Exploring The Physiological Response Of Three Barley (Hordeum vulgare) Cultivars To Cadmium Stress
Year 2025,
Volume: 12 Issue: 1, 40 - 50, 29.01.2025
Hande Otu Borlu
,
Yeter Çilesiz
,
Halil Çakan
,
Tolga Karaköy
Abstract
Barley is one of the world’s earliest domesticated crops, ranks fourth grain cereal after maize, rice and wheat. Cadmium (Cd) is a widespread, non essential and toxic heavy metal pollutant reflecting toxicity for both plant and animals. Here, we made an effort to investigate the responce of three barley cultivars using various cadmium dosage. 0, 25-50 µM Cd, 100 µM Cd and 150 µM Cd were taken as different cadmium doses. Results of this study revealed that decrease in shoot length and weight was observed with the increase in cadmium dose. Sentosa and Tarm 92 were found most succeptible and resistant cultivars of barley respectively. Decrease in chlorophyll and proline contents were observed with an increase in cadmium dosage. Higher cadmimum accumulation was observed in root tissues. Effects of cadmium stress were observed for various mineral contents in these cultivars and an increse in calcium contents was also observed. Manganese, copper and zinc content of seedlings increased against low cadmium dosage. However, decrease in the concentration of these mineral was observed against higher Cd dosage. We are confidant that findings of this study will be helpful for the understanding of how cadmium toxicity effects the growth and yield of crops
References
- Ahmad, P., Nabi, G., Ashraf, M. 2011. Cadmium-induced oxidative damage in mustard [Brassica juncea (L.) Czern.&Coss.] plants can be alleviated by salicylic acid. South African Journal of Botany, 77:36-44.
- Akar, T., Avcı, M., Dusunceli, F. 2004. Barley. Post harvest operetions: http://www.fao.org/3/a-au997e.pdf. Acessed on 11.02.2019.
- Akhter, M.F., Omelon, C.R., Gordon, R.A., Moser, D., Macfie, S.M. 2014. Localization and chemical speciation of cadmium in the roots of barley and lettuce. Environmental And Experimental Botany, 100: 10-19.
- Akkuş, H., & Vural, H. (2023). Mevsimlik Çiçeklerin (Impatiens balsamina, Zinnia elegans) Tuz ve Su Stresine Karşı Dayanıklılığının Belirlenmesi. Türk Tarım ve Doğa Bilimleri Dergisi, 10(4), 933-943.
- Anjum, S.A., Tanveer, M., Hussain, S., Bao, M., Wang, L., Khan, I., Shahzad, B. 2015. Cadmium toxicity in Maize (Zea mays L.): consequences on antioxidative systems, reactive oxygen species and cadmium accumulation. Environmental Science and Pollution Research, 22(21): 17022-17030.
- Bahmani, R., Bihamta, M.R., Habibi, D., Forozesh, P., Ahmadvand, S. 2012. Effect of cadmium chloride on growth parameters of different bean genotypes (Phaseolus vulgaris L.). ARPN Journal of Agricultural and Biological Science, 7: 35-40.
- Bates, L.S., Waldern, R.P., Teare, I.D. 1973. Rapid determination of free prolin for water-stress studies. Plant and Soil, 39: 205-207.
- Beaty, R.D., Kerber, J.D. 1993. Concepts, instrumentation and techniques in Atomic Absorption Spectrophotomerty, Perkind Elmer. Inc.: Shelton, CT.
- Brune, A., Dietz, K.J. 1995. A comparative analysis of element composition of roots and leaves of barley seedlings grown in the presence of toxic cadmium, molybdenum, nickel, and zinc concentrations. Journal of Plant Nutrition, 18(4): 853-868.
- Campos, P.S., Quartin, V., Ramalho, J.C., Nunes, M.A. 2003. Electrolyte leakage and lipid degradation account for cold sensitivity in leaves of Coffea sp. Plants. Journal of Plant Physiology, 160: 283–292.
- Chang, S.X., Robison, D.J. 2003. Nondestructive and rapid estimation of hardwood foliar nitrogen status using the SPAD-502 chlorophyll meter. Forest Ecology and Management, 181(3): 331-338.
- Chaoui, A., Mazhoudi, S., Ghorbal, M.H., El Ferjani, E. 1997. Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Science, 127(2): 139-147.
