html.
  • R. Moreno-Rojas, P. Sánchez-Segarra, C. Cañal-Ruiz, M. Amaro-López, G. Zurera-Cosano, Lead content in Spanish market infant formulas and toxicological contribution, Food Addit Contam, 19, 2002, 241-245. https://doi.org/10.1080/02652030110085377
  • H. Sipahi, A. Eken, A. Aydın, G. Şahin, T. Baydar, Safety assessment of essential and toxic metals in infant formulas, Turkish J Pedıatr, 56, 2014, 385-391.
  • S.C. Bondy, Low levels of aluminum can lead to behavioral and morphological changes associated with Alzheimer's disease and age-related neurodegeneration, Neurotoxicology, 52, 2016, 222-229. https://doi.org/10.1016/j.neuro.2015.12.002
  • G.L. Klein, A.M. Leichtner, M.B. Heyman, Aluminum in large and small volume parenterals used in total parenteral nutrition: response to the Food and Drug Administration notice of proposed rule by the North American Society for Pediatric Gastroenterology and Nutrition, J Pediatr Gastr Nutr, 27, 1998, 457-460.
  • R. Chekri, E. Le Calvez, J. Zinck, J.-C. Leblanc, V. Sirot, M. Hulin, L. Noël, T. Guérin, Trace element contents in foods from the first French total diet study on infants and toddlers, J Food Compos Anal, 78, 2019, 108-120. https://doi.org/10.1016/j.jfca.2019.02.002
  • A.O. de Souza, C.C. Pereira, A.I. Heling, E.Q. Oreste, S. Cadore, A.S. Ribeiro, M.A. Vieira, Determination of total concentration and bioaccessible fraction of metals in infant cereals by MIP OES, J Food Compos Anal, 77, 2019, 60-65. https://doi.org/10.1016/j.jfca.2019.01.006
  • FAO/WHO, Evaluation of certain food additives and contaminants: seventy-fourth report of the Joint FAO/WHO Expert Committee on Food Additives, 2011, pp. 136-136.http://www.fao.org/3/a-at873e.pdf.
  • F. Aguilar, H. Autrup, S. Barlow, L. Castle, R. Crebelli, W. Dekant, K. Engel, N. Gontard, D. Gott, S. Grilli, Safety of aluminium from dietary intake scientific opinion of the panel on food additives, flavourings, processing aids and food contact materials (AFC), EFSA J, 754, 2008, 1-34. https://doi.org/10.2903/j.efsa.2008.754
  • C. Ibrahim, Z. Kammouni, M. Barake, M. Kassir, A. Al-Jawaldeh, J. Matta, Y. Sacre, L. Hanna-Wakim, J. Haddad, M. Hoteit, Pediatric Health Risk Assessment for Exposure to Aluminum from Infant Formulas and Children under the Age of Five’s Food Products among Arab Infants: Experience from Lebanon, Foods, 11, 2022, 2503. https://doi.org/10.3390/foods11162503
  • C.H. Watanabe, A.S.C. Monteiro, E.S.J. Gontijo, V.S. Lira, C. de Castro Bueno, N.T. Kumar, R. Fracácio, A.H. Rosa, Toxicity assessment of arsenic and cobalt in the presence of aquatic humic substances of different molecular sizes, Ecotox Envıron Safe, 139, 2017, 1-8. https://doi.org/10.1016/j.ecoenv.2017.01.018
  • S.C. Izah, N. Chakrabarty, A.L. Srivastav, A review on heavy metal concentration in potable water sources in Nigeria: human health effects and mitigating measures, Expos Health, 8, 2016, 285-304. https://doi.org/10.1007/s12403-016-0195-9
  • M.A. Khan, Nutritional adequacy of commercial infant milk formulas, Ecol Food Nutr, 47, 2008, 188-204. https://doi.org/10.1080/03670240701781846 M.M. Ghuniem, M.A. Khorshed, M. Reda, S.M. Mahmoud, G. Hammad, Assessment of the potential health risk of heavy metal exposure from the consumption of herbal, black and green tea, Biomed J Sci & Tech Res, 16, 2019, 11810-11817. https://doi.org/10.26717/BJSTR.2019.16.002806
  • C. Verma, K. Tapadia, A.B. Soni, Determination of iron (III) in food, biological and environmental samples, Food Chem, 221, 2017, 1415-1420. https://doi.org/10.1016/j.foodchem.2016.11.011
  • V.A. Lemos, C.G. Novaes, M.A. Bezerra, An automated preconcentration system for the determination of manganese in food samples, J Food Compos Anal, 22, 2009, 337-342. https://doi.org/10.1016/j.jfca.2008.11.019

