Research Article
BibTex RIS Cite
Year 2023, Volume: 5 Issue: 2, 98 - 106, 29.12.2023
https://doi.org/10.51435/turkjac.1387506

Abstract

Project Number

FBA-2019-8429

References

  • K.T. Cho, O. Trukhina, C. Roldán-Carmona, M. Ince, P. Gratia, G. Grancini, P. Gao, T. Marszalek, W. Pisula, Y.R. Paidi, T. Torres, M.K.Nazeeruddin, Molecularly Engineered Phthalocyanines as Hole-Transporting Materials in Perovskite Solar Cells Reaching Power Conversion Efficiency of 17.5%, Adv Energy Mater, 7, 2017, 1601733.
  • R.F. Chaabane, Effect of Measuring Environment on The Electrical Characteristics of NiPc Based Thin Film Transistors: The Effects of Ozone, Mater Sci Eng C, 26, 2006, 551–554.
  • M. Ozaki, M. Yoneya, Y. Shimizu, A . Fujii, Carrier transport and device applications of the organic semiconductor based on liquid crystalline non-peripheral octaalkyl phthalocyanine, Liq Cryst, 45, 2018, 2376–2389.
  • T. Sizun, M, Bouvet, Y. Chen, J.M. Suisse, G. Barochi, J. Rossignol, Differential study of substituted and unsubstituted cobalt phthalocyanines for gas sensor applications, Sensor Actuat B-Chem, 159, 2011, 63–170.
  • A. Şenocak, B. Köksoy, D. Akyüz, A. Koca, D. Klyamer, T. Basova, E. Demirbaş, M. Durmuş, Highly selective and ultra-sensitive electrochemical sensor behaviour of 3D SWCNT BODIPY hybrid material for eserine detection, Biosens Bioelectron, 128, 2019, 144–150.
  • P. Zhao, Q. Liang, Y. Li, Electrochemical, SEM/EDS and quantum chemical study of phthalocyanines as corrosion inhibitors for mild steel in 1 mol/l HCl, Appl Surf Sci, 252, 2005, 1596–1607.
  • Q. Luo, H. Tian, B. Chen, W. Huang, Effective non-destructive readout of photochromic bisthienylethene–phthalocyanine hybrid, Dyes Pigments, 73, 2007, 118–120.
  • M.S. Kahouecha, K. Hrizb, S. Touaitia, J. Bassem, New anthracene-based-phtalocyanine semi-conducting materials:Synthesis and optoelectronic properties, Mater Res Bull, 75, 2016, 144–154.
  • Z. Bıyıklıoğlu, Non-aggregated and Water Soluble Amphiphilic Silicon Phthalocyanines With Two Axial Substituents and Their Electrochemical Properties, Polyhedron, 63, 2013, 1–8.
  • E. Demir, Ö. Göktug, R. İnam, D. Doyduk, Development and characterization of iron (III) phthalocyanine modified carbon nanotube paste electrodes and application for determination of fluometuron herbicide as an electrochemical sensor, J Electroanal Chem, 895, 2021, 115389.
  • D.Arıcan, M. Arıcı , A. L. Ugur , A. Erdogmus, A. Koca, Effects of peripheral and nonperipheral substitution to the spectroscopic, electrochemical and spectroelectrochemical properties of metallophthalocyanines, Electrochim Acta, 106, 2013, 541–555.
  • J.H. Zagal, F. Bedioui, J.P. Dodelet, N4-Macrocyclic Metal Complexes, Springer, New York, NY, 2006.
  • C.A. Caro, F. Bedioui, J.H. Zagal, Electrocatalytic oxidation of nitrite on a vitreouscarbon electrode modified with cobalt phthalocyanine, Electrochim Acta, 47, 2002, 1489–1494.