- Cherif, J., Derbel, N., Nakkach, M., Berhman, H., Jemal, F., Ben Lakhdar, Z. 2012. Spectroscopic studies of photosynthetic responses of tomato plants to the interaction of zinc and cadmium toxicity. Journal of Photochemistry and Photobiology B: Biology, 111: 9-16.
- Çulha, Ş. ve Çakırlar, H. 2011. Tuzluluğun Bitkiler Üzerine Etkileri ve Tuz Tolerans Mekanizmaları. AKU J. Sci., 11 (2), 11-34.
- De Maria, S., Puschenreiter, M., Rivelli, A.R. 2013. Cadmium accumulation and physiological response of sunflower plants to Cd during the vegetative growing cycle. Plant, Soil and Environment, 59(6): 254-261.
- Demirevska-Kepova, K., Simova-Stoilova, L., Stoyonova, Z.P., Feller, U. 2006. Cadmium Stress in Barley: Growth, Leaf Pigment, and Protein Composition and Detoxification of Reactive Oxygen Species. Journal of Plant Nutrition, 29: 451–468.
- Di Toppi, L.S., Gabbrielli, R. 1999. Response to cadmium in higher plants. Environmental and Experimental Botany, 41(2): 105-130.
- Didwania, N., Jain, S., Sadana, D. 2019. In-vitro phytotoxic effects of cadmium on morphological parameters of allium cepa. Biological, 12(1): 137.
- Dobrikova, A.G., Apostolova, E.L. 2019. Damage and Protection of the Photosynthetic Apparatus Under Cadmium Stress. In Cadmium Toxicity and Tolerance in Plants (pp. 275-298). Academic Press.
- Dresler, S., Hawrylak-Nowak, B., Kovacik, J., Pochwatka, M., Hanaka, A., Strezemski, M., Sowa, I. and Wójciak, K. 2019. Allantoin attenuates cadmium-induced toxicity in cucumber plants. Ecotoxicology and Environmental Safety, 170: 120-126.
- FAO Food Outlook Report, (2017). http://www.fao.org/3/a-i7343e.pdf. Acessed on 11.02.2019
- Gallego, S.M., Benavides, M.P., Tomaro, M.L. 1996. Effect of heavy metal ion excess on sunflower leaves: evidence for involvement of oxidative stress. Plant Science, 121(2): 151-159.
- Garnieret, J., Cébron, A., Tallec, G., Billen, G., Sebilo, M., Martinnz, A. 2006. Nitrogen behaviour and nitrous oxide emission in the tidal Seine River estuary (France) as influenced by human activities in the upstream watershed. Biogeochemistry, 77: 305-326.
- Gill, S.S., Tuteja, N. 2011. Cadmium stress tolerance in crop plants: probing the role of sulfur. Plant Signaling & Behavior, 6(2): 215-222.
- Hare, P.D., Du Plessis, S., Cress, W.A., Van Staden, J. 1996. Stress-induced changes in plant gene expression. Prospects for enhancing agricultural productivity in South Africa. South African Journal of Science (South Africa).
- Hodges, D.M., Delong, J.M., Forney, C.F., Prange, R.K. 1999. Improving the thiobarbituric acid reactive substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207: 604-611
- Jackson, M.L. 1962. Soil Chemical Analysis. Constable and Company, UK.
- Kabata-Pendias, A., Mukherjee, A.B. 2007. Trace elements from soil to human. Springer Science & Business Media.
- Koleva, L. 2010. Mineral Nutrients Content In Zinc- And Cadmium-Treated Durum Wheat Plants With Similar Growth Inhibition. General and Applied Plant Physiology, 36 (1–2): 60-63.
- Kudo, H., Kudo, K., Uemura, M., Kawai, S. 2015. Magnesium inhibits cadmium translocation from roots to shoots, rather than the uptake from roots, in barley. Botany, 93(6): 345-351.
- Lachman, J., Kotikova, Z., Zámečníková, B., Miholová, D., Száková, J., Vodičková, H. 2015. Effect of cadmium stress on barley tissue damage and essential metal transport into plant. Open Life Science, 10: 30-39.
- Li, F., Qi, J., Zhang, G., Lin, L., Fang, P., Tao, A., Xu, J. 2013. Effect of Cadmium Stress on the Growth, Antioxidative Enzymes and Lipid Peroxidation in Two Kenaf (Hibiscus cannabinus L.) Plant Seedlings. Journal of Integrative Agriculture, 12(4): 610-620.