Assessment of some element content and potential health risks in infant formulas available in Turkish markets

Year 2023, Volume: 5 Issue: 1, 17 - 24, 30.06.2023
https://doi.org/10.51435/turkjac.1294052

Abstract

Accurately determining the composition of essential and toxic elements in commercial infant formulas is critical to ensuring safe nutrition for infants. In this study, the concentrations of essential and toxic elements (Pb, Ni, Cd, Al, Cr, Cu, Fe, Mn, Zn, Co) in infant formulas were determined using high-resolution continuum-source flame atomic absorption spectrometry (HR-CS FAAS) and have been evaluated for health risk. The measured values for concentrations from lowest to highest were (in mg/kg): 36.38–77.45 (Zn), 6.28–12.88 (Al), 2.37–4.91 (Cu), 22.01–51.64 (Fe), and 0.55–2.06 (Mn). The highest concentrations of Ni and Cd were 0.18 and 0.09 mg/kg, respectively, while the lowest concentrations for these metals were below the detection limit. The Cr, Co and Pb levels were below the detection limits in all samples. According to the risk assessment conducted for infants aged 0–24 months, which involved calculating the estimated daily intake (EDI), the estimated weekly intake (EWI), the target hazard quotient (THQ), and the hazard index (HI), it was found that the THQ values range from 0.00 to 0.06 for Ni, from 0.00 to 0.69 for Cd, and from 0.17 to 0.22 for Al. However, since the HI for all age groups is less than 1, it can be concluded that there is no health concern for the elements Ni, Cr, Cd, Pb, Al, and Co.

