Improvement of in vitro antimicrobial and antifungal activities of peppermint essential oil conjugated with chitosan and promising antiviral properties
Year 2023,
Volume: 5 Issue: 1, 77 - 82, 30.06.2023
Pınar Şen
,
Parisa Bolouri
,
Fikrettin Şahin
Abstract
The emergence of antimicrobial resistance has necessitate the new approaches. The peppermint (Mentha piperita L.) (PEO) oil is known for its antimicrobial and antifungal activities. However, the employing of it in practial applications is troublesome because of the sensitivity to the environmental conditions. Thus, it was immolized into chitosan to eliminate the difficulties in its use and increase its activity. It was observed that the immobilization of the PEO into the chitosan (PEO@Chitosan) influenced the biological activities resulting in less minimum Minimum Inhibitory Concentration (MIC) values in addition to protecting the essential oil by the chitosan as environment-friendly biomaterial. The determined MIC values of the target product (PEO@Chitosan) are between 0.001-0.95 mg/mL for the studied bacterial strains and 0.006-0.36 mg/mL for the studied fungi isolates, which led us to consider them as new therapeutic alternative. In vitro antiviral studies gave us that even if the encapsulation of the essential oil into the chitosan made the prepared product still promising as acandidate for the antiviral therapy treatment.
Supporting Institution
Yeditepe University
References
- P.I. Lerner, Producing penicillin, N Engl J Med, 351, 2004, 524. DOI: 10.1056/NEJMp048179
- G. Cheng, M. Dai, S. Ahmed, H. Hao, X. Wang, Z. Yuan, Antimicrobial Drugs in Fighting against Antimicrobial Resistance, Front Microbiol, 7, 2016, 470. https://doi.org/10.3389/fmicb.2016.00470
- R. Aminov, History of antimicrobial drug discovery: Major classes and health impact. Biochem Pharmacol, 133, 2017, 4–19. https://doi.org/10.1016/j.bcp.2016.10.001
- B. Aslam, W. Wang, M.I. Arshad, M. Khurshid, S. Muzammil, M.H. Rasool, M.A. Nisar, R.F. Alvi, M.A. Aslam, M.U. Qamar, M.K.F. Salamat, Z. Baloch, Antibiotic resistance: a rundown of a global crisis. Infection and Drug Resistance, 11, 2018, 1645-1658. doi: 10.2147/IDR.S173867
- L.E. Cowen, Predicting the emergence of resistance to antifungal drugs, FEMS Microbiol Lett, 204, 2001, 1-7.
https://doi.org/10.1111/j.1574-6968.2001.tb10853.x
- R.E. Baker, A.S. Mahmud, I.F. Miller, M. Rajeev, F. Rasambainarivo, B.L. Rice, S. Takahashi, A.J. Tatem, C.E. Wagner, L.F. Wang, A. Wesolowski, C.J.E. Metcalf, Infectious disease in an era of global change, Nat Rev Microbiol, 20, 2022, 193. https://doi.org/10.1038/ s41579-021-00639-z
- S. Prabuseenivasan, M. Jayakumar, S. Ignacimuthu, In vitro antibacterial activity of some plant essential oils. BMC Complement Altern Med, 6, 2006, 39. http://www.biomedcentral.com/1472-6882/6/39
- L. Ma, L. Yao, Antiviral Effects of Plant-Derived Essential Oils and Their Components: An Updated Review, Molecules, 25, 2020, 2627. https://doi.org/10.3390/molecules25112627
- F. Nazzaro, F. Fratianni, R. Coppola, V.D. Feo, Essential Oils and Antifungal Activity. Pharmaceuticals 10, 2017, 86. https://doi.org/10.3390/ph10040086
- D. Brown, Encyclopaedia of Herbs and Their Uses, 1995, London, Dorling Kindersley
- L. Jirovetz, G. Buchbauer, S. Bail, Z. Denkova, A. Slavchev, A. Stoyanova, E. Schmidt, M. Geissler, Antimicrobial Activities of Essential Oils of Mint and Peppermint as Well as Some of Their Main Compounds, J Essent Oil Res, 21, 2009, 363-366. https://doi.org/10.1080/10412905.2009.9700193