- Li, M., Zhang, L.J., Tao, L., Li, W. 2008. Ecophysiological responses of Jussiaea rapens to cadmium exposure. Aquatic Botany, 88: 347-352.
- Li, S., Yang, W., Yang, T., Chen, Y., Ni, W. 2015. Effects of cadmium stress on leaf chlorophyll fluorescence and photosynthesis of elsholtzia argyi—a cadmium accumulating plant. International Journal of Phytoremediation, 17(1): 85-92.
- López-Millán, A.F., Sagardoy, R., Solanas, M., Abadía, A., Abadía, J. 2009. Cadmium toxicity in tomato (Lycopersicon esculentum) plants grown in hydroponics. Environmental and Experimental Botany, 65(2-3): 376-385.
- Marchiol, L., Leita, L., Martin, M., Peressotti, A., Zerbi, G. 1996. Physiological responses of two soybean cultivars to cadmium. Journal of Environmental Quality, 25: 562-566.
- Metwally, A., Finkemeier, I., Georgi, M., Dietz, K.J. 2003. Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiology, 132: 272-281.
- Pourghasemian, N., Landberg, T., Ehsanzadeh, P., Greger, M. 2019. Different response to Cd stress in domesticated and wild safflower (Carthamus spp.). Ecotoxicology and Environmental Safety, 171: 321-328.
- Sandalio, L.M., Dalurzo, H.C., Gómez, M., Romero-Puertas, M.C., Río, L.A. 2001. Cadmium-induces changes in the growth and oxidative metabolism of pea plants. Journal of Experimental Botany, 52: 2115–2126.
- Shacklette, H.T. 1972. Cadmium in plants (No. 1314). US Government Printing Office.
- Shamsi, I.H., Jiang, L., Wei, K., Jilani, G., Hua, S., Zhang, G.P. 2010. Alleviation of cadmium toxicity in soybean by potassium supplementation. Journal of Plant Nutrition, 33(13): 1926-1938.
- Shao, H-B., Chu, L-Y., Jaleel, C.A. ve Zhao, C-X. 2008. Water-deficit stress-induced anatomical changes in higher plants. Comptes Rendus Biologies, 331(3), 215-225.
- Siddiqui, M.H., Al-Whaibi, M.H., Sakran, A.M., Basalah, M.O., Ali, H.M. 2012. Effect of calcium and potassium on antioxidant system of Vicia faba L. under cadmium stress. International Journal of Molecular Sciences, 13: 6604-6619.
- Smart, R.E., Bingham, G.E. 1974. Rapid Estimates of Relative Water Content. Plant Physiology, 53: 258-260.
Song, J., Feng, S.J., Chen, J., Zhao, W.T., Yang, Z.M. 2017. A cadmium stress-responsive gene AtFC1 confers plant tolerance to cadmium toxicity. BMC Plant Biology, 17(1): 187.
- Tamás, L., Dudíková, J., Ďurčeková, K., Halušková, L.U., Huttová, J., Mistrík, I., Ollé, M. 2008. Alterations of the gene expression, lipid peroxidation, proline and thiol content along the barley root exposed to cadmium. Journal of Plant Physiology, 165(11): 1193-1203.
- Tamás, L., Mistrík, I., Alemayehu, A., Zelinová, V., Bočová, B., Huttová, J. 2015. Salicylic acid alleviates cadmium-induced stress responses through the inhibition of Cd-induced auxin-mediated reactive oxygen species production in barley root tips. Journal of Plant Physiology, 173: 1-8.
- Tiryakioğlu, M., Eker, S., Özkutlu, F., Husted, S., Cakmak, İ. 2006. Antioxidant defense system and cadmium uptake in barley genotypes differing in cadmium tolerance. Journal of Trace Elements in Medicine and Biology, 20: 181-189.
- Vassilev, A., Berova, M., Zlatev, Z. 1998. Influence of Cd2+ on growth, chlorophyll content, and water relations in young barley plants. Biologia Plantarum, 41(4): 601-606.
- Wilkins, D.A. 1978. The measurement of tolerance to edaphic factors by means of root growth. New Phytologist, 80: 623–633.
- Wu, F., Zhang, G., Dominy, P. 2003. Four barley genotypes respond differently to cadmium: lipid peroxidation and activities of antioxidant capacity. Environmental and Experimental Botany, 50: 67-78.
