Research Article
BibTex RIS Cite

Importance of Organic matter, Lime and Iron Oxide Removal in Specific Surface Area Measurement

Year 2020, Volume: 7 Issue: 1, 205 - 211, 25.01.2020
https://doi.org/10.30910/turkjans.680066

Abstract

Specific surface area (SSA) is an important soil property, which helps defining many physical and chemical processes take place in soils; thus, has significant influence on the performance of soil functions such as nutrient cycle, productivity, retention and filtration of contaminants, resistance to resilience. Adsorption of gases (such as nitrogen) and polar molecules (such as ethylene glycol mono ethylene ether (EGME)) are the commonly used methods to determine the SSA. In this study, the effects of organic matter (OM), lime and iron oxide removal on SSA of 50 surface soils (0-20 cm) with different lime, OM and clay content were investigated. Soil samples were treated with ammonium acetate, hydrogen peroxide and sodium dithionite to remove lime, OM and iron oxides, respectively and the SSA of the samples were determined after each treatment. Finally, the SSA values of the clay-size particles for each soil sample were also measured after mechanically separation of sand and silt particles. Mean SSA determined before the treatments was 116.55 m2 g-1, which was similar to the mean SSA value obtained after lime removal (118.50 m2 g-1). The removal of OM and iron oxides resulted in a statistically significant increase in SSA of soils samples. The mean SSA after removal of OM and Fe oxides and the clay particles were 163.83 m2 g-1, 180.32 m2 g-1 and 307.18 m2 g-1, respectively. The results showed that removal of OM and iron oxides contributed to the reveal the active surfaces in the soil. Therefore, pre-treatments should be applied as standard in determining the SSA which is an indicator of several soil properties.