References

  • WHO, WHO recommendations on postnatal care of the mother and newborn 2014, World Health Organization, Geneva, https://apps.who.int/iris/handle/10665/97603.
  • TDHS, 2018 Türkiye Demographic and Health Survey, Ankara, Türkiye, 2019. https://hips.hacettepe.edu.tr/en/menu/demographic and health survey serie-101.
  • Ş. Saçmacı, M. Saçmacı, Determination of Arsenic (III) and Total Arsenic at Trace Levels in Baby Food Samples via a New Functionalized Magnetic Graphane Oxide Nanocomposite, Biol Trace Elem Res, 199, 2021, 4856-4866.https://doi.org/10.1007/s12011-021-02754-7
  • N. Zand, B.Z. Chowdhry, F.B. Zotor, D.S. Wray, P. Amuna, F.S. Pullen, Essential and trace elements content of commercial infant foods in the UK, Food Chem, 128, 2011, 123-128. https://doi.org/10.1016/j.foodchem.2011.03.005
  • L.J. Taylor, M. Gallagher, F.S. McCullough, The role of parental influence and additional factors in the determination of food choices for pre‐school children, Int J Consumer Stud, 28, 2004, 337-346. https://doi.org/10.1111/j.1470-6431.2004.00391.x
  • M.M. Ghuniem, M.A. Khorshed, M.M. Khalil, Determination of some essential and toxic elements composition of commercial infant formula in the Egyptian market and their contribution to dietary intake of infants, Int J Environ Anal Chem, 100, 2020, 525-548. https://doi.org/10.1080/03067319.2019.1637426
  • A. Barclay, L. Weaver, Feeding the normal infant, child and adolescent, Medicine, 34, 2006, 551-556. https://doi.org/10.1053/j.mpmed.2006.09.010
  • E. Chajduk, M. Pyszynska, H. Polkowska-Motrenko, Determination of trace elements in infant formulas available on polish market, Biol Trace Elem Res, 186, 2018, 589-596. https://doi.org/10.1007/s12011-018-1339-5
  • L. Herreros-Chavez, A. Morales-Rubio, M. Cervera, Green methodology for quality control of elemental content of infant milk powder, LWT, 111, 2019, 484-489. https://doi.org/10.1016/j.lwt.2019.05.055
  • B. Başaran, An assessment of heavy metal level in infant formula on the market in Turkey and the hazard index, J Food Compos Anal, 105, 2022, 104258. https://doi.org/10.1016/j.jfca.2021.104258
  • A. Kiani, M. Arabameri, M. Moazzen, N. Shariatifar, S. Aeenehvand, G.J. Khaniki, M. Abdel-Wahhab, S. Shahsavari, Probabilistic health risk assessment of trace elements in baby food and milk powder using ICP-OES method, Biol Trace Elem Res, 200, 2022, 2486-2497. https://doi.org/10.1007/s12011-021-02808-w
  • V. Sirot, T. Traore, T. Guérin, L. Noël, M. Bachelot, J.-P. Cravedi, A. Mazur, P. Glorennec, P. Vasseur, J. Jean, French infant total diet study: exposure to selected trace elements and associated health risks, Food Chem Toxicol, 120, 2018, 625-633. https://doi.org/10.1016/j.fct.2018.07.062
  • C. Vella, E. Attard, Consumption of minerals, toxic metals and hydroxymethylfurfural: Analysis of infant foods and formulae, Toxics, 7, 2019, 33. https://doi.org/10.3390/toxics7020033
  • G.Y. Mohamed, M. Soliman, S.A. Issa, N.M. Mohamed, M. Al-Abyad, Trace elements assessment and natural radioactivity levels of infant formulas consumed in Egypt, J Radioanal Nucl Chem, 330, 2021, 1127-1136. https://doi.org/10.1007/s10967-021-08042-x
  • T.G. Kazi, N. Jalbani, J.A. Baig, M.B. Arain, H.I. Afridi, M.K. Jamali, A.Q. Shah, A.N. Memon, Evaluation of toxic elements in baby foods commercially available in Pakistan, Food Chem, 119, 2010, 1313-1317. https://doi.org/10.1016/j.foodchem.2009.09.003
  • S. Bağdat, E. Köse Baran, F. Tokay, Element fractionation analysis for infant formula and food additives by inductively coupled plasma optical emission spectrometry, Int J Food Sci Technol, 49, 2014, 392-398. https://doi.org/10.1111/ijfs.12312