- Wu, F.B., Chen, F., Wei, K., Zhang, G.P. 2004. Effect of cadmium on free amino acid, glutathione and ascorbic acid concentrations in two barley genotypes (Hordeum vulgare L.) differing in cadmium tolerance. Chemosphere, 57(6): 447-454.
- Xu, W.F., Shi, W.M., Yan, F., Zhang, B., Liang, J.S. 2011. Mechanisms of cadmium detoxification in cattail (Typha angustifolia L.). Aquatic Botany, 94: 37-43.
- Yılmaz, H. Ş., & Kökten, K. (2019). Kadmiyum (Cd) uygulamasının tane sorgumda (Sorghum bicolor L.) bazı morfolojik özellikler üzerine etkisinin belirlenmesi. Türk Tarım ve Doğa Bilimleri Dergisi, 6(3), 447-456.
- Yordanova, R., Baydanova, V., Peeva, V. 2017. Nıtrıc oxıde medıates the stress response ınduced by cadmıum ın maıze plants. Genetics and Plant Physiology, 7(3–4): 121–134.
- Yuanjie, D., Weifeng, C., Xiaoying, B., Fengzhen, L., Yongshan, W. 2019. Effects of exogenous nitric oxide and 24-epibrassinolide on the physiological characteristics of peanut seedlings under cadmium stress. Pedosphere, 29(1): 45-59.
- Zhao, L.J., Xıe, J.F., Zhang, H., Wang, Z.T., Jıang, H.J., Gao, S.L. 2017. Enzymatic activity and chlorophyll fluorescence imaging of maize seedlings (Zea mays L.) after exposure to low doses of chlorsulfuron and cadmium.
- Zhao, Y. 2011. Cadmium accumulation and antioxidative defenses in leaves of Triticum aestivum L. and Zea mays L. African Journal of Biotechnology, 10(15): 2936-2943.
- Zhao, Y., Hu, C., Wu, Z., Liu, X., Cai, M., Jia, W., Zhao, X. 2019. Selenium reduces cadmium accumulation in seed by increasing cadmium retention in root of oilseed rape (Brassica napus L.). Environmental and Experimental Botany, 158: 161-170.
- Zohary, D., Hopf, M. 1994. Domestication of plants in the Old World, 2nd edn. Clarendon.
Exploring The Physiological Response Of Three Barley (Hordeum vulgare) Cultivars To Cadmium Stress
Year 2025,
Volume: 12 Issue: 1, 40 - 50, 29.01.2025
Hande Otu Borlu
,
Yeter Çilesiz
,
Halil Çakan
,
Tolga Karaköy
Abstract
Barley is one of the world’s earliest domesticated crops, ranks fourth grain cereal after maize, rice and wheat. Cadmium (Cd) is a widespread, non essential and toxic heavy metal pollutant reflecting toxicity for both plant and animals. Here, we made an effort to investigate the responce of three barley cultivars using various cadmium dosage. 0, 25-50 µM Cd, 100 µM Cd and 150 µM Cd were taken as different cadmium doses. Results of this study revealed that decrease in shoot length and weight was observed with the increase in cadmium dose. Sentosa and Tarm 92 were found most succeptible and resistant cultivars of barley respectively. Decrease in chlorophyll and proline contents were observed with an increase in cadmium dosage. Higher cadmimum accumulation was observed in root tissues. Effects of cadmium stress were observed for various mineral contents in these cultivars and an increse in calcium contents was also observed. Manganese, copper and zinc content of seedlings increased against low cadmium dosage. However, decrease in the concentration of these mineral was observed against higher Cd dosage. We are confidant that findings of this study will be helpful for the understanding of how cadmium toxicity effects the growth and yield of crops.
References
- Ahmad, P., Nabi, G., Ashraf, M. 2011. Cadmium-induced oxidative damage in mustard [Brassica juncea (L.) Czern.&Coss.] plants can be alleviated by salicylic acid. South African Journal of Botany, 77:36-44.
- Akar, T., Avcı, M., Dusunceli, F. 2004. Barley. Post harvest operetions: http://www.fao.org/3/a-au997e.pdf. Acessed on 11.02.2019.
- Akhter, M.F., Omelon, C.R., Gordon, R.A., Moser, D., Macfie, S.M. 2014. Localization and chemical speciation of cadmium in the roots of barley and lettuce. Environmental And Experimental Botany, 100: 10-19.