  • S. Griveau, F. Bedioui, Electrocatalytic oxidation of 2-mercaptoethanol by electropolymerized cobalt porphyrin film on vitreous carbon electrodes, Electroanal, 13, 2001, 253–256.
  • L’Her M. ve Pondaven A. “Electrochemistry of Phthalocyanines” (2003). The Porphyrin Handbook, K. M. Kadish, K. M. Smith, R. Guilard, Eds., Vol. 16, Elsevier (USA),pp. 104–169, ISBN 0-12-393220-3.
  • D. Cakir, O. Bekircan, Z. Biyiklioglu, 1,2,4-Triazole-substituted metallophthalocyanines carrying redox active cobalt(II), manganese(III), titanium (IV) center and their electrochemical studies, Synthetic Met, 201, 2015, 18–24.
  • A. Nas, G. Dilber, Z. Biyiklioglu, Electroanalytical characterization of chloroquinoline substituted redox-active phthalocyanines, Turk J Anal Chem, 5(1), 2023, 25–31.
  • Y.P. Yuan, S.B. Wang, G.H. Gong, Z.S. Quan, Synthesis and studies on anticonvulsant and antibacterial activities of 1-alkyl-4-(4H-1,2,4-triazol-4-yl) piperidine derivatives, Lett Drug Des Discov, 11, 2014, 1070–1078.
  • Z. Jiang, J. Gu, C. Wang, S. Wang, N. Liu, Y. Jiang, G. Dong, Y. Wang, Y. Liu, J. Yao, Z. Miao, W. Zhang, C. Sheng, Design, synthesis and 59 antifungal activity of novel triazole derivatives containing substituted 1,2,3-triazole-piperdine side chains, Eur J Med Chem, 82, 2014, 490–497.
  • P. Wang, J. Cai, J. Chen, M. Ji, Synthesis and anticancer activities of ceritinibanalogs modified in the terminal piperidine ring, Eur J Med Chem, 93, 2015, 1–8.
  • J.H. Kim, P.K. Shyam, M.J. Kim, H.J. Lee, J.T. Lee, H.Y. Jang, Enantioselective synthesis and antioxidant activity of 3,4,5-substituted piperidine derivatives, Bioorg Med Chem Lett, 26(13), 2016, 3119–3121.
  • M. Ahmad Bhat, M.A. Al-Omar, A.M. Naglah, Synthesis and in vivo antiulcer evaluation of some novel piperidine linked dihydropyrimidinone derivatives, J Enzym Inhib Med Ch, 33(1), 2018, 978–988.
  • X. Chen, P. Zhan, C. Pannecouque, J. Balzarini, E. De Clercq, X. Liu, Synthesis and biological evaluation of piperidine-substituted triazine derivatives as HIV-1 non-nucleoside reverse transcriptase inhibitors, Eur J Med Chem, 51, 2012, 60–66.
  • Y. Imaeda, M. Tawada, S. Suzuki, M. Tomimoto, M. Kondo, N. Tarui, T. Sanada, R. Kanagawa, G. Snel, C.A. Behnke, K. Kubo, T. Kuroita, Structure based design of a new series of N-(piperidin-3-yl)pyrimidine-5-carboxamides as renin inhibitors” Bioorgan Med Chem, 24, 2016, 5771–5780.
  • A. Wcisło, I. Dąbkowska, J. Czupryniak, T. Ossowski, D. Zarzeczańska, Unusual behavior in di-substituted piperidine and piperazineanthraquinones upon protonation-Spectral, electrochemical, and quantum chemical studies, J Mol Liq, 279, 2019, 154–163.
  • P. Niedziałkowski, E. Czaczyk, J. Jarosz, A. Wcisło, W. Białobrzeska, J. Wietrzyk, T. Ossowski, Synthesis and electrochemical, spectral, and biological evaluation of novel 9,10-anthraquinone derivatives containing piperidine unit as potent antiproliferative agents, J Mol Struct, 1175, 2019, 488–495.