- A. Schuhmacher, J. Reichling, P. Schnitzler, Virucidal effect of peppermint oil on the enveloped viruses herpes simplex virus type 1 and type 2 in vitro, Phytomedicine 10, 2003, 504–510. https://doi.org/10.1078/094471103322331467
- M. Mahboubi, N. Kazempour, Chemical composition and antimicrobial activity of peppermint (Mentha piperita L.) Essential oil Songklanakarin. J Sci Technol, 36, 2014, 83-87. doi: 10.3390/plants10081567
- M. Radünza, M.L.M. Trindade, T.M. Camargo, A.L. Radünz, C.D. Borges, E.A. Gandra, E. Helbig, Antimicrobial and antioxidant activity of unencapsulated and encapsulated clove (Syzygium aromaticum, L.) essential oil, Food Chemistry, 276, 2019, 180–186. https://doi.org/10.1016/j.foodchem.2018.09.173
- E.I. Rabea, M.E.T. Badawy, C.V. Stevens, G. Smagghe, W. Steurbaut, Chitosan as antimicrobial agent: applications and mode of action, Biomacromolecules, 4, 2003, 1457–65. https://doi.org/10.1021/bm034130m
- L.Y. Ing, N.M. Zin, A. Sarwar, H. Katas, Antifungal Activity of Chitosan Nanoparticles and Correlation with Their Physical Properties, Int J Biomater, 2012, 2012, 1-9. https://doi.org/10.1155/2012/632698
- A.A. Taherpour, S. Khaef, A. Yari, S. Nikeafshar, M. Fathi, S. Ghambari, Chemical composition analysis of the essential oil of Mentha piperita L. from Kermanshah, Iran by hydrodistillation and HS/SPME methods, J, Anal, Sci, Technol, 8, 2017, 11. DOI 10.1186/s40543-017-0122-0
- P. Khoza, T. Nyokong, Photocatalytic behaviour of zinc tetraaminophthalocyanine silver nanoparticles immobilized on chitosan beads, J Mol Catal Chem, 399, 2015, 25–32. https://doi.org/10.1016/j.molcata.2015.01.017.
- K.T Altin, N. Topcuoglu, G. Duman, M. Unsal, A. Celik, S.S. Kuvvetli, E. Kasikci, F. Sahin, G. Kulekci, Antibacterial effects of saliva substitutes containing lysozyme or lactoferrin against Streptococcus mutans, Arch Oral Biol, 129, 2021, 105183. https://doi.org/10.1016/j.archoralbio.2021.105183
- S. Demir, A.T. Atayoglu, F. Galeotti, E.U. Garzarella, V. Zaccaria, N. Volpi, A. Karagoz, F. Sahin. Antiviral Therapy, 25, 2020, 353-363. DOI: 10.3851/IMP3383
- P.Y. Zhuang, Y.L. Li, L. Fan, J. Lin, Q.L. Hu, Modification of chitosan membrane with poly(vinyl alcohol) and biocompatibility evaluation, Int J Biol Macromol 50, 2012, 658–663. https://doi.org/10.1016/j.ijbiomac.2012.01.026
- M. Masłowski, A. Aleksieiev, J. Miedzianowska, K. Strzelec, Potential Application of Peppermint (Mentha piperita L.), German Chamomile (Matricaria chamomilla L.) and Yarrow (Achillea millefolium L.) as Active Fillers in Natural Rubber Biocomposites, Int J Mol Sci, 22, 2021, 7530. https://doi.org/10.3390/ijms22147530
- R. Bonnetta, M.A. Krystevab, I.G. Lalovb, S.V. Artarsky, Water disinfection using photosensitizers immobilized on chitosan, Water Res, 40, 2006, 1269-1275. https://doi.org/10.1016/j.watres.2006.01.014
- S. Kamble, S. Agrawal, S. Cherumukkil, V. Sharma, R.V. Jasra, P. Munshi, Revisiting Zeta Potential, the Key Feature of Interfacial Phenomena, with Applications and Recent Advancements, ChemistrySelect 7, 2022, 2-4. https://doi.org/10.1002/slct.202103084
- N. Saïed, M. Aïder, Zeta Potential and Turbidimetry Analyzes for the Evaluation of Chitosan/Phytic Acid Complex Formation, J Food Res, 3, 2014, 2. doi:10.5539/jfr.v3n2p71
- R. Singh, M.A. Shushni, A. Belkheir, Antibacterial and antioxidant activities of Mentha piperita L, Arab J Chem, 8, 2015, 322–328. http://dx.doi.org/10.1016/j.arabjc.2011.01.019
- M. Barzegar, M.G. Ghahfarokhi, M.A. Sahari, M.H. Azizi, Enhancement of thermal stability and antioxidant activity of thyme essential oil by encapsulation in chitosan nanoparticles, J Agric Sci Technol, 18, 2016, 1781-1792.