  • T.G. Kazi, N. Jalbani, J.A. Baig, H.I. Afridi, G.A. Kandhro, M.B. Arain, M.K. Jamali, A.Q. Shah, Determination of toxic elements in infant formulae by using electrothermal atomic absorption spectrometer, Food Chem Toxicol, 47, 2009, 1425-1429. https://doi.org/10.1016/j.fct.2009.03.025
  • F. Salah, I. Esmat, A. Mohamed, Heavy metals residues and trace elements in milk powder marketed in Dakahlia Governorate, International Food Research Journal, 20, 2013, 1807-1812.
  • S. Saracoglu, K.O. Saygi, O.D. Uluozlu, M. Tuzen, M. Soylak, Determination of trace element contents of baby foods from Turkey, Food Chem, 105, 2007, 280-285. https://doi.org/10.1016/j.foodchem.2011.01.062
  • K. Ljung, B. Palm, M. Grandér, M. Vahter, High concentrations of essential and toxic elements in infant formula and infant foods–A matter of concern, Food Chem, 127, 2011, 943-951. https://doi.org/10.1016/j.foodchem.2011.01.062
  • H. Chen, Y. Yao, C. Zhang, J. Ping, Determination of Heavy Metal Ions in Infant Milk Powder Using a Nanoporous Carbon Modified Disposable Sensor, Foods, 12, 2023, 730. https://doi.org/10.1016/j.foodchem.2020.128692
  • T. Gunicheva, Advisability of X‐ray fluorescence analysis of dry residue of cow milk applied to monitor environment, X‐Ray Spectrometry: An International Journal, 39, 2010, 22-27. https://doi.org/10.1002/xrs.1225
  • L. Perring, J. Blanc, Faster measurement of minerals in milk powders: comparison of a high power wavelength dispersive XRF system with ICP-AES and potentiometry reference methods, Food Anal Method, 1, 2008, 205-213. https://doi.org/10.1007/s12161-008-9030-7
  • L. Balcaen, L. Moens, F. Vanhaecke, Determination of isotope ratios of metals (and metalloids) by means of inductively coupled plasma-mass spectrometry for provenancing purposes—A review, Spectrochim. Acta B: At. Spectrosc., 65, 2010, 769-786. https://doi.org/10.1016/j.sab.2010.06.005
  • B. Welz, High-resolution continuum source AAS: the better way to perform atomic absorption spectrometry, Anal Bioanal Chem, 381, 2005, 69-71. https://doi.org/10.1007/s00216-004-2891-8
  • R.R. Gamela, E.G. Barrera, Á.T. Duarte, W. Boschetti, M.M. da Silva, M.G.R. Vale, M.B. Dessuy, Fast sequential determination of Zn, Fe, Mg, Ca, Na, and K in infant formulas by high-resolution continuum source flame atomic absorption spectrometry using ultrasound-assisted extraction, Food Analytical Methods, 12, 2019, 1420-1428. https://doi.org/10.1007/s12161-019-01478-8
  • C. Su, N. Zheng, Y. Gao, S. Huang, X. Yang, Z. Wang, H. Yang, J. Wang, Content and dietary exposure assessment of toxic elements in infant formulas from the Chinese market, Foods, 9, 2020, 1839. https://doi.org/10.3390/foods9121839
  • J. Elaridi, H. Dimassi, O. Al Yamani, M. Estephan, H.F. Hassan, Determination of lead, cadmium and arsenic in infant formula in the Lebanese market, Food Control, 123, 2021, 107750. https://doi.org/10.1016/j.foodcont.2020.107750
  • EPA, Regional Screening Level (RSL) Summary Table 2011. https://epa-prgs.ornl.gov/chemicals/download/master_sl_table_run_JUN2011.pdf
  • EPA, Integrated Risk Information System 2016, https://www.epa.gov/iris/
  • EPA, Regional screening levels (RSLs) equations, Access address: https://www. epa. gov/risk/regional-screeninglevels-rsls-equations, 2019.
  • M. Sager, C. McCulloch, D. Schoder, Heavy metal content and element analysis of infant formula and milk powder samples purchased on the Tanzanian market: International branded versus black market products, Food Chem, 255, 2018, 365-371. https://doi.org/10.1016/j.foodchem.2018.02.058
  • M. Aliasgharpour, Zn Status in gastroenteritis children under five years old, Int. J Med Investig, 4, 2015, 180-182. https://doi.org/10.4103/ijpvm.IJPVM_48_19