  • E. Hussain, H. Zhou, . Yang, S. Shahzad, C. Yu, Synthesis of regioisomerically pure piperidine substituted perylenebisimide NIR dyes: A comparative study of spectroscopic, electrochemical and crystalline properties, Dyes Pigments, 147, 2017, 211–224.
  • G. Dilber, M. Durmuş, H. Kantekin, Investigation of the photophysical and photochemical behavior of substituted zinc phthalocyanines and their water-soluble quaternized derivatives, Turk J Chem, 41, 2017, 917–930.
  • E.T. Saka, Z. Bıyıklıoğlu, Co(II) and Fe(II) phthalocyanines: synthesis, investigation of their catalytic activity towardsphenolic compounds and electrochemical behaviour, Appl Organomet Chem, 29, 2015, 392–399.
  • D. Kulaç, M. Bulut, A. Altindal, A.R. Özkaya, B. Salih, Ö. Bekaroglu, Synthesis and characterization of novel 4-nitro-2-(octyloxy)phenoxy substituted symmetrical and unsymmetrical Zn(II), Co(II) and Lu(III) phthalocyanines, Polyhedron, 26, 2007,5432–5440.
  • T. Nyokong, Electronic spectral and electrochemical behaviour of near infrared absorbing metallophthalocyanines. In: Structure and Bonding: Functional Phthalocyanine Molecular Materials, Editors: D.M.P Mingos, 2010, Germany, Springer.
  • A. Ogunsipe, T. Nyokong, M. Durmuş, Photophysical, photochemical and bovine serum albumin binding studies on water soluble gallium (III) phthalocyanine derivatives, J Porphyr Phthalocya, 11, 2007, 635–44.
  • G. Dilber, M. Durmuş, H. Kantekin, Non-aggregated zwitterionic Zinc(II) phthalocyanine complexes in water with high singlet oxygen quantum yield, Dyes Pıgments, 160, 2019, 267–284.
  • L.K. Lee, N.H. Sabelli, P.R. LeBreton, Theoretical characterization of phthalocyanine, tetraazaporphyrin, tetrabenzoporphyrin, and porphyrin electronic spectra, J Phys Chem, 86 1982, 3926–3931.
  • Y. Han, W. Ning, H. Du, J. Yang, N. Wang, Preparation, optical and electrical properties of PTCDA nanostructures, Nanoscale, 7, 2015, 17116–17121.
  • J. Obirai, N.P. Rodrigues, F. Bedioui, T. Nyokong, Synthesis, spectral and electrochemical properties of a new family of pyrrole substituted cobalt, iron, manganese, nickel and zinc phthalocyanine complexes, J Porphyr Phthalocya, 7, 2003, 508–520.
  • M.J. Stillman, T. Nyokong, in: C.C. Leznoff, A.B.P. Lever (Eds.), Phthalocyanines: Properties and Applications, vol. 1, VCH, New York, 1989.
  • D. Akyuz, T. Keleş, Z. Bıyıklıoğlu, A. Koca, Metallophthalocyanines Bearing Polymerizable {[5-({(1E)-[4-(Diethylamino)phenyl]methylene}amino)-1-naphthy1]oxy} Groups as Electrochemical Pesticide Sensor, Electroanal, 29, 2017, 2913–2924.
  • T. Keleş, D. Akyüz, Z. Biyiklioglu, A Koca, Electropolymerization of metallophthalocyanines carrying redox active metal centers and their electrochemical pesticide sensing application, Electroanal, 29, 2017, 2125–2137.
  • Akyüz, T Keleş, Z Biyiklioglu, A Koca, Electrochemical pesticide sensors based on electropolymerized metallophthalocyanines, J Electroanal Chem, 804, 2017, 53–63.