- H.F. Huang, C.F. Peng, Antibacterial and antifungal activity of alkylsulfonated chitosan, Biomark Genom Med, 7, 2015, 83-86. https://doi.org/10.1016/j.bgm.2014.09.001
- F. Hossain, P. Follett, S. Salmieri, V.K. Dang, C. Fraschini, L. Monique, Antifungal activities of combined treatments of irradiation and essential oils (EOs) encapsulated chitosan nanocomposite films in in vitro and in situ conditions, Int J Food Microbiol, 295, 2019, 33-40
- M. Eweis, S.S. Elkholy, M.Z. Elsabee, Antifungal efficacy of chitosan and its thiourea derivatives upon the growth of some sugar-beet pathogens, Int J Biol Macromol, 38, 2006, 1–8. https://doi.org/10.1016/j.ijbiomac.2005.12.009
- Z. Iyigundogdu, S. Kalayci, A.B. Asutay, F. Sahin, Determination of antimicrobial and antiviral properties of IR3535, Molecular Biology Reports, 46, 2019, 1819-1824. https://doi.org/10.1007/s11033-019-04632-x
- X. Zhou, F. Jia, X. Liu, J. Yang, Y. Zhang, Y. Wang, In Vitro Synergistic Interaction of 5-O-Methylglovanon and Ampicillin against Ampicillin Resistant Staphylococcus aureus and Staphylococcus epidermidis Isolates, Arch. Pharm. Res. 34, 2011, 1751-1757. DOI 10.1007/s12272-011-1019-x
- C. Santiago, E.L. Pang, K. Lim, H. Loh, K.N. Ting, Inhibition of penicillin-binding protein 2a (PBP2a) in methicillin resistant Staphylococcus aureus (MRSA) by combination of ampicillin and a bioactive fraction from Duabanga grandiflora, BMC Complementary and Alternative Medicine, 15, 2015, 178. DOI 10.1186/s12906-015-0699-z
- N. Nam, S. Sardari, M. Selecky, K. Parang, Carboxylic acid and phosphate ester derivatives of fluconazole: synthesis and antifungal activities, Bioorganic & Medicinal Chemistry, 12, 2004, 6255–6269. doi:10.1016/j.bmc.2004.08.049
- M.A. Pfaller, S.A. Messer, P.R. Rhomberg, R.N. Jones, M. Castanheira, In Vitro Activities of Isavuconazole and Comparator Antifungal Agents Tested against a Global Collection of Opportunistic Yeasts and Molds, Journal of Clinical Microbiology, 51, 2013, 2608.
- X. He, R. Xing, S. Liu, Y. Qin, K. Li, H. Yu, P. Li, The improved antiviral activities of amino-modified chitosan derivatives on Newcastle virus, Drug Chem Toxicol, 44, 2021, 335-340. https://doi.org/10.1080/01480545.2019.1620264.
Year 2023,
Volume: 5 Issue: 1, 77 - 82, 30.06.2023
Pınar Şen
,
Parisa Bolouri
,
Fikrettin Şahin
References
- P.I. Lerner, Producing penicillin, N Engl J Med, 351, 2004, 524. DOI: 10.1056/NEJMp048179
- G. Cheng, M. Dai, S. Ahmed, H. Hao, X. Wang, Z. Yuan, Antimicrobial Drugs in Fighting against Antimicrobial Resistance, Front Microbiol, 7, 2016, 470. https://doi.org/10.3389/fmicb.2016.00470
- R. Aminov, History of antimicrobial drug discovery: Major classes and health impact. Biochem Pharmacol, 133, 2017, 4–19. https://doi.org/10.1016/j.bcp.2016.10.001
- B. Aslam, W. Wang, M.I. Arshad, M. Khurshid, S. Muzammil, M.H. Rasool, M.A. Nisar, R.F. Alvi, M.A. Aslam, M.U. Qamar, M.K.F. Salamat, Z. Baloch, Antibiotic resistance: a rundown of a global crisis. Infection and Drug Resistance, 11, 2018, 1645-1658. doi: 10.2147/IDR.S173867
- L.E. Cowen, Predicting the emergence of resistance to antifungal drugs, FEMS Microbiol Lett, 204, 2001, 1-7.