References

  • Amezketa, E. 1999. Soil aggregate stability: a review. Journal of sustainable agriculture, 14(2-3): 83-151.
  • Borggaard, O. 1982. The influence of iron oxides on the surface area of soil. Journal of Soil Science, 33(3): 443-449.
  • Brubaker, S., Holzhey, C., Brasher, B. 1992. Estimating the water-dispersible clay content of soils. Soil Science Society of America Journal, 56(4), 1226-1232.
  • Cañasveras, J. C., Barrón, V., Del Campillo, M., Torrent, J., Gómez, J. 2010. Estimation of aggregate stability indices in Mediterranean soils by diffuse reflectance spectroscopy. Geoderma, 158(1-2), 78-84.
  • Carter, D., Mortland, M., Kemper, W. 1986. Specific Surface. Methods of soil analysis: Part 1—Physical and mineralogical methods (methodsofsoilan1): 413-423.
  • Cerato, A.B., Lutenegger, A.J. 2002. Determination of surface area of fine-grained soils by the ethylene glycol monoethyl ether (EGME) method. Geotech. Test. J. 25: 315-321.
  • El Swaify, S. A., Ahmed, S., Swindale, L. D. 1970. Effects of adsorbed cations on physical properties of tropical red and tropical black earths: II. Liquid limit, degree of dispersion, and moisture retention. Journal of Soil Science, 21(1), 188-198.
  • Ersahin, S., Gunal, H., Kutlu, T., Yetgin, B., Coban, S. 2006. Estimating specific surface area and cation exchange capacity in soils using fractal dimension of particle-size distribution. Geoderma, 136(3-4), 588-597. doi:10.1016/j.geoderma.2006.04.014
  • Gee, G.W., Bauder, J.W. 1986. Particle-size analysis 1. Methods of soil analysis: Part 1—Physical and mineralogical methods (methodsofsoilan1): 383-411.
  • Gee, G.W., Bauder, J.W. 1979. Particle size analysis by hydrometer: a simplified method for routine textural analysis and a sensitivity test of measurement parameters. Soil Sci. Soc. Am. J. 43: 1004-1007.
  • Goldberg, S., Suarez, D., Glaubig, R. 1988. Factors affecting clay dispersion and aggregate stability of arid-zone soils. Soil Science, 146(5): 317-325.
  • Heister, K. 2014. The measurement of the specific surface area of soils by gas and polar liquid adsorption methods limitations and potentials. Geoderma, 216: 75-87. Jackson, M.L. 2005. Soil chemical analysis: Advanced course. UW-Madison Libraries Parallel Press.
  • Jury, W., Gardner, W., Gardner, W. 1991. Soil physics. Journal of Environmental Quality (United States), 21(4).
  • Kacar, B. 1994. Bitki ve Topragın Kimyasal Analizleri. III. Toprak Analizleri. Ü. ZF Eğt. Araşt. ve Gel. Vakfı Yayın (3).
  • Kahle, M., Kleber, M., Jahn, R. 2002. Predicting carbon content in illitic clay fractions from surface area, cation exchange capacity and dithionite extractable iron. European Journal of Soil Science, 53(4): 639-644.
  • Karlen, D., Mausbach, M.J., Doran, J., Cline, R., Harris, R., Schuman, G. 1997. Soil quality: a concept, definition, and framework for evaluation (a guest editorial). Soil Science Society of America Journal, 61(1): 4-10.
  • Kemper, W., Rosenau, R. 1986. Aggregate Stability and Size Distribution 1. Methods of soil analysis: Part 1—Physical and mineralogical methods (methodsofsoilan1), 425-442.
  • Kunze, G.W., Dixon, J.B. 1986. Pretreatment for mineralogical analysis. Methods of Soil Analysis: Part 1—Physical and Mineralogical Methods, (methodsofsoilan1): 91-100. Macht, F., Eusterhues, K., Pronk, G. J., Totsche, K.U. 2011. Specific surface area of clay minerals: Comparison between atomic force microscopy measurements and bulk-gas (N2) and -liquid (EGME) adsorption methods. Applied Clay Science, 53(1): 20-26. doi:10.1016/j.clay.2011.04.006
  • Molina, F.V. 2016. Soil colloids: Properties and ion binding: CRC Press.
  • Nelson, D., Sommers, L. 1982. Methods of soil analysis. Part, 2: 539-579.
  • Pennell, K., Abriola, L., Boyd, S. 1995. Surface area of soil organic matter reexamined. Soil Science Society of America Journal, 59(4):1012-1018.
  • Sayın, M. 1983. Toprak Mineralojisi, Çukurova Üniv. Ziraat Fakültesi Ders Notları (78).
  • Theng, B.K.G., Ristori, G.G., Santi, C.A., Percival, H.J. 1999. An improved method for determining the specific surface areas of topsoils with varied organic matter content, texture and clay mineral composition. European Journal of Soil Science, 50(2): 309-316.
  • Tisdall, J.M., Oades, J.M. 1982. Organic matter and water stable aggregates in soils. Journal of Soil Science, 33(2), 141-163.
  • Yukselen, Y., Kaya, A. 2006. Comparison of methods for determining specific surface area of soils. Journal of Geotechnical and Geoenvironmental Engineering, 132(7): 931-936.

Spesifik Yüzey Alanı Belirlenmesinde Organik Madde, Kireç ve Demir Oksitlerin Uzaklaştırılmasının Önemi

Year 2020, Volume: 7 Issue: 1, 205 - 211, 25.01.2020
https://doi.org/10.30910/turkjans.680066