Electrochemical properties of non-peripherally and peripherally tetra-[(1-benzylpiperidine-4-yl)oxy] substituted phthalocyanines

Year 2023, Volume: 5 Issue: 2, 98 - 106, 29.12.2023
https://doi.org/10.51435/turkjac.1387506

Abstract

In this study, 1-benzylpiperidin-4-oxy substituted non-peripheral and peripheral metal free (3, 7), chloro manganese (III) (4, 8), oxotitanium (IV) (5, 9) and Cu(II) (6, 10) phthalocyanine complexes are synthesized and electrochemical properties were examined. Novel phthalocyanines compounds have been characterized by Fourier transform infrared, electronic spectroscopy, and mass spectra.
Electrochemistry of non-peripherally and peripherally tetra-[(1-benzylpiperidine-4-yl)oxy] substituted metal-free and metallophthalocyanines were investigated by cyclic voltammetry (CV). Owing to the redox inactivity of the metal-free and Cu2+ ion of H2Pcs (3, 7) and CuPcs (6, 10), Pc based reductions and oxidation processes are recorded. Unlike, electrochemical analyses showed that MnPcs (4, 8) and TiPcs (5, 9) illustrated metal based redox processes in addition to the Pc ring based reactions.

Supporting Institution

Karadeniz Technical University Research Fund

Project Number

FBA-2019-8429

References

  • K.T. Cho, O. Trukhina, C. Roldán-Carmona, M. Ince, P. Gratia, G. Grancini, P. Gao, T. Marszalek, W. Pisula, Y.R. Paidi, T. Torres, M.K.Nazeeruddin, Molecularly Engineered Phthalocyanines as Hole-Transporting Materials in Perovskite Solar Cells Reaching Power Conversion Efficiency of 17.5%, Adv Energy Mater, 7, 2017, 1601733.
  • R.F. Chaabane, Effect of Measuring Environment on The Electrical Characteristics of NiPc Based Thin Film Transistors: The Effects of Ozone, Mater Sci Eng C, 26, 2006, 551–554.
  • M. Ozaki, M. Yoneya, Y. Shimizu, A . Fujii, Carrier transport and device applications of the organic semiconductor based on liquid crystalline non-peripheral octaalkyl phthalocyanine, Liq Cryst, 45, 2018, 2376–2389.
  • T. Sizun, M, Bouvet, Y. Chen, J.M. Suisse, G. Barochi, J. Rossignol, Differential study of substituted and unsubstituted cobalt phthalocyanines for gas sensor applications, Sensor Actuat B-Chem, 159, 2011, 63–170.
  • A. Şenocak, B. Köksoy, D. Akyüz, A. Koca, D. Klyamer, T. Basova, E. Demirbaş, M. Durmuş, Highly selective and ultra-sensitive electrochemical sensor behaviour of 3D SWCNT BODIPY hybrid material for eserine detection, Biosens Bioelectron, 128, 2019, 144–150.
  • P. Zhao, Q. Liang, Y. Li, Electrochemical, SEM/EDS and quantum chemical study of phthalocyanines as corrosion inhibitors for mild steel in 1 mol/l HCl, Appl Surf Sci, 252, 2005, 1596–1607.
  • Q. Luo, H. Tian, B. Chen, W. Huang, Effective non-destructive readout of photochromic bisthienylethene–phthalocyanine hybrid, Dyes Pigments, 73, 2007, 118–120.
  • M.S. Kahouecha, K. Hrizb, S. Touaitia, J. Bassem, New anthracene-based-phtalocyanine semi-conducting materials:Synthesis and optoelectronic properties, Mater Res Bull, 75, 2016, 144–154.
  • Z. Bıyıklıoğlu, Non-aggregated and Water Soluble Amphiphilic Silicon Phthalocyanines With Two Axial Substituents and Their Electrochemical Properties, Polyhedron, 63, 2013, 1–8.