- Akkuş, H., & Vural, H. (2023). Mevsimlik Çiçeklerin (Impatiens balsamina, Zinnia elegans) Tuz ve Su Stresine Karşı Dayanıklılığının Belirlenmesi. Türk Tarım ve Doğa Bilimleri Dergisi, 10(4), 933-943.
- Anjum, S.A., Tanveer, M., Hussain, S., Bao, M., Wang, L., Khan, I., Shahzad, B. 2015. Cadmium toxicity in Maize (Zea mays L.): consequences on antioxidative systems, reactive oxygen species and cadmium accumulation. Environmental Science and Pollution Research, 22(21): 17022-17030.
- Bahmani, R., Bihamta, M.R., Habibi, D., Forozesh, P., Ahmadvand, S. 2012. Effect of cadmium chloride on growth parameters of different bean genotypes (Phaseolus vulgaris L.). ARPN Journal of Agricultural and Biological Science, 7: 35-40.
- Bates, L.S., Waldern, R.P., Teare, I.D. 1973. Rapid determination of free prolin for water-stress studies. Plant and Soil, 39: 205-207.
- Beaty, R.D., Kerber, J.D. 1993. Concepts, instrumentation and techniques in Atomic Absorption Spectrophotomerty, Perkind Elmer. Inc.: Shelton, CT.
- Brune, A., Dietz, K.J. 1995. A comparative analysis of element composition of roots and leaves of barley seedlings grown in the presence of toxic cadmium, molybdenum, nickel, and zinc concentrations. Journal of Plant Nutrition, 18(4): 853-868.
- Campos, P.S., Quartin, V., Ramalho, J.C., Nunes, M.A. 2003. Electrolyte leakage and lipid degradation account for cold sensitivity in leaves of Coffea sp. Plants. Journal of Plant Physiology, 160: 283–292.
- Chang, S.X., Robison, D.J. 2003. Nondestructive and rapid estimation of hardwood foliar nitrogen status using the SPAD-502 chlorophyll meter. Forest Ecology and Management, 181(3): 331-338.
- Chaoui, A., Mazhoudi, S., Ghorbal, M.H., El Ferjani, E. 1997. Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Science, 127(2): 139-147.
- Cherif, J., Derbel, N., Nakkach, M., Berhman, H., Jemal, F., Ben Lakhdar, Z. 2012. Spectroscopic studies of photosynthetic responses of tomato plants to the interaction of zinc and cadmium toxicity. Journal of Photochemistry and Photobiology B: Biology, 111: 9-16.
- Çulha, Ş. ve Çakırlar, H. 2011. Tuzluluğun Bitkiler Üzerine Etkileri ve Tuz Tolerans Mekanizmaları. AKU J. Sci., 11 (2), 11-34.
- De Maria, S., Puschenreiter, M., Rivelli, A.R. 2013. Cadmium accumulation and physiological response of sunflower plants to Cd during the vegetative growing cycle. Plant, Soil and Environment, 59(6): 254-261.
- Demirevska-Kepova, K., Simova-Stoilova, L., Stoyonova, Z.P., Feller, U. 2006. Cadmium Stress in Barley: Growth, Leaf Pigment, and Protein Composition and Detoxification of Reactive Oxygen Species. Journal of Plant Nutrition, 29: 451–468.
- Di Toppi, L.S., Gabbrielli, R. 1999. Response to cadmium in higher plants. Environmental and Experimental Botany, 41(2): 105-130.
- Didwania, N., Jain, S., Sadana, D. 2019. In-vitro phytotoxic effects of cadmium on morphological parameters of allium cepa. Biological, 12(1): 137.
- Dobrikova, A.G., Apostolova, E.L. 2019. Damage and Protection of the Photosynthetic Apparatus Under Cadmium Stress. In Cadmium Toxicity and Tolerance in Plants (pp. 275-298). Academic Press.
- Dresler, S., Hawrylak-Nowak, B., Kovacik, J., Pochwatka, M., Hanaka, A., Strezemski, M., Sowa, I. and Wójciak, K. 2019. Allantoin attenuates cadmium-induced toxicity in cucumber plants. Ecotoxicology and Environmental Safety, 170: 120-126.
- FAO Food Outlook Report, (2017). http://www.fao.org/3/a-i7343e.pdf. Acessed on 11.02.2019
- Gallego, S.M., Benavides, M.P., Tomaro, M.L. 1996. Effect of heavy metal ion excess on sunflower leaves: evidence for involvement of oxidative stress. Plant Science, 121(2): 151-159.
