Research Article
BibTex RIS Cite

Yeşil Altyapı Sistemleri Kapsamında Yağmur Suyu Yönetimi: Malatya Kent Örneği

Year 2022, Volume: 9 Issue: 4, 1088 - 1101, 18.10.2022
https://doi.org/10.30910/turkjans.1177827

Abstract

Aşırı kentleşme ve beraberinde getirdiği altyapı sorunları yağmur suyundan kaynaklı bir takım çevresel problemlere yol açmaktadır. Büyüyen ve gelişen kentlerimizde zamanla meydana gelen yoğun yapılaşma, beton, asfalt vb. gibi geçirimsiz yüzey miktarlarının artmasına ve yeşil alan gibi geçirimli yüzeylerin azalmasına sebep olmaktadır. Bunun sonucunda ise yeryüzüne inen yağmur suları geçirimsiz yüzeyler tarafından emilemeyip yüzeysel akışa neden olmakta ve sonucunda sel, taşkın vb. gibi çevresel problemlere yol açmaktadır. Bu problemlere çözüm oluşturması sebebiyle dünya genelinde alternatif yaklaşımlara doğru bir eğilim olmaktadır. Bu yaklaşımlardan biri de yeşil altyapı/düşük etkili gelişim bileşenleridir. Bu çalışmada yağmur suyunun meydana getirdiği sorunlara yeşil altyapı/düşük etkili gelişim bileşenleri gibi alternatif yaklaşımlarla çözüm üretilmeye çalışılmıştır. Bu bağlamda yapılaşmanın yaşandığı Malatya kent merkezinde, yağmur suyunun meydana getirdiği yüzeysel akışların belirlenmesi ve düşük etkili gelişim bileşenlerinin etkinliğinin değerlendirilmesi amacıyla süreç tabanlı bir yağmur suyu yönetim modeli SWMM (Storm Water Management Model) uygulanarak çeşitli simülasyon çalışmaları gerçekleştirilmiştir. Dört farklı düşük etkili gelişim bileşeninin; yeşil çatı (1), yağmur varilleri (2), geçirimli kaplamalar (3), ve yağmur bahçeleri (4), planlanan alanın uygun kısımlarına belirli oranlarda entegre edilmesiyle gerçekleştirilen simülasyon çalışmalarında toplam yüzeysel akışlarda; yeşil çatı sistemlerinin kullanılmasıyla %2.15, yağmur varilleri kullanılmasıyla %8.10 ve eşit oranda geçirimli kaplama sistemleri ve yağmur bahçeleri kullanılmasıyla ise her iki bileşen için %6.60 oranında bir düşüş meydana gelmiştir. Bütün bileşenler birbiriyle entegreli olarak kullanıldığında ise yağmur suyunun meydana getirdiği yüzeysel akışların %22.20 oranında azaldığı bu sistemlerin kentsel alanlarda geleneksel altyapı sistemlerine alternatif olarak kullanılabileceği tespit edilmiştir.