Abstract

Spesifik yüzey alanı (SYA), toprakta gerçekleşen birçok fiziksel ve kimyasal işlemin gerçekleştiği ortamı tanımlayan ve bu nedenle besin döngüsü, üretkenlik, kirleticilerin tutulması ve filtre edilmesi, bozulmaya karşı direnç gösterme ve dayanıklılık gibi toprakların sahip olduğu fonksiyonların gerçekleşmesinde etkin olan bir özelliktir. Gaz (azot gibi) ve polar moleküllerin (etilen glikol mono etilen eter (EGME) gibi) adsorpsiyonları, SYA’nın belirlenmesinde kullanılan yaygın yöntemlerdir. Bu çalışmada, farklı kireç, organik madde ve kil içeriğine sahip 50 adet yüzey toprağının (0-20 cm) SYA’ına kireç, organik madde ve demir uzaklaştırmasının etkisi araştırılmıştır. Toprak örnekleri, kireç, organik madde ve demir (Fe) oksitlerin uzaklaştırılması amacı ile sırasıyla; amonyum asetat, hidrojen peroksit ve sodyum dithionit ile muamele edilmiş ve her bir uzaklaştırma sonrasında örneklerin SYA’ları belirlenmiştir. Son olarak, tüm uzaklaştırma işlemlerinin ardından kum ve silt parçacıkları mekanik olarak ayrılmış her örneğin kil boyutundaki parçacıklarının SYA değerleri de ölçülmüştür. Toprakların muameleler öncesi hesaplanan ortalama SYA 116.55 m2 g-1 olup, kireç uzaklaştırılması sonrası elde edilen ortalama SYA değeri (118.50 m2 g-1) oldukça benzerdir. Organik madde ve demir oksitlerin uzaklaştırılması, toprakların SYA’larının istatistiksel olarak önemli düzeyde artmasına neden olmuştur. Organik madde ve Fe oksitlerin uzaklaştırılması ve killerin SYA değerleri sırasıyla; 163.83 m2 g-1, 180.32 m2 g-1 ve 307.18 m2 g-1’dır. Sonuçlar, organik madde ve demir oksitlerin uzaklaştırılmasının topraktaki aktif yüzeylerin ortaya çıkarılmasına katkı sağladığını göstermiştir. Bu nedenle, toprakta birçok özellik için gösterge niteliğinde olan SYA değerinin daha doğru belirlenebilmesi için ön muamelelerin standart olarak uygulanması gerekmektedir.