  • E. Demir, Ö. Göktug, R. İnam, D. Doyduk, Development and characterization of iron (III) phthalocyanine modified carbon nanotube paste electrodes and application for determination of fluometuron herbicide as an electrochemical sensor, J Electroanal Chem, 895, 2021, 115389.
  • D.Arıcan, M. Arıcı , A. L. Ugur , A. Erdogmus, A. Koca, Effects of peripheral and nonperipheral substitution to the spectroscopic, electrochemical and spectroelectrochemical properties of metallophthalocyanines, Electrochim Acta, 106, 2013, 541–555.
  • J.H. Zagal, F. Bedioui, J.P. Dodelet, N4-Macrocyclic Metal Complexes, Springer, New York, NY, 2006.
  • C.A. Caro, F. Bedioui, J.H. Zagal, Electrocatalytic oxidation of nitrite on a vitreouscarbon electrode modified with cobalt phthalocyanine, Electrochim Acta, 47, 2002, 1489–1494.
  • S. Griveau, F. Bedioui, Electrocatalytic oxidation of 2-mercaptoethanol by electropolymerized cobalt porphyrin film on vitreous carbon electrodes, Electroanal, 13, 2001, 253–256.
  • L’Her M. ve Pondaven A. “Electrochemistry of Phthalocyanines” (2003). The Porphyrin Handbook, K. M. Kadish, K. M. Smith, R. Guilard, Eds., Vol. 16, Elsevier (USA),pp. 104–169, ISBN 0-12-393220-3.
  • D. Cakir, O. Bekircan, Z. Biyiklioglu, 1,2,4-Triazole-substituted metallophthalocyanines carrying redox active cobalt(II), manganese(III), titanium (IV) center and their electrochemical studies, Synthetic Met, 201, 2015, 18–24.
  • A. Nas, G. Dilber, Z. Biyiklioglu, Electroanalytical characterization of chloroquinoline substituted redox-active phthalocyanines, Turk J Anal Chem, 5(1), 2023, 25–31.
  • Y.P. Yuan, S.B. Wang, G.H. Gong, Z.S. Quan, Synthesis and studies on anticonvulsant and antibacterial activities of 1-alkyl-4-(4H-1,2,4-triazol-4-yl) piperidine derivatives, Lett Drug Des Discov, 11, 2014, 1070–1078.
  • Z. Jiang, J. Gu, C. Wang, S. Wang, N. Liu, Y. Jiang, G. Dong, Y. Wang, Y. Liu, J. Yao, Z. Miao, W. Zhang, C. Sheng, Design, synthesis and 59 antifungal activity of novel triazole derivatives containing substituted 1,2,3-triazole-piperdine side chains, Eur J Med Chem, 82, 2014, 490–497.
  • P. Wang, J. Cai, J. Chen, M. Ji, Synthesis and anticancer activities of ceritinibanalogs modified in the terminal piperidine ring, Eur J Med Chem, 93, 2015, 1–8.
  • J.H. Kim, P.K. Shyam, M.J. Kim, H.J. Lee, J.T. Lee, H.Y. Jang, Enantioselective synthesis and antioxidant activity of 3,4,5-substituted piperidine derivatives, Bioorg Med Chem Lett, 26(13), 2016, 3119–3121.
  • M. Ahmad Bhat, M.A. Al-Omar, A.M. Naglah, Synthesis and in vivo antiulcer evaluation of some novel piperidine linked dihydropyrimidinone derivatives, J Enzym Inhib Med Ch, 33(1), 2018, 978–988.
  • X. Chen, P. Zhan, C. Pannecouque, J. Balzarini, E. De Clercq, X. Liu, Synthesis and biological evaluation of piperidine-substituted triazine derivatives as HIV-1 non-nucleoside reverse transcriptase inhibitors, Eur J Med Chem, 51, 2012, 60–66.
  • Y. Imaeda, M. Tawada, S. Suzuki, M. Tomimoto, M. Kondo, N. Tarui, T. Sanada, R. Kanagawa, G. Snel, C.A. Behnke, K. Kubo, T. Kuroita, Structure based design of a new series of N-(piperidin-3-yl)pyrimidine-5-carboxamides as renin inhibitors” Bioorgan Med Chem, 24, 2016, 5771–5780.
  • A. Wcisło, I. Dąbkowska, J. Czupryniak, T. Ossowski, D. Zarzeczańska, Unusual behavior in di-substituted piperidine and piperazineanthraquinones upon protonation-Spectral, electrochemical, and quantum chemical studies, J Mol Liq, 279, 2019, 154–163.