References

  • Abi Aad, M. P., Suidan, M. T., & Shuster, W D. (2010). Modeling techniques of best management practices: Rain barrels rain gardens using EPA SWMM-5. Journal of hydrologic engineering, 15(6), 434-443.
  • Ahiablame, L. M., Engel, B. A., & Chaubey, I. (2013). Effectiveness of low impact development practices in two urbanized watersheds: Retrofitting with rain barrel/cistern and porous pavement. Journal of Environmental Management, 119, 151-161.
  • Arup. (2015). Cities Alive. Retrieved from https://www.arup.com/perspectives/cities-alive. (03.04.2021)
  • Autixier, L., Mailhot, A., Bolduc, S., Madoux-Humery, A.S., Galarneau, M., .., & Dorner, S. (2014). Evaluating rain gardens as a method to reduce the impact of sewer overflows in sources of drinking water. Science of The Total Environment, 499, 238-247.
  • Bedan, E. S., & Clausen, J. C. (2019). Stormwater runoff quality and quantity from traditional and low impact development watersheds 1. JAWRA Journal of the American Water Resources Association, 45(4), 998-1008.
  • Brudler, S., Arnbjerg-Nielsen, K., Hauschild, M. Z., Ammitsøe, C., Hénonin, J., & Rygaard, M. (2019). Life cycle assessment of point source emissions and infrastructure impacts of four types of urban stormwater systems. Water Research, 156, 383-394
  • DeBusk, K., & Wynn, T. (2011). Storm-water bioretention for runoff quality and quantity mitigation. Journal of Environmental Engineering, 137(9), 800-808.
  • Ekşi, M. & Uzun, A. (2016). Yeşil çatı sistemlerinin su ve enerji dengesi açısından değerlendirilmesi . Journal of the Faculty of Forestry Istanbul Uni. 66 (1) , 119-138 .
  • Ertin, D., Yılmaz, G., & Zülfikar, C. (2012). Sürdürülebilir Peyzaj Tasarımında Yeşil Altyapı Uygulamalarından Yağmur Bahçeleri: Edirne Örneği. Mimar Sinan Güzel Sanatlar Üniversitesi, GreenAge Sempozyumu, İstanbul.
  • Eren, B., Aygün, A., Likos, S., & Damar, A. I. (2016). Yağmur Suyu Hasadı: Sakarya Üniversitesi Esentepe Kampüs Örneği. Paper presented at the 4th International Symposium on Innovative Technologies in Engineering and Science (ISITES2016) 3-5 Nov 2016 Alanya/Antalya-Turkey.
  • Elliott, A. H., & Trowsdale, S. A. (2007). A review of models for low impact urban stormwater drainage. Environmental Modelling & Software, 22(3), 394-405.
  • Goonetilleke, A., Thomas, E., Ginn, S., & Gilbert, D. (2005). Understanding the role of land use in urban stormwater quality management. Journal of Environmental Management, 74(1), 31-42.
  • Gülbaz, S., Kaya, Y. E., & Alhan, C. M. K. (2018). Düşük Etkili Kentleşme Uygulamalarının Yüzeysel Akışa Etkisi: İstanbul Üniversitesi Avcılar Kampüsü Örneği. İklim Değişikliği ve Çevre, 3(1), 45-50.
  • Hatt, B. E., Fletcher, T. D., & Deletic, A. (2009). Hydrologic and pollutant removal performance of stormwater biofiltration systems at the field scale. Journal of Hydrology, 365(3), 310-321.
  • Hammes, G., Thives, L. P., & Ghisi, E. (2018). Application of stormwater collected from porous asphalt pavements for non-potable uses in buildings. Journal of Environmental Management, 222, 338-347.
  • Huber, W. C., Dickinson, R. E., Barnwell Jr, T. O., & Branch, A. (1988). Storm water management model; version 4. Environmental Protection Agency, United States.
  • Jayasooriya, V. M., & Ng, A. W. M. (2014). Tools for Modeling of Stormwater Management and Economics of Green Infrastructure Practices: a Review. Water, Air, & Soil Pollution, 225(8), 2055. doi:10.1007/s11270-014-2055-1
  • Jiang, C., Li, J., Li, H., Li, Y., & Chen, L. (2017). Field Performance of Bioretention Systems for Runoff Quantity Regulation and Pollutant Removal. Water, Air, & Soil Pollution, 228(12), 468.
  • Kantaroğlu, Ö. (2009). Yağmur Suyu Hasadi Plan Ve Hesaplama Prensipleri. IX. Ulusal Tesisat Mühendisliği Kongresi, 6-9.
  • Kılıç, M. Y., & Abuş, M. N. (2018). Bahçeli Bir Konut Örneğinde Yağmur Suyu Hasadı. Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi, 4(2), 209-215.
  • Liu, W., Chen, W., & Peng, C. (2015). Influences of setting sizes and combination of green infrastructures on community’s stormwater runoff reduction. Ecological Modelling, 318, 236-244.
  • Mittman, T., & Kloss, C. (2015). The Economic Benefits of Green Infrastructure: A Case Study of Lancaster, PA.
  • Nordman, E. E., Isely, E., Isely, P., & Denning, R. (2018). Benefit-cost analysis of stormwater green infrastructure practices for Grand Rapids, USA. Journal of Cleaner Production, 200, 501-510.
  • NU, (2018). World urbanization prospects: the 2018 revision. CD-ROM Edition.
  • Raei, E., Reza Alizadeh, M., Reza Nikoo, M., & Adamowski, J. (2019). Multi-objective decision-making for green infrastructure planning (LID-BMPs) in urban storm water management under uncertainty. Journal of Hydrology, 579, 124091.
  • Qin, H.-p., Li, Z.-x., & Fu, G. (2013). The effects of low impact development on urban flooding under different rainfall characteristics. Journal of Environmental Management, 129, 577-585.
  • Paithankar, D. N., & Taji, S. G. (2020). Investigating the hydrological performance of green roofs using storm water management model. Materials Today: Proceedings, 32, 943-950.
  • Rossman, L. A. (2010). Storm water management model user's manual, version 5.0: National Risk Management Research Laboratory, Office of Research
  • Scharenbroch, B. C., Morgenroth, J., & Maule, B. (2016). Tree species suitability to bioswales and impact on the urban water budget. Journal of environmental quality, 45(1), 199-206.
  • Stovin, V., Vesuviano, G., & Kasmin, H. (2012). The hydrological performance of a green roof test bed UK climatic conditions. Journal of Hydrology, 414-415, 148-161.
  • ReyValencia, D., & Zambrano Nájera, J. Application Of Rain Barrels For Flood Control In An Urban Mountain Basins.
  • Roseen, R. M., Ballestero, T. P., Houle, J. J., . & Houle, K. M. (2012). Water quality and hydrologic performance of a porous asphalt pavement as a storm-water treatment strategy in a cold climate. Journal of Environmental Engineering, 138(1), 81-89.
  • TheWorldBank. (2021). Urban population (% of total population). United Nations Population Division. World Urbanization Prospects: 2018 Revision.
  • Winston, R. J., Dorsey, J. D., & Hunt, W. F. (2016). Quantifying volume reduction and peak flow mitigation for three bioretention cells soils in northeast Ohio. Science of The Total Environment, 553, 83-95.
  • Zaqout, T., & Andradóttir, H. Ó. (2021). Hydrologic performance of grass swales in cold maritime climates: Impacts of frost, rain-on-snow and snow cover on flow and volume reduction. Journal of Hydrology, 597, 126159
Year 2022, Volume: 9 Issue: 4, 1088 - 1101, 18.10.2022
https://doi.org/10.30910/turkjans.1177827