  • M.J. Kwon, M.I. Boyanov, J.-S. Yang, S. Lee, Y.H. Hwang, J.Y. Lee, B. Mishra, K.M. Kemner, Transformation of zinc-concentrate in surface and subsurface environments: Implications for assessing zinc mobility/toxicity and choosing an optimal remediation strategy, Environ Pollut, 226, 2017, 346-355. https://doi.org/10.1016/j.envpol.2017.01.066
  • G. Lutfullah, A.A. Khan, A.Y. Amjad, S. Perveen, Comparative study of heavy metals in dried and fluid milk in Peshawar by atomic absorption spectrophotometry, Sci World J, 2014, 2014, 1-5. https://doi.org/10.1155/2014/715845
  • T. Eticha, M. Afrasa, G. Kahsay, H. Gebretsadik, Infant exposure to metals through consumption of formula feeding in Mekelle, Ethiopia, Int J Anal Chem, 2018, 2018, 1-5. https://doi.org/10.1155/2018/2985698
  • A. Alemu, Levels of Essential and Toxic Metals in Commercial Powdered Infant Formulas, Addis Ababa University, 2008.
  • O. Aguzue, S. Kakulu, S. Thomas, Flame atomic absorption spectrophotometric determination of heavy metals in selected infant formula in the Nigerian Market, Arch Appl Sci Res, 6, 2014, 128-132.
  • M. Pandelova, W.L. Lopez, B. Michalke, K.-W. Schramm, Ca, Cd, Cu, Fe, Hg, Mn, Ni, Pb, Se, and Zn contents in baby foods from the EU market: Comparison of assessed infant intakes with the present safety limits for minerals and trace elements, J Food Compos Anal, 27, 2012, 120-127. https://doi.org/10.1016/j.jfca.2012.04.011
  • FAO/WHO, Summary of Evaluations Performed by the Joint FAO/WHO Expert Committee on Food Additives (JECFA) 1956-2003 (First through Sixty-First Meetings), FAO and WHO, 2004.
  • A. Singh, R.S. Kumar, Role of Nickel in animal performance: A review, The Pharma Innovation Journal, SP 10, 2021, 643-646.
  • A. Mehri, Trace elements in human nutrition (II)–an update, I J Preven Medic, 11, 2020, 1-17. 10.4103/ijpvm.IJPVM_48_19)
  • M. Shahid, S. Shamshad, M. Rafiq, S. Khalid, I. Bibi, N.K. Niazi, C. Dumat, M.I. Rashid, Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review, Chemosphere, 178, 2017, 513-533. https://doi.org/10.1016/j.chemosphere.2017.03.074
  • EFSA, Statement on tolerable weekly intake for cadmium, 2011. https://www.efsa.europa.eu/en/efsajournal/pub/1975.
  • B. Başaran, An assessment of heavy metal level in infant formula on the market in Turkey and the hazard index, Journal of Food Composition and Analysis, 105, 2022, 104258. (https://doi.org/10.1016/j.jfca.2021.104258
  • A. Domínguez, S. Paz, C. Rubio, A. Gutiérrez, D. González-Weller, C. Revert, A. Hardisson, Essential and toxic metals in infant formula from the European Community, Open Access J. Toxicol, 2, 2017, 555585.
  • M. Mania, M. Wojciechowska-Mazurek, K. Starska, M. Rebeniak, T. Szynal, A. Strzelecka, J. Postupolski, Toxic Elements in Commercial Infant Food, Estimated Dietary Intake, and Risk Assessment in Poland, Polish Journal of Environmental Studies, 24, 2015, 2525-2536. https://doi.org/10.15244/pjoes/59306
  • K. Schümann, The toxicological estimation of the heavy metal content (Cd, Hg, Pb) in food for infants and small children, Z Ernahrungswiss, 29, 1990, 54-73. https://doi.org/10.1007/BF02019535
  • CAC, General Standard for Contaminants and Toxins in Food and Feed. CXS193-1995 amended in 2019., 2019. http://www.fao.org/fao-who-codexalimentarius/codex-texts/list-standards/en/.
  • EU, Commission Regulation (EU) 2015/1005 of 25 June 2015 Amending Regulation (EC) No 1881/2006 As Regards Maximum Levels of Lead in Certain Foodstuffs 2015. Available web site: http://eur-lex.europa.eu/oj/direct-access.html.
  • R. Moreno-Rojas, P. Sánchez-Segarra, C. Cañal-Ruiz, M. Amaro-López, G. Zurera-Cosano, Lead content in Spanish market infant formulas and toxicological contribution, Food Addit Contam, 19, 2002, 241-245. https://doi.org/10.1080/02652030110085377