  • P. Niedziałkowski, E. Czaczyk, J. Jarosz, A. Wcisło, W. Białobrzeska, J. Wietrzyk, T. Ossowski, Synthesis and electrochemical, spectral, and biological evaluation of novel 9,10-anthraquinone derivatives containing piperidine unit as potent antiproliferative agents, J Mol Struct, 1175, 2019, 488–495.
  • E. Hussain, H. Zhou, . Yang, S. Shahzad, C. Yu, Synthesis of regioisomerically pure piperidine substituted perylenebisimide NIR dyes: A comparative study of spectroscopic, electrochemical and crystalline properties, Dyes Pigments, 147, 2017, 211–224.
  • G. Dilber, M. Durmuş, H. Kantekin, Investigation of the photophysical and photochemical behavior of substituted zinc phthalocyanines and their water-soluble quaternized derivatives, Turk J Chem, 41, 2017, 917–930.
  • E.T. Saka, Z. Bıyıklıoğlu, Co(II) and Fe(II) phthalocyanines: synthesis, investigation of their catalytic activity towardsphenolic compounds and electrochemical behaviour, Appl Organomet Chem, 29, 2015, 392–399.
  • D. Kulaç, M. Bulut, A. Altindal, A.R. Özkaya, B. Salih, Ö. Bekaroglu, Synthesis and characterization of novel 4-nitro-2-(octyloxy)phenoxy substituted symmetrical and unsymmetrical Zn(II), Co(II) and Lu(III) phthalocyanines, Polyhedron, 26, 2007,5432–5440.
  • T. Nyokong, Electronic spectral and electrochemical behaviour of near infrared absorbing metallophthalocyanines. In: Structure and Bonding: Functional Phthalocyanine Molecular Materials, Editors: D.M.P Mingos, 2010, Germany, Springer.
  • A. Ogunsipe, T. Nyokong, M. Durmuş, Photophysical, photochemical and bovine serum albumin binding studies on water soluble gallium (III) phthalocyanine derivatives, J Porphyr Phthalocya, 11, 2007, 635–44.
  • G. Dilber, M. Durmuş, H. Kantekin, Non-aggregated zwitterionic Zinc(II) phthalocyanine complexes in water with high singlet oxygen quantum yield, Dyes Pıgments, 160, 2019, 267–284.
  • L.K. Lee, N.H. Sabelli, P.R. LeBreton, Theoretical characterization of phthalocyanine, tetraazaporphyrin, tetrabenzoporphyrin, and porphyrin electronic spectra, J Phys Chem, 86 1982, 3926–3931.
  • Y. Han, W. Ning, H. Du, J. Yang, N. Wang, Preparation, optical and electrical properties of PTCDA nanostructures, Nanoscale, 7, 2015, 17116–17121.
  • J. Obirai, N.P. Rodrigues, F. Bedioui, T. Nyokong, Synthesis, spectral and electrochemical properties of a new family of pyrrole substituted cobalt, iron, manganese, nickel and zinc phthalocyanine complexes, J Porphyr Phthalocya, 7, 2003, 508–520.
  • M.J. Stillman, T. Nyokong, in: C.C. Leznoff, A.B.P. Lever (Eds.), Phthalocyanines: Properties and Applications, vol. 1, VCH, New York, 1989.
  • D. Akyuz, T. Keleş, Z. Bıyıklıoğlu, A. Koca, Metallophthalocyanines Bearing Polymerizable {[5-({(1E)-[4-(Diethylamino)phenyl]methylene}amino)-1-naphthy1]oxy} Groups as Electrochemical Pesticide Sensor, Electroanal, 29, 2017, 2913–2924.
  • T. Keleş, D. Akyüz, Z. Biyiklioglu, A Koca, Electropolymerization of metallophthalocyanines carrying redox active metal centers and their electrochemical pesticide sensing application, Electroanal, 29, 2017, 2125–2137.
  • Akyüz, T Keleş, Z Biyiklioglu, A Koca, Electrochemical pesticide sensors based on electropolymerized metallophthalocyanines, J Electroanal Chem, 804, 2017, 53–63.
There are 40 citations in total.