Abstract

References

  • Abi Aad, M. P., Suidan, M. T., & Shuster, W D. (2010). Modeling techniques of best management practices: Rain barrels rain gardens using EPA SWMM-5. Journal of hydrologic engineering, 15(6), 434-443.
  • Ahiablame, L. M., Engel, B. A., & Chaubey, I. (2013). Effectiveness of low impact development practices in two urbanized watersheds: Retrofitting with rain barrel/cistern and porous pavement. Journal of Environmental Management, 119, 151-161.
  • Arup. (2015). Cities Alive. Retrieved from https://www.arup.com/perspectives/cities-alive. (03.04.2021)
  • Autixier, L., Mailhot, A., Bolduc, S., Madoux-Humery, A.S., Galarneau, M., .., & Dorner, S. (2014). Evaluating rain gardens as a method to reduce the impact of sewer overflows in sources of drinking water. Science of The Total Environment, 499, 238-247.
  • Bedan, E. S., & Clausen, J. C. (2019). Stormwater runoff quality and quantity from traditional and low impact development watersheds 1. JAWRA Journal of the American Water Resources Association, 45(4), 998-1008.
  • Brudler, S., Arnbjerg-Nielsen, K., Hauschild, M. Z., Ammitsøe, C., Hénonin, J., & Rygaard, M. (2019). Life cycle assessment of point source emissions and infrastructure impacts of four types of urban stormwater systems. Water Research, 156, 383-394
  • DeBusk, K., & Wynn, T. (2011). Storm-water bioretention for runoff quality and quantity mitigation. Journal of Environmental Engineering, 137(9), 800-808.
  • Ekşi, M. & Uzun, A. (2016). Yeşil çatı sistemlerinin su ve enerji dengesi açısından değerlendirilmesi . Journal of the Faculty of Forestry Istanbul Uni. 66 (1) , 119-138 .
  • Ertin, D., Yılmaz, G., & Zülfikar, C. (2012). Sürdürülebilir Peyzaj Tasarımında Yeşil Altyapı Uygulamalarından Yağmur Bahçeleri: Edirne Örneği. Mimar Sinan Güzel Sanatlar Üniversitesi, GreenAge Sempozyumu, İstanbul.
  • Eren, B., Aygün, A., Likos, S., & Damar, A. I. (2016). Yağmur Suyu Hasadı: Sakarya Üniversitesi Esentepe Kampüs Örneği. Paper presented at the 4th International Symposium on Innovative Technologies in Engineering and Science (ISITES2016) 3-5 Nov 2016 Alanya/Antalya-Turkey.
  • Elliott, A. H., & Trowsdale, S. A. (2007). A review of models for low impact urban stormwater drainage. Environmental Modelling & Software, 22(3), 394-405.
  • Goonetilleke, A., Thomas, E., Ginn, S., & Gilbert, D. (2005). Understanding the role of land use in urban stormwater quality management. Journal of Environmental Management, 74(1), 31-42.
  • Gülbaz, S., Kaya, Y. E., & Alhan, C. M. K. (2018). Düşük Etkili Kentleşme Uygulamalarının Yüzeysel Akışa Etkisi: İstanbul Üniversitesi Avcılar Kampüsü Örneği. İklim Değişikliği ve Çevre, 3(1), 45-50.
  • Hatt, B. E., Fletcher, T. D., & Deletic, A. (2009). Hydrologic and pollutant removal performance of stormwater biofiltration systems at the field scale. Journal of Hydrology, 365(3), 310-321.
  • Hammes, G., Thives, L. P., & Ghisi, E. (2018). Application of stormwater collected from porous asphalt pavements for non-potable uses in buildings. Journal of Environmental Management, 222, 338-347.
  • Huber, W. C., Dickinson, R. E., Barnwell Jr, T. O., & Branch, A. (1988). Storm water management model; version 4. Environmental Protection Agency, United States.
  • Jayasooriya, V. M., & Ng, A. W. M. (2014). Tools for Modeling of Stormwater Management and Economics of Green Infrastructure Practices: a Review. Water, Air, & Soil Pollution, 225(8), 2055. doi:10.1007/s11270-014-2055-1
  • Jiang, C., Li, J., Li, H., Li, Y., & Chen, L. (2017). Field Performance of Bioretention Systems for Runoff Quantity Regulation and Pollutant Removal. Water, Air, & Soil Pollution, 228(12), 468.