- Garnieret, J., Cébron, A., Tallec, G., Billen, G., Sebilo, M., Martinnz, A. 2006. Nitrogen behaviour and nitrous oxide emission in the tidal Seine River estuary (France) as influenced by human activities in the upstream watershed. Biogeochemistry, 77: 305-326.
- Gill, S.S., Tuteja, N. 2011. Cadmium stress tolerance in crop plants: probing the role of sulfur. Plant Signaling & Behavior, 6(2): 215-222.
- Hare, P.D., Du Plessis, S., Cress, W.A., Van Staden, J. 1996. Stress-induced changes in plant gene expression. Prospects for enhancing agricultural productivity in South Africa. South African Journal of Science (South Africa).
- Hodges, D.M., Delong, J.M., Forney, C.F., Prange, R.K. 1999. Improving the thiobarbituric acid reactive substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207: 604-611
- Jackson, M.L. 1962. Soil Chemical Analysis. Constable and Company, UK.
- Kabata-Pendias, A., Mukherjee, A.B. 2007. Trace elements from soil to human. Springer Science & Business Media.
- Koleva, L. 2010. Mineral Nutrients Content In Zinc- And Cadmium-Treated Durum Wheat Plants With Similar Growth Inhibition. General and Applied Plant Physiology, 36 (1–2): 60-63.
- Kudo, H., Kudo, K., Uemura, M., Kawai, S. 2015. Magnesium inhibits cadmium translocation from roots to shoots, rather than the uptake from roots, in barley. Botany, 93(6): 345-351.
- Lachman, J., Kotikova, Z., Zámečníková, B., Miholová, D., Száková, J., Vodičková, H. 2015. Effect of cadmium stress on barley tissue damage and essential metal transport into plant. Open Life Science, 10: 30-39.
- Li, F., Qi, J., Zhang, G., Lin, L., Fang, P., Tao, A., Xu, J. 2013. Effect of Cadmium Stress on the Growth, Antioxidative Enzymes and Lipid Peroxidation in Two Kenaf (Hibiscus cannabinus L.) Plant Seedlings. Journal of Integrative Agriculture, 12(4): 610-620.
- Li, M., Zhang, L.J., Tao, L., Li, W. 2008. Ecophysiological responses of Jussiaea rapens to cadmium exposure. Aquatic Botany, 88: 347-352.
- Li, S., Yang, W., Yang, T., Chen, Y., Ni, W. 2015. Effects of cadmium stress on leaf chlorophyll fluorescence and photosynthesis of elsholtzia argyi—a cadmium accumulating plant. International Journal of Phytoremediation, 17(1): 85-92.
- López-Millán, A.F., Sagardoy, R., Solanas, M., Abadía, A., Abadía, J. 2009. Cadmium toxicity in tomato (Lycopersicon esculentum) plants grown in hydroponics. Environmental and Experimental Botany, 65(2-3): 376-385.
- Marchiol, L., Leita, L., Martin, M., Peressotti, A., Zerbi, G. 1996. Physiological responses of two soybean cultivars to cadmium. Journal of Environmental Quality, 25: 562-566.
- Metwally, A., Finkemeier, I., Georgi, M., Dietz, K.J. 2003. Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiology, 132: 272-281.
- Pourghasemian, N., Landberg, T., Ehsanzadeh, P., Greger, M. 2019. Different response to Cd stress in domesticated and wild safflower (Carthamus spp.). Ecotoxicology and Environmental Safety, 171: 321-328.
- Sandalio, L.M., Dalurzo, H.C., Gómez, M., Romero-Puertas, M.C., Río, L.A. 2001. Cadmium-induces changes in the growth and oxidative metabolism of pea plants. Journal of Experimental Botany, 52: 2115–2126.
- Shacklette, H.T. 1972. Cadmium in plants (No. 1314). US Government Printing Office.
- Shamsi, I.H., Jiang, L., Wei, K., Jilani, G., Hua, S., Zhang, G.P. 2010. Alleviation of cadmium toxicity in soybean by potassium supplementation. Journal of Plant Nutrition, 33(13): 1926-1938.
- Shao, H-B., Chu, L-Y., Jaleel, C.A. ve Zhao, C-X. 2008. Water-deficit stress-induced anatomical changes in higher plants. Comptes Rendus Biologies, 331(3), 215-225.
