Sıcaklık Nem Endeksi (SNI) Kullanılarak Arduino Tabanlı Düşük Maliyetli Bir Klima Otomasyon Cihazının Tasarımı
Year 2020,
Volume: 7 Issue: 3, 654 - 662, 20.07.2020
Ünal Kızıl
,
Sefa Aksu
,
A. Cumhur Kınacı
,
Doğa Barış Özdemir
,
Levent Genç
Abstract
Çiftlik hayvanlarının, özellikle de süt sığırlarının bir ahırda refah ve üretim verimliliği, sıcaklık, nem gibi çevresel faktörlerle yakından ilişkilidir. Bu nedenle, çalışmanın amacı, sıcaklık nem indeksine (SNİ) dayanan düşük maliyetli bir otomasyon cihazı tasarlamaktır. Bir prototip tasarlamak için Arduino mikroişlemci ve uyumlu sensörler/elektronik malzemeler kullanıldı. Cihaz, otomasyon ve uzun vadeli yönetimsel amaçlar için dakikalık olarak sıcaklık, nem ve SNİ verilerini işleyebilmekte ve depoyabilmektedir. Cihaz, süt üretiminde teorik günlük azalmayı tahmin edebilir ve saklayabilir özelliklerdedir. Ortalama gerçek günlük süt üretimi de sisteme girilebilmektedir. Prototipin maliyeti 238$ olup düşük gelirli işletmeler için ekonomiktir. Veriler prototip performansını test etmek için 6 aylık bir süre boyunca toplanmıştır. Toplanan veriler için toplam 1.4 megabayt’lık küçük bir depolama kapasitesine gerek duyulmuştur. Bu ise, sistemin ekonomik ve verileri yönetimini kolay hale getirmiştir. Cihaz, ahırın ortasındaki bir direğe monte edilmiştir. Hafif ısı stresi kategorisinin (SNİ<83) alt sınırlarının altında 80 Simental süt sığırının literatürde doğrulandığı şekilde ısı stresinden çok fazla etkilenmediği tespit edilmiştir.
Supporting Institution
Çanakkale Onsekiz Mart Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi (BAP)
Project Number
FHD-2018-2498
References
- Armstrong, D.V. 1994. Heat stress interaction with shade and cooling. J. Dairy Sci., 7, 2044–2050.
- Bayhan, A.K., Karaman, S., Koşkan, Ö. 2013. Effects of heat stress on egg yield and mortality rates of caged poultry houses. Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 19(5), 881-887
- Bohmanova, J., Misztal, I., Cole, JB. 2007. Temperature-Humidity Indices as indicators of milk production losses due to heat stress. American Dairy Science Association, 90,1947–1956.
- Bray, D.R., Bucklin, R.A., Montoya, R., Giesy, R 1994. Means to reduce environmental stress on dairy cows in hot, humid climates. In: Third International Dairy Housing Conference, 589-597.
- Collier, R.J., Zimbelman, R.B., Rhoads, R.P., Rhoads, M.L., Baumgard, LH. 2011. A re-evaluation of the impact of temperature humidity index (THI) and black globe humidity index (BGHI) on milk production in high producing dairy cows. In: Western Dairy Management Conf., 113-125
- Du Preez, J.H., Giesecke, W.H., Hattingh, P.J. 1990. Heat stress in dairy cattle and other livestock under Southern African conditions. I. Temperature-humidity index mean values during the four main seasons. Onderstepoort J. Vet.Res., 57, 77-86.
- Gantner, V., Bobić, T., Gregić, M., Gantner, R., Kuterovac, K., Potočnik K. 2017. The differences in heat stress resistance due to dairy cattle breed. Mljekarstvo., 67 (2), 112-122.
- Hansen, P.J. 2013. Genetic control of heat stress in dairy cattle. In: Proceedings 49th Florida Dairy Production Conference, 26-32
Herbut, P., Angrecka, S. 2012. Forming of temperature-humidity index (THI) and milk production of cows in the free-stall barn during the period of summer heat. Animal Science Papers & Reports. 30(4), 364.
- Johnson, H.D. 1980. Environmental management of cattle to minimize the stress of climate changes. Int. J.Biometeor., 24 (2), 65-78.
- Key, N., Sneeringer, S. 2011. The potential effects of climate change on the productivity, costs, and returns of U.S. dairy production. In: Annual Meeting of the AAEA, Pittsburgh, Pennsylvania.
- Menéndez‐Buxadera, A., Molina, A., Arrebola, F., Clemente, I., Serradilla, J.M. 2012. Genetic variation of adaptation to heat stress in two Spanish dairy goat breeds. Journal of Animal Breeding and Genetics, 129(4), 306-315.
- Ravagnolo, O., Misztal, I., Hoogenboom, G. 2000. Genetic component of heat stress in dairy cattle, development of heat index function. J. Dairy Sci., 83, 2120– 2125.
- St-Pierre, N.R., Cobanov, B., Schnitkey, G. 2003. Economic loses from heat stress by US livestock industries. J. Dairy Sci., 86(E Suppl.), E52–E77.
- Toušová, R., Ducháček, J., Stádník, L., Ptáček, M., Sylvana Pokorná, S. 2017. Influence of Temperature Humidity relations during years on milk production and quality. ACTA Universitatis Agriculture Et Silviculturae Mendelianae Brunensis, 65(25), 211 – 218.
- Uzundumlu, A.S. 2012. Tarım sektörünün ülke ekonomisindeki yeri ve önemi. Alınteri, 22(B), 34-44 .
- Xin H, Hamson JD 1998. Livestock Industry Facilities and Environment: Heat Stress Indices for Livestock. https://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=1173&context=extension_ag_pubs(Accessed on 11 February, 2019)
- Yousef, M.K. 1985. Stress Physiology in Livestock. Vol. 1. CRC Press, Boca Raton Str., 67-73.