  • H. Sipahi, A. Eken, A. Aydın, G. Şahin, T. Baydar, Safety assessment of essential and toxic metals in infant formulas, Turkish J Pedıatr, 56, 2014, 385-391.
  • S.C. Bondy, Low levels of aluminum can lead to behavioral and morphological changes associated with Alzheimer's disease and age-related neurodegeneration, Neurotoxicology, 52, 2016, 222-229. https://doi.org/10.1016/j.neuro.2015.12.002
  • G.L. Klein, A.M. Leichtner, M.B. Heyman, Aluminum in large and small volume parenterals used in total parenteral nutrition: response to the Food and Drug Administration notice of proposed rule by the North American Society for Pediatric Gastroenterology and Nutrition, J Pediatr Gastr Nutr, 27, 1998, 457-460.
  • R. Chekri, E. Le Calvez, J. Zinck, J.-C. Leblanc, V. Sirot, M. Hulin, L. Noël, T. Guérin, Trace element contents in foods from the first French total diet study on infants and toddlers, J Food Compos Anal, 78, 2019, 108-120. https://doi.org/10.1016/j.jfca.2019.02.002
  • A.O. de Souza, C.C. Pereira, A.I. Heling, E.Q. Oreste, S. Cadore, A.S. Ribeiro, M.A. Vieira, Determination of total concentration and bioaccessible fraction of metals in infant cereals by MIP OES, J Food Compos Anal, 77, 2019, 60-65. https://doi.org/10.1016/j.jfca.2019.01.006
  • FAO/WHO, Evaluation of certain food additives and contaminants: seventy-fourth report of the Joint FAO/WHO Expert Committee on Food Additives, 2011, pp. 136-136.http://www.fao.org/3/a-at873e.pdf.
  • F. Aguilar, H. Autrup, S. Barlow, L. Castle, R. Crebelli, W. Dekant, K. Engel, N. Gontard, D. Gott, S. Grilli, Safety of aluminium from dietary intake scientific opinion of the panel on food additives, flavourings, processing aids and food contact materials (AFC), EFSA J, 754, 2008, 1-34. https://doi.org/10.2903/j.efsa.2008.754
  • C. Ibrahim, Z. Kammouni, M. Barake, M. Kassir, A. Al-Jawaldeh, J. Matta, Y. Sacre, L. Hanna-Wakim, J. Haddad, M. Hoteit, Pediatric Health Risk Assessment for Exposure to Aluminum from Infant Formulas and Children under the Age of Five’s Food Products among Arab Infants: Experience from Lebanon, Foods, 11, 2022, 2503. https://doi.org/10.3390/foods11162503
  • C.H. Watanabe, A.S.C. Monteiro, E.S.J. Gontijo, V.S. Lira, C. de Castro Bueno, N.T. Kumar, R. Fracácio, A.H. Rosa, Toxicity assessment of arsenic and cobalt in the presence of aquatic humic substances of different molecular sizes, Ecotox Envıron Safe, 139, 2017, 1-8. https://doi.org/10.1016/j.ecoenv.2017.01.018
  • S.C. Izah, N. Chakrabarty, A.L. Srivastav, A review on heavy metal concentration in potable water sources in Nigeria: human health effects and mitigating measures, Expos Health, 8, 2016, 285-304. https://doi.org/10.1007/s12403-016-0195-9
  • M.A. Khan, Nutritional adequacy of commercial infant milk formulas, Ecol Food Nutr, 47, 2008, 188-204. https://doi.org/10.1080/03670240701781846 M.M. Ghuniem, M.A. Khorshed, M. Reda, S.M. Mahmoud, G. Hammad, Assessment of the potential health risk of heavy metal exposure from the consumption of herbal, black and green tea, Biomed J Sci & Tech Res, 16, 2019, 11810-11817. https://doi.org/10.26717/BJSTR.2019.16.002806
  • C. Verma, K. Tapadia, A.B. Soni, Determination of iron (III) in food, biological and environmental samples, Food Chem, 221, 2017, 1415-1420. https://doi.org/10.1016/j.foodchem.2016.11.011
  • V.A. Lemos, C.G. Novaes, M.A. Bezerra, An automated preconcentration system for the determination of manganese in food samples, J Food Compos Anal, 22, 2009, 337-342. https://doi.org/10.1016/j.jfca.2008.11.019
There are 64 citations in total.