- Siddiqui, M.H., Al-Whaibi, M.H., Sakran, A.M., Basalah, M.O., Ali, H.M. 2012. Effect of calcium and potassium on antioxidant system of Vicia faba L. under cadmium stress. International Journal of Molecular Sciences, 13: 6604-6619.
- Smart, R.E., Bingham, G.E. 1974. Rapid Estimates of Relative Water Content. Plant Physiology, 53: 258-260.
Song, J., Feng, S.J., Chen, J., Zhao, W.T., Yang, Z.M. 2017. A cadmium stress-responsive gene AtFC1 confers plant tolerance to cadmium toxicity. BMC Plant Biology, 17(1): 187.
- Tamás, L., Dudíková, J., Ďurčeková, K., Halušková, L.U., Huttová, J., Mistrík, I., Ollé, M. 2008. Alterations of the gene expression, lipid peroxidation, proline and thiol content along the barley root exposed to cadmium. Journal of Plant Physiology, 165(11): 1193-1203.
- Tamás, L., Mistrík, I., Alemayehu, A., Zelinová, V., Bočová, B., Huttová, J. 2015. Salicylic acid alleviates cadmium-induced stress responses through the inhibition of Cd-induced auxin-mediated reactive oxygen species production in barley root tips. Journal of Plant Physiology, 173: 1-8.
- Tiryakioğlu, M., Eker, S., Özkutlu, F., Husted, S., Cakmak, İ. 2006. Antioxidant defense system and cadmium uptake in barley genotypes differing in cadmium tolerance. Journal of Trace Elements in Medicine and Biology, 20: 181-189.
- Vassilev, A., Berova, M., Zlatev, Z. 1998. Influence of Cd2+ on growth, chlorophyll content, and water relations in young barley plants. Biologia Plantarum, 41(4): 601-606.
- Wilkins, D.A. 1978. The measurement of tolerance to edaphic factors by means of root growth. New Phytologist, 80: 623–633.
- Wu, F., Zhang, G., Dominy, P. 2003. Four barley genotypes respond differently to cadmium: lipid peroxidation and activities of antioxidant capacity. Environmental and Experimental Botany, 50: 67-78.
- Wu, F.B., Chen, F., Wei, K., Zhang, G.P. 2004. Effect of cadmium on free amino acid, glutathione and ascorbic acid concentrations in two barley genotypes (Hordeum vulgare L.) differing in cadmium tolerance. Chemosphere, 57(6): 447-454.
- Xu, W.F., Shi, W.M., Yan, F., Zhang, B., Liang, J.S. 2011. Mechanisms of cadmium detoxification in cattail (Typha angustifolia L.). Aquatic Botany, 94: 37-43.
- Yılmaz, H. Ş., & Kökten, K. (2019). Kadmiyum (Cd) uygulamasının tane sorgumda (Sorghum bicolor L.) bazı morfolojik özellikler üzerine etkisinin belirlenmesi. Türk Tarım ve Doğa Bilimleri Dergisi, 6(3), 447-456.
- Yordanova, R., Baydanova, V., Peeva, V. 2017. Nıtrıc oxıde medıates the stress response ınduced by cadmıum ın maıze plants. Genetics and Plant Physiology, 7(3–4): 121–134.
- Yuanjie, D., Weifeng, C., Xiaoying, B., Fengzhen, L., Yongshan, W. 2019. Effects of exogenous nitric oxide and 24-epibrassinolide on the physiological characteristics of peanut seedlings under cadmium stress. Pedosphere, 29(1): 45-59.
- Zhao, L.J., Xıe, J.F., Zhang, H., Wang, Z.T., Jıang, H.J., Gao, S.L. 2017. Enzymatic activity and chlorophyll fluorescence imaging of maize seedlings (Zea mays L.) after exposure to low doses of chlorsulfuron and cadmium.
- Zhao, Y. 2011. Cadmium accumulation and antioxidative defenses in leaves of Triticum aestivum L. and Zea mays L. African Journal of Biotechnology, 10(15): 2936-2943.
- Zhao, Y., Hu, C., Wu, Z., Liu, X., Cai, M., Jia, W., Zhao, X. 2019. Selenium reduces cadmium accumulation in seed by increasing cadmium retention in root of oilseed rape (Brassica napus L.). Environmental and Experimental Botany, 158: 161-170.
- Zohary, D., Hopf, M. 1994. Domestication of plants in the Old World, 2nd edn. Clarendon.