- Zhang, Y., Lisle, A.T., Phillips, C.T. 2017. Development of an effective sampling strategy for ammonia, temperature and relative humidity measurement during sheep transport by ship. Biosystems Engineering, 155, 12-23.
Design of an Arduino Based Low-Cost Air Conditioning Automation Device Using Temperature Humidity Index (THI)
Year 2020,
Volume: 7 Issue: 3, 654 - 662, 20.07.2020
Ünal Kızıl
,
Sefa Aksu
,
A. Cumhur Kınacı
,
Doğa Barış Özdemir
,
Levent Genç
Abstract
Welfare and production efficiency of livestock, especially dairy cattle, in a barn are closely related with environmental factors such as temperature, humidity, etc. Therefore, the aim of this study is to design a low-cost automation device that is based on Temperature Humidity Index (THI). An Arduino microprocessor and associated sensors/electronics were used to design a prototype. The device collects process and stores minutely temperature, humidity and THI for automation and long term management purposes. It is capable of estimating and storing theoretical daily reduction in milk production. Average actual daily milk production can also be entered to the system. The cost of the prototype was $ 238 that makes it affordable for low-income operations. Data was collected for a 6-month-period to test the performance of the prototype. Total of 1.4 megabyte of capacity is required for data storage. That makes the system affordable and easy to manage data. The device is installed on a post in the middle of barn. It is found that below the lower limits of mild heat stress category (THI<83) total of 80 Simmental milking cows were not influenced from heat stress as confirmed by literature. Therefore, it is essential to monitor stress conditions and milk production rate for longer periods in order to better manage the cows’ environmental conditions.
Project Number
FHD-2018-2498
References
- Armstrong, D.V. 1994. Heat stress interaction with shade and cooling. J. Dairy Sci., 7, 2044–2050.
- Bayhan, A.K., Karaman, S., Koşkan, Ö. 2013. Effects of heat stress on egg yield and mortality rates of caged poultry houses. Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 19(5), 881-887
- Bohmanova, J., Misztal, I., Cole, JB. 2007. Temperature-Humidity Indices as indicators of milk production losses due to heat stress. American Dairy Science Association, 90,1947–1956.
- Bray, D.R., Bucklin, R.A., Montoya, R., Giesy, R 1994. Means to reduce environmental stress on dairy cows in hot, humid climates. In: Third International Dairy Housing Conference, 589-597.
- Collier, R.J., Zimbelman, R.B., Rhoads, R.P., Rhoads, M.L., Baumgard, LH. 2011. A re-evaluation of the impact of temperature humidity index (THI) and black globe humidity index (BGHI) on milk production in high producing dairy cows. In: Western Dairy Management Conf., 113-125
- Du Preez, J.H., Giesecke, W.H., Hattingh, P.J. 1990. Heat stress in dairy cattle and other livestock under Southern African conditions. I. Temperature-humidity index mean values during the four main seasons. Onderstepoort J. Vet.Res., 57, 77-86.
- Gantner, V., Bobić, T., Gregić, M., Gantner, R., Kuterovac, K., Potočnik K. 2017. The differences in heat stress resistance due to dairy cattle breed. Mljekarstvo., 67 (2), 112-122.
- Hansen, P.J. 2013. Genetic control of heat stress in dairy cattle. In: Proceedings 49th Florida Dairy Production Conference, 26-32
Herbut, P., Angrecka, S. 2012. Forming of temperature-humidity index (THI) and milk production of cows in the free-stall barn during the period of summer heat. Animal Science Papers & Reports. 30(4), 364.
- Johnson, H.D. 1980. Environmental management of cattle to minimize the stress of climate changes. Int. J.Biometeor., 24 (2), 65-78.
- Key, N., Sneeringer, S. 2011. The potential effects of climate change on the productivity, costs, and returns of U.S. dairy production. In: Annual Meeting of the AAEA, Pittsburgh, Pennsylvania.
- Menéndez‐Buxadera, A., Molina, A., Arrebola, F., Clemente, I., Serradilla, J.M. 2012. Genetic variation of adaptation to heat stress in two Spanish dairy goat breeds. Journal of Animal Breeding and Genetics, 129(4), 306-315.
- Ravagnolo, O., Misztal, I., Hoogenboom, G. 2000. Genetic component of heat stress in dairy cattle, development of heat index function. J. Dairy Sci., 83, 2120– 2125.
- St-Pierre, N.R., Cobanov, B., Schnitkey, G. 2003. Economic loses from heat stress by US livestock industries. J. Dairy Sci., 86(E Suppl.), E52–E77.
- Toušová, R., Ducháček, J., Stádník, L., Ptáček, M., Sylvana Pokorná, S. 2017. Influence of Temperature Humidity relations during years on milk production and quality. ACTA Universitatis Agriculture Et Silviculturae Mendelianae Brunensis, 65(25), 211 – 218.
- Uzundumlu, A.S. 2012. Tarım sektörünün ülke ekonomisindeki yeri ve önemi. Alınteri, 22(B), 34-44 .
- Xin H, Hamson JD 1998. Livestock Industry Facilities and Environment: Heat Stress Indices for Livestock. https://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=1173&context=extension_ag_pubs(Accessed on 11 February, 2019)
- Yousef, M.K. 1985. Stress Physiology in Livestock. Vol. 1. CRC Press, Boca Raton Str., 67-73.
- Zhang, Y., Lisle, A.T., Phillips, C.T. 2017. Development of an effective sampling strategy for ammonia, temperature and relative humidity measurement during sheep transport by ship. Biosystems Engineering, 155, 12-23.