https://doi.org/10.1111/j.1574-6968.2001.tb10853.x
- R.E. Baker, A.S. Mahmud, I.F. Miller, M. Rajeev, F. Rasambainarivo, B.L. Rice, S. Takahashi, A.J. Tatem, C.E. Wagner, L.F. Wang, A. Wesolowski, C.J.E. Metcalf, Infectious disease in an era of global change, Nat Rev Microbiol, 20, 2022, 193. https://doi.org/10.1038/ s41579-021-00639-z
- S. Prabuseenivasan, M. Jayakumar, S. Ignacimuthu, In vitro antibacterial activity of some plant essential oils. BMC Complement Altern Med, 6, 2006, 39. http://www.biomedcentral.com/1472-6882/6/39
- L. Ma, L. Yao, Antiviral Effects of Plant-Derived Essential Oils and Their Components: An Updated Review, Molecules, 25, 2020, 2627. https://doi.org/10.3390/molecules25112627
- F. Nazzaro, F. Fratianni, R. Coppola, V.D. Feo, Essential Oils and Antifungal Activity. Pharmaceuticals 10, 2017, 86. https://doi.org/10.3390/ph10040086
- D. Brown, Encyclopaedia of Herbs and Their Uses, 1995, London, Dorling Kindersley
- L. Jirovetz, G. Buchbauer, S. Bail, Z. Denkova, A. Slavchev, A. Stoyanova, E. Schmidt, M. Geissler, Antimicrobial Activities of Essential Oils of Mint and Peppermint as Well as Some of Their Main Compounds, J Essent Oil Res, 21, 2009, 363-366. https://doi.org/10.1080/10412905.2009.9700193
- A. Schuhmacher, J. Reichling, P. Schnitzler, Virucidal effect of peppermint oil on the enveloped viruses herpes simplex virus type 1 and type 2 in vitro, Phytomedicine 10, 2003, 504–510. https://doi.org/10.1078/094471103322331467
- M. Mahboubi, N. Kazempour, Chemical composition and antimicrobial activity of peppermint (Mentha piperita L.) Essential oil Songklanakarin. J Sci Technol, 36, 2014, 83-87. doi: 10.3390/plants10081567
- M. Radünza, M.L.M. Trindade, T.M. Camargo, A.L. Radünz, C.D. Borges, E.A. Gandra, E. Helbig, Antimicrobial and antioxidant activity of unencapsulated and encapsulated clove (Syzygium aromaticum, L.) essential oil, Food Chemistry, 276, 2019, 180–186. https://doi.org/10.1016/j.foodchem.2018.09.173
- E.I. Rabea, M.E.T. Badawy, C.V. Stevens, G. Smagghe, W. Steurbaut, Chitosan as antimicrobial agent: applications and mode of action, Biomacromolecules, 4, 2003, 1457–65. https://doi.org/10.1021/bm034130m
- L.Y. Ing, N.M. Zin, A. Sarwar, H. Katas, Antifungal Activity of Chitosan Nanoparticles and Correlation with Their Physical Properties, Int J Biomater, 2012, 2012, 1-9. https://doi.org/10.1155/2012/632698
- A.A. Taherpour, S. Khaef, A. Yari, S. Nikeafshar, M. Fathi, S. Ghambari, Chemical composition analysis of the essential oil of Mentha piperita L. from Kermanshah, Iran by hydrodistillation and HS/SPME methods, J, Anal, Sci, Technol, 8, 2017, 11. DOI 10.1186/s40543-017-0122-0
- P. Khoza, T. Nyokong, Photocatalytic behaviour of zinc tetraaminophthalocyanine silver nanoparticles immobilized on chitosan beads, J Mol Catal Chem, 399, 2015, 25–32. https://doi.org/10.1016/j.molcata.2015.01.017.
