Research Article
BibTex RIS Cite

Yüksek Amonyak Konsantrasyonunun Düz Panel Fotobiyoreaktörde Scenedesmus dimorphus Gelişimi Üzerindeki Etkisi

Year 2025, Volume: 12 Issue: 2, 482 - 491, 16.04.2025
https://doi.org/10.30910/turkjans.1559035

Abstract

Yoğun hayvancılık faaliyetleri, amonyak (NH₃) da dahil olmak üzere havayla taşınan önemli kirleticiler üreterek çevre ve sağlık riskleri oluşturmaktadır. Fotobiyoreaktör (PBR) sistemleri, NH₃ ve CO₂ gibi kirleticileri absorbe etmek ve metabolize etmek, hava kalitesini artırmak ve değerli biyokütle üretmek için mikroalgleri kullanan umut verici bir çözüm olarak ortaya çıkmıştır. Bu çalışma, hayvan barınaklarında tipik olarak görülen yüksek amonyak konsantrasyonlarını azaltmak için yüksek NH₃ konsantrasyonlarının PBR'lerde alg büyümesi üzerindeki etkisini araştırmaktadır. Amonyum klorür (NH4Cl), NH₃ yerine kullanılmış ve nitrat içermeyen BBM ortamı hayvan barınaklarında tipik olarak görülen 50 ppm (78 mg L-¹ d-¹ NH4Cl) NH₃ konsantrasyonunu simüle etmiştir. Her deney 21 gün boyunca normal BBM (0,25 g L-¹ NaNO3) içeren kontrol tanklarında gerçekleştirilmiştir. Normalize edilmiş hücre konsantrasyonları NH3 içermeyen PBR tanklarında en yüksek (1.79±0.09, p<0.01), ancak kuru biyokütle 50 ppm NH3 yükleme oranına sahip tanklarda daha yüksekti (1.34±0.02, p<0.01). Hücre konsantrasyonları 50 ppm NH3 ile azalırken, kuru biyokütle NH3 içermeyen tanklara kıyasla artmıştır. Sonuçlar, mikroalglerin emisyonları azaltma, yetiştirme stratejilerini optimize etme ve sürdürülebilir biyoyakıt üretimini destekleme potansiyelini ortaya koymakta ve PBR'lerin çevresel etkileri azaltma ve atık kaynakları geri dönüştürmedeki rolünü vurgulamaktadır.

Ethical Statement

Derginize göndermiş olduğumuz “Impact of Elevated Ammonia Concentration on Scenedesmus dimorphus Growth in a Flat-Plate Photobioreactor” başlıklı makalemizde E􀆟k Kurul Onay belgesi gerekmemektedir.