Details

Primary Language English
Subjects Electroanalytical Chemistry
Journal Section Research Articles
Authors

Asiye Nas 0000-0003-0627-0645

Gülsev Dilber 0000-0001-7114-4421

Zekeriya Bıyıklıoğlu 0000-0001-5138-214X

Project Number FBA-2019-8429
Publication Date December 29, 2023
Submission Date November 7, 2023
Acceptance Date November 16, 2023
Published in Issue Year 2023 Volume: 5 Issue: 2

Cite

APA Nas, A., Dilber, G., & Bıyıklıoğlu, Z. (2023). Electrochemical properties of non-peripherally and peripherally tetra-[(1-benzylpiperidine-4-yl)oxy] substituted phthalocyanines. Turkish Journal of Analytical Chemistry, 5(2), 98-106. https://doi.org/10.51435/turkjac.1387506
AMA Nas A, Dilber G, Bıyıklıoğlu Z. Electrochemical properties of non-peripherally and peripherally tetra-[(1-benzylpiperidine-4-yl)oxy] substituted phthalocyanines. TurkJAC. December 2023;5(2):98-106. doi:10.51435/turkjac.1387506
Chicago Nas, Asiye, Gülsev Dilber, and Zekeriya Bıyıklıoğlu. “Electrochemical Properties of Non-Peripherally and Peripherally Tetra-[(1-Benzylpiperidine-4-yl)oxy] Substituted Phthalocyanines”. Turkish Journal of Analytical Chemistry 5, no. 2 (December 2023): 98-106. https://doi.org/10.51435/turkjac.1387506.
EndNote Nas A, Dilber G, Bıyıklıoğlu Z (December 1, 2023) Electrochemical properties of non-peripherally and peripherally tetra-[(1-benzylpiperidine-4-yl)oxy] substituted phthalocyanines. Turkish Journal of Analytical Chemistry 5 2 98–106.
IEEE A. Nas, G. Dilber, and Z. Bıyıklıoğlu, “Electrochemical properties of non-peripherally and peripherally tetra-[(1-benzylpiperidine-4-yl)oxy] substituted phthalocyanines”, TurkJAC, vol. 5, no. 2, pp. 98–106, 2023, doi: 10.51435/turkjac.1387506.
ISNAD Nas, Asiye et al. “Electrochemical Properties of Non-Peripherally and Peripherally Tetra-[(1-Benzylpiperidine-4-yl)oxy] Substituted Phthalocyanines”. Turkish Journal of Analytical Chemistry 5/2 (December 2023), 98-106. https://doi.org/10.51435/turkjac.1387506.
JAMA Nas A, Dilber G, Bıyıklıoğlu Z. Electrochemical properties of non-peripherally and peripherally tetra-[(1-benzylpiperidine-4-yl)oxy] substituted phthalocyanines. TurkJAC. 2023;5:98–106.
MLA Nas, Asiye et al. “Electrochemical Properties of Non-Peripherally and Peripherally Tetra-[(1-Benzylpiperidine-4-yl)oxy] Substituted Phthalocyanines”. Turkish Journal of Analytical Chemistry, vol. 5, no. 2, 2023, pp. 98-106, doi:10.51435/turkjac.1387506.
Vancouver Nas A, Dilber G, Bıyıklıoğlu Z. Electrochemical properties of non-peripherally and peripherally tetra-[(1-benzylpiperidine-4-yl)oxy] substituted phthalocyanines. TurkJAC. 2023;5(2):98-106.

6th International Environmental Chemistry Congress (EnviroChem)

https://www.envirochem.org.tr/