- K.T Altin, N. Topcuoglu, G. Duman, M. Unsal, A. Celik, S.S. Kuvvetli, E. Kasikci, F. Sahin, G. Kulekci, Antibacterial effects of saliva substitutes containing lysozyme or lactoferrin against Streptococcus mutans, Arch Oral Biol, 129, 2021, 105183. https://doi.org/10.1016/j.archoralbio.2021.105183
- S. Demir, A.T. Atayoglu, F. Galeotti, E.U. Garzarella, V. Zaccaria, N. Volpi, A. Karagoz, F. Sahin. Antiviral Therapy, 25, 2020, 353-363. DOI: 10.3851/IMP3383
- P.Y. Zhuang, Y.L. Li, L. Fan, J. Lin, Q.L. Hu, Modification of chitosan membrane with poly(vinyl alcohol) and biocompatibility evaluation, Int J Biol Macromol 50, 2012, 658–663. https://doi.org/10.1016/j.ijbiomac.2012.01.026
- M. Masłowski, A. Aleksieiev, J. Miedzianowska, K. Strzelec, Potential Application of Peppermint (Mentha piperita L.), German Chamomile (Matricaria chamomilla L.) and Yarrow (Achillea millefolium L.) as Active Fillers in Natural Rubber Biocomposites, Int J Mol Sci, 22, 2021, 7530. https://doi.org/10.3390/ijms22147530
- R. Bonnetta, M.A. Krystevab, I.G. Lalovb, S.V. Artarsky, Water disinfection using photosensitizers immobilized on chitosan, Water Res, 40, 2006, 1269-1275. https://doi.org/10.1016/j.watres.2006.01.014
- S. Kamble, S. Agrawal, S. Cherumukkil, V. Sharma, R.V. Jasra, P. Munshi, Revisiting Zeta Potential, the Key Feature of Interfacial Phenomena, with Applications and Recent Advancements, ChemistrySelect 7, 2022, 2-4. https://doi.org/10.1002/slct.202103084
- N. Saïed, M. Aïder, Zeta Potential and Turbidimetry Analyzes for the Evaluation of Chitosan/Phytic Acid Complex Formation, J Food Res, 3, 2014, 2. doi:10.5539/jfr.v3n2p71
- R. Singh, M.A. Shushni, A. Belkheir, Antibacterial and antioxidant activities of Mentha piperita L, Arab J Chem, 8, 2015, 322–328. http://dx.doi.org/10.1016/j.arabjc.2011.01.019
- M. Barzegar, M.G. Ghahfarokhi, M.A. Sahari, M.H. Azizi, Enhancement of thermal stability and antioxidant activity of thyme essential oil by encapsulation in chitosan nanoparticles, J Agric Sci Technol, 18, 2016, 1781-1792.
- H.F. Huang, C.F. Peng, Antibacterial and antifungal activity of alkylsulfonated chitosan, Biomark Genom Med, 7, 2015, 83-86. https://doi.org/10.1016/j.bgm.2014.09.001
- F. Hossain, P. Follett, S. Salmieri, V.K. Dang, C. Fraschini, L. Monique, Antifungal activities of combined treatments of irradiation and essential oils (EOs) encapsulated chitosan nanocomposite films in in vitro and in situ conditions, Int J Food Microbiol, 295, 2019, 33-40
- M. Eweis, S.S. Elkholy, M.Z. Elsabee, Antifungal efficacy of chitosan and its thiourea derivatives upon the growth of some sugar-beet pathogens, Int J Biol Macromol, 38, 2006, 1–8. https://doi.org/10.1016/j.ijbiomac.2005.12.009
- Z. Iyigundogdu, S. Kalayci, A.B. Asutay, F. Sahin, Determination of antimicrobial and antiviral properties of IR3535, Molecular Biology Reports, 46, 2019, 1819-1824. https://doi.org/10.1007/s11033-019-04632-x
- X. Zhou, F. Jia, X. Liu, J. Yang, Y. Zhang, Y. Wang, In Vitro Synergistic Interaction of 5-O-Methylglovanon and Ampicillin against Ampicillin Resistant Staphylococcus aureus and Staphylococcus epidermidis Isolates, Arch. Pharm. Res. 34, 2011, 1751-1757. DOI 10.1007/s12272-011-1019-x
- C. Santiago, E.L. Pang, K. Lim, H. Loh, K.N. Ting, Inhibition of penicillin-binding protein 2a (PBP2a) in methicillin resistant Staphylococcus aureus (MRSA) by combination of ampicillin and a bioactive fraction from Duabanga grandiflora, BMC Complementary and Alternative Medicine, 15, 2015, 178. DOI 10.1186/s12906-015-0699-z
- N. Nam, S. Sardari, M. Selecky, K. Parang, Carboxylic acid and phosphate ester derivatives of fluconazole: synthesis and antifungal activities, Bioorganic & Medicinal Chemistry, 12, 2004, 6255–6269. doi:10.1016/j.bmc.2004.08.049
- M.A. Pfaller, S.A. Messer, P.R. Rhomberg, R.N. Jones, M. Castanheira, In Vitro Activities of Isavuconazole and Comparator Antifungal Agents Tested against a Global Collection of Opportunistic Yeasts and Molds, Journal of Clinical Microbiology, 51, 2013, 2608.
- X. He, R. Xing, S. Liu, Y. Qin, K. Li, H. Yu, P. Li, The improved antiviral activities of amino-modified chitosan derivatives on Newcastle virus, Drug Chem Toxicol, 44, 2021, 335-340. https://doi.org/10.1080/01480545.2019.1620264.