Details

Primary Language English
Subjects Analytical Chemistry
Journal Section Research Articles
Authors

Kübra Öztürk 0000-0002-4488-0164

Çiğdem Er Çalışkan 0000-0001-5821-7489

Zehra Akıncı 0000-0003-3729-8114

Harun Çiftçi 0000-0002-3210-5566

Publication Date June 30, 2023
Submission Date May 8, 2023
Acceptance Date June 3, 2023
Published in Issue Year 2023 Volume: 5 Issue: 1

Cite

APA Öztürk, K., Er Çalışkan, Ç., Akıncı, Z., Çiftçi, H. (2023). Assessment of some element content and potential health risks in infant formulas available in Turkish markets. Turkish Journal of Analytical Chemistry, 5(1), 17-24. https://doi.org/10.51435/turkjac.1294052
AMA Öztürk K, Er Çalışkan Ç, Akıncı Z, Çiftçi H. Assessment of some element content and potential health risks in infant formulas available in Turkish markets. TurkJAC. June 2023;5(1):17-24. doi:10.51435/turkjac.1294052
Chicago Öztürk, Kübra, Çiğdem Er Çalışkan, Zehra Akıncı, and Harun Çiftçi. “Assessment of Some Element Content and Potential Health Risks in Infant Formulas Available in Turkish Markets”. Turkish Journal of Analytical Chemistry 5, no. 1 (June 2023): 17-24. https://doi.org/10.51435/turkjac.1294052.
EndNote Öztürk K, Er Çalışkan Ç, Akıncı Z, Çiftçi H (June 1, 2023) Assessment of some element content and potential health risks in infant formulas available in Turkish markets. Turkish Journal of Analytical Chemistry 5 1 17–24.
IEEE K. Öztürk, Ç. Er Çalışkan, Z. Akıncı, and H. Çiftçi, “Assessment of some element content and potential health risks in infant formulas available in Turkish markets”, TurkJAC, vol. 5, no. 1, pp. 17–24, 2023, doi: 10.51435/turkjac.1294052.
ISNAD Öztürk, Kübra et al. “Assessment of Some Element Content and Potential Health Risks in Infant Formulas Available in Turkish Markets”. Turkish Journal of Analytical Chemistry 5/1 (June 2023), 17-24. https://doi.org/10.51435/turkjac.1294052.
JAMA Öztürk K, Er Çalışkan Ç, Akıncı Z, Çiftçi H. Assessment of some element content and potential health risks in infant formulas available in Turkish markets. TurkJAC. 2023;5:17–24.
MLA Öztürk, Kübra et al. “Assessment of Some Element Content and Potential Health Risks in Infant Formulas Available in Turkish Markets”. Turkish Journal of Analytical Chemistry, vol. 5, no. 1, 2023, pp. 17-24, doi:10.51435/turkjac.1294052.
Vancouver Öztürk K, Er Çalışkan Ç, Akıncı Z, Çiftçi H. Assessment of some element content and potential health risks in infant formulas available in Turkish markets. TurkJAC. 2023;5(1):17-24.

6th International Environmental Chemistry Congress (EnviroChem)

https://www.envirochem.org.tr/