References

  • Amezketa, E. 1999. Soil aggregate stability: a review. Journal of sustainable agriculture, 14(2-3): 83-151.
  • Borggaard, O. 1982. The influence of iron oxides on the surface area of soil. Journal of Soil Science, 33(3): 443-449.
  • Brubaker, S., Holzhey, C., Brasher, B. 1992. Estimating the water-dispersible clay content of soils. Soil Science Society of America Journal, 56(4), 1226-1232.
  • Cañasveras, J. C., Barrón, V., Del Campillo, M., Torrent, J., Gómez, J. 2010. Estimation of aggregate stability indices in Mediterranean soils by diffuse reflectance spectroscopy. Geoderma, 158(1-2), 78-84.
  • Carter, D., Mortland, M., Kemper, W. 1986. Specific Surface. Methods of soil analysis: Part 1—Physical and mineralogical methods (methodsofsoilan1): 413-423.
  • Cerato, A.B., Lutenegger, A.J. 2002. Determination of surface area of fine-grained soils by the ethylene glycol monoethyl ether (EGME) method. Geotech. Test. J. 25: 315-321.
  • El Swaify, S. A., Ahmed, S., Swindale, L. D. 1970. Effects of adsorbed cations on physical properties of tropical red and tropical black earths: II. Liquid limit, degree of dispersion, and moisture retention. Journal of Soil Science, 21(1), 188-198.
  • Ersahin, S., Gunal, H., Kutlu, T., Yetgin, B., Coban, S. 2006. Estimating specific surface area and cation exchange capacity in soils using fractal dimension of particle-size distribution. Geoderma, 136(3-4), 588-597. doi:10.1016/j.geoderma.2006.04.014
  • Gee, G.W., Bauder, J.W. 1986. Particle-size analysis 1. Methods of soil analysis: Part 1—Physical and mineralogical methods (methodsofsoilan1): 383-411.
  • Gee, G.W., Bauder, J.W. 1979. Particle size analysis by hydrometer: a simplified method for routine textural analysis and a sensitivity test of measurement parameters. Soil Sci. Soc. Am. J. 43: 1004-1007.
  • Goldberg, S., Suarez, D., Glaubig, R. 1988. Factors affecting clay dispersion and aggregate stability of arid-zone soils. Soil Science, 146(5): 317-325.
  • Heister, K. 2014. The measurement of the specific surface area of soils by gas and polar liquid adsorption methods limitations and potentials. Geoderma, 216: 75-87. Jackson, M.L. 2005. Soil chemical analysis: Advanced course. UW-Madison Libraries Parallel Press.
  • Jury, W., Gardner, W., Gardner, W. 1991. Soil physics. Journal of Environmental Quality (United States), 21(4).
  • Kacar, B. 1994. Bitki ve Topragın Kimyasal Analizleri. III. Toprak Analizleri. Ü. ZF Eğt. Araşt. ve Gel. Vakfı Yayın (3).
  • Kahle, M., Kleber, M., Jahn, R. 2002. Predicting carbon content in illitic clay fractions from surface area, cation exchange capacity and dithionite extractable iron. European Journal of Soil Science, 53(4): 639-644.
  • Karlen, D., Mausbach, M.J., Doran, J., Cline, R., Harris, R., Schuman, G. 1997. Soil quality: a concept, definition, and framework for evaluation (a guest editorial). Soil Science Society of America Journal, 61(1): 4-10.
  • Kemper, W., Rosenau, R. 1986. Aggregate Stability and Size Distribution 1. Methods of soil analysis: Part 1—Physical and mineralogical methods (methodsofsoilan1), 425-442.
  • Kunze, G.W., Dixon, J.B. 1986. Pretreatment for mineralogical analysis. Methods of Soil Analysis: Part 1—Physical and Mineralogical Methods, (methodsofsoilan1): 91-100. Macht, F., Eusterhues, K., Pronk, G. J., Totsche, K.U. 2011. Specific surface area of clay minerals: Comparison between atomic force microscopy measurements and bulk-gas (N2) and -liquid (EGME) adsorption methods. Applied Clay Science, 53(1): 20-26. doi:10.1016/j.clay.2011.04.006
  • Molina, F.V. 2016. Soil colloids: Properties and ion binding: CRC Press.
  • Nelson, D., Sommers, L. 1982. Methods of soil analysis. Part, 2: 539-579.
  • Pennell, K., Abriola, L., Boyd, S. 1995. Surface area of soil organic matter reexamined. Soil Science Society of America Journal, 59(4):1012-1018.
  • Sayın, M. 1983. Toprak Mineralojisi, Çukurova Üniv. Ziraat Fakültesi Ders Notları (78).
  • Theng, B.K.G., Ristori, G.G., Santi, C.A., Percival, H.J. 1999. An improved method for determining the specific surface areas of topsoils with varied organic matter content, texture and clay mineral composition. European Journal of Soil Science, 50(2): 309-316.
  • Tisdall, J.M., Oades, J.M. 1982. Organic matter and water stable aggregates in soils. Journal of Soil Science, 33(2), 141-163.
  • Yukselen, Y., Kaya, A. 2006. Comparison of methods for determining specific surface area of soils. Journal of Geotechnical and Geoenvironmental Engineering, 132(7): 931-936.
There are 25 citations in total.

Details

Primary Language Turkish
Journal Section Research Articles
Authors

Nurullah Acir

Hikmet Günal This is me

Publication Date January 25, 2020
Submission Date October 27, 2019
Published in Issue Year 2020 Volume: 7 Issue: 1

Cite

APA Acir, N., & Günal, H. (2020). Spesifik Yüzey Alanı Belirlenmesinde Organik Madde, Kireç ve Demir Oksitlerin Uzaklaştırılmasının Önemi. Türk Tarım Ve Doğa Bilimleri Dergisi, 7(1), 205-211. https://doi.org/10.30910/turkjans.680066