  • Kantaroğlu, Ö. (2009). Yağmur Suyu Hasadi Plan Ve Hesaplama Prensipleri. IX. Ulusal Tesisat Mühendisliği Kongresi, 6-9.
  • Kılıç, M. Y., & Abuş, M. N. (2018). Bahçeli Bir Konut Örneğinde Yağmur Suyu Hasadı. Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi, 4(2), 209-215.
  • Liu, W., Chen, W., & Peng, C. (2015). Influences of setting sizes and combination of green infrastructures on community’s stormwater runoff reduction. Ecological Modelling, 318, 236-244.
  • Mittman, T., & Kloss, C. (2015). The Economic Benefits of Green Infrastructure: A Case Study of Lancaster, PA.
  • Nordman, E. E., Isely, E., Isely, P., & Denning, R. (2018). Benefit-cost analysis of stormwater green infrastructure practices for Grand Rapids, USA. Journal of Cleaner Production, 200, 501-510.
  • NU, (2018). World urbanization prospects: the 2018 revision. CD-ROM Edition.
  • Raei, E., Reza Alizadeh, M., Reza Nikoo, M., & Adamowski, J. (2019). Multi-objective decision-making for green infrastructure planning (LID-BMPs) in urban storm water management under uncertainty. Journal of Hydrology, 579, 124091.
  • Qin, H.-p., Li, Z.-x., & Fu, G. (2013). The effects of low impact development on urban flooding under different rainfall characteristics. Journal of Environmental Management, 129, 577-585.
  • Paithankar, D. N., & Taji, S. G. (2020). Investigating the hydrological performance of green roofs using storm water management model. Materials Today: Proceedings, 32, 943-950.
  • Rossman, L. A. (2010). Storm water management model user's manual, version 5.0: National Risk Management Research Laboratory, Office of Research
  • Scharenbroch, B. C., Morgenroth, J., & Maule, B. (2016). Tree species suitability to bioswales and impact on the urban water budget. Journal of environmental quality, 45(1), 199-206.
  • Stovin, V., Vesuviano, G., & Kasmin, H. (2012). The hydrological performance of a green roof test bed UK climatic conditions. Journal of Hydrology, 414-415, 148-161.
  • ReyValencia, D., & Zambrano Nájera, J. Application Of Rain Barrels For Flood Control In An Urban Mountain Basins.
  • Roseen, R. M., Ballestero, T. P., Houle, J. J., . & Houle, K. M. (2012). Water quality and hydrologic performance of a porous asphalt pavement as a storm-water treatment strategy in a cold climate. Journal of Environmental Engineering, 138(1), 81-89.
  • TheWorldBank. (2021). Urban population (% of total population). United Nations Population Division. World Urbanization Prospects: 2018 Revision.
  • Winston, R. J., Dorsey, J. D., & Hunt, W. F. (2016). Quantifying volume reduction and peak flow mitigation for three bioretention cells soils in northeast Ohio. Science of The Total Environment, 553, 83-95.
  • Zaqout, T., & Andradóttir, H. Ó. (2021). Hydrologic performance of grass swales in cold maritime climates: Impacts of frost, rain-on-snow and snow cover on flow and volume reduction. Journal of Hydrology, 597, 126159
There are 35 citations in total.

Details

Primary Language Turkish
Subjects Agricultural, Veterinary and Food Sciences
Journal Section Research Articles
Authors

Turgut Dinçer 0000-0003-2079-3813

Sevgi Yılmaz 0000-0001-7668-5788

Publication Date October 18, 2022
Submission Date September 20, 2022
Published in Issue Year 2022 Volume: 9 Issue: 4

Cite

APA Dinçer, T., & Yılmaz, S. (2022). Yeşil Altyapı Sistemleri Kapsamında Yağmur Suyu Yönetimi: Malatya Kent Örneği. Türk Tarım Ve Doğa Bilimleri Dergisi, 9(4), 1088-1101. https://doi.org/10.30910/turkjans.1177827