References

  • Abdel-Baset, A., Matter, I. A., Ali, M. A. 2024. Enhanced scenedesmus obliquus cultivation in plastic-type flat panel photobioreactor for biodiesel production. Sustainability, 16(8), 3148. https://doi.org/10.3390/su16083148
  • Ambat, I., Bec, S., Peltomaa, E., Srivastava, V., Ojala, A., Sillanpää, M. 2019. A synergic approach for nutrient recovery and biodiesel production by the cultivation of microalga species in the fertilizer plant wastewater. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-55748-w
  • Ayre, J. M., Moheimani, N. R., Borowitzka, M. A. 2017. Growth of microalgae on undiluted anaerobic digestate of piggery effluent with high ammonium concentrations. Algal Research, 24, 218-226. https://doi.org/10.1016/j.algal.2017.03.023
  • Chaudhuri, S. and Pezzi, K. 2020. Effect of different growth media on algae’s ability for carbon dioxide biofixation. Journal of Emerging Investigators.
  • Dumont, É. 2018. Impact of the treatment of nh3 emissions from pig farms on greenhouse gas emissions. quantitative assessment from the literature data. New Biotechnology, 46, 31-37. https://doi.org/10.1016/j.nbt.2018.06.001
  • Gris, B., Morosinotto, T., Giacometti, G. M., Bertucco, A., Sforza, E. 2013. Cultivation of scenedesmus obliquus in photobioreactors: effects of light intensities and light–dark cycles on growth, productivity, and biochemical composition. Applied Biochemistry and Biotechnology, 172(5), 2377-2389. https://doi.org/10.1007/s12010-013-0679-z
  • Guo, L., Zhao, B., Jia, Y., He, F., Chen, W. 2022. Mitigation strategies of air pollutants for mechanical ventilated livestock and poultry housing—a review. Atmosphere, 13(3), 452. https://doi.org/10.3390/atmos13030452
  • James, S. C., Janardhanam, V., Hanson, D. T. 2013. Simulating ph effects in an algal‐growth hydrodynamics model1. Journal of Phycology, 49(3), 608-615. https://doi.org/10.1111/jpy.12071
  • Jiang, Y., Zhang, W., Wang, J., Chen, Y., Shen, S., Liu, T. 2013. Utilization of simulated flue gas for cultivation of Scenedesmus dimorphus. Bioresource technology, 128, 359-364. https://doi.org/10.1016/j.biortech.2012.10.119
  • Julianto, S., Hidayati, F., Kurniasari, A. M., Lail, A. H., Safitri, I., Antoh, A. E. 2024. Eco-Friendly Innovation: Hydra-Enhanced Miniature Photobioreactor for Air Pollution Reduction. Jurnal Penelitian Pendidikan IPA, 10(1), 92–99.
  • Kang, J., Wang, T., Xin, H., Wen, Z. 2014. A laboratory study of microalgae-based ammonia gas mitigation with potential application for improving air quality in animal production operations. Journal of the Air & Waste Management Association, 64(3), 330-339. https://doi.org/10.1080/10962247.2013.859185
  • Kim, H., Song, E., Lee, J., Gautam, R., Shin, S., Cho, A., ... & Kim, H. 2021. Dysregulation of murine immune functions on inhalational exposure to ammonia, dimethyl disulfide, 3-methylindole, or propionic acid. Toxicology and Industrial Health, 37(4), 219-228. https://doi.org/10.1177/0748233721996559
  • Koller, A., Löwe, H., Schmid, V., Mundt, S., Weuster‐Botz, D. 2016. Model‐supported phototrophic growth studies with scenedesmus obtusiusculus in a flat‐plate photobioreactor. Biotechnology and Bioengineering, 114(2), 308-320. https://doi.org/10.1002/bit.26072
  • Liu, J., Qiao, W., Song, Y., Peng, H., Zhao, Y. 2017. The growth and lipid productivity of chlorella pyrenoidosa enhanced by plant hormones under ammonium stress. Environmental Progress &Amp; Sustainable Energy, 36(4), 1187-1193. https://doi.org/10.1002/ep.12547
  • Pahl, S. L., Lewis, D. M., King, K. D., Chen, F. 2012. Heterotrophic growth and nutritional aspects of the diatom Cyclotella cryptica (Bacillariophyceae): effect of nitrogen source and concentration. Journal of applied phycology, 24, 301-307. https://doi.org/10.1007/s10811-011-9680-5
  • Palkar, J., Navale, M., Lali, A., Pandit, R. 2020. Rapid and de-centralized model for municipal effluent reclamation using microalgae. Blue-Green Systems, 2(1), 318-330. https://doi.org/10.2166/bgs.2020.013
  • Qian, J., Xu, C., Song, H., Zhou, W., Toda, T., Li, H., Liu, J. 2023. Enhancing algal growth and nutrient recovery from anaerobic digestion piggery effluent by an integrated pretreatment strategy of ammonia stripping and flocculation. Frontiers in Bioengineering and Biotechnology, 11, 1219103. https://doi.org/10.3389/fbioe.2023.1219103
  • Rana, Q. U. A., Latif, S., Perveen, S., Haq, A., Ali, S., Irfan, M., ... & Badshah, M. 2024. Utilization of microalgae for agricultural runoff remediation and sustainable biofuel production through an integrated biorefinery approach. Bioresources and Bioprocessing, 11(1), 8. https://doi.org/10.1186/s40643-023-00720-w
  • Roopnarain, A., Sym, S. D., Gray, V. M. 2014. Effect of nitrogenous resource on growth, biochemical composition and ultrastructure of isochrysis galbana (isochrysidales, haptophyta). Phycological Research, 63(1), 43-50. https://doi.org/10.1111/pre.12070
  • Scherholz, M. L., & Curtis, W. R. 2013. Achieving pH control in microalgal cultures through fed-batch addition of stoichiometrically-balanced growth media. BMC biotechnology, 13, 1-17. https://doi.org/10.1186/1472-6750-13-39
  • Shabana, E. F., Senousy, H. H., Khourshid, E. B. 2019. Pharmaceutical wastewater treatment using free and immobilized Cyanobacteria. Egyptian Journal of Phycology, 20(1), 123-154. https://doi.org/10.21608/egyjs.2019.116025
  • Singh, V. and Thakur, A. 2017. Ecological engineering of microalgae for enhanced energy production. The Scientific Temper, 8(1&2).
  • Sun, Z., Zhang, D., Yan, C., Cong, W., Lu, Y. 2014. Promotion of microalgal biomass production and efficient use of co2 from flue gas by monoethanolamine. Journal of Chemical Technology &Amp; Biotechnology, 90(4), 730-738. https://doi.org/10.1002/jctb.4367
  • Tang, S., Xie, J., Zhang, S., Wu, W., Yi, B., Zhang, H. 2019. Atmospheric ammonia affects myofiber development and lipid metabolism in growing pig muscle. Animals, 10(1), 2. https://doi.org/10.3390/ani10010002
  • Thành, N. T., Uemura, Y., Krishnan, V., Ismail, L. 2016. The effect of air injection rate and medium nitrogen concentration on cell biomass and lipid content of scenedesmus quadricauda in flat plate photobioreactor. Procedia Engineering, 148, 538-545. https://doi.org/10.1016/j.proeng.2016.06.508
  • Toledo-Cervantes, A., Morales, M., Novelo, E., Revah, S. 2013. Carbon dioxide fixation and lipid storage by Scenedesmus obtusiusculus. Bioresource Technology, 130, 652-658. https://doi.org/10.1016/j.biortech.2012.12.081
  • Tschofen, P., Azevedo, I. L., Muller, N. Z. 2019. Fine particulate matter damages and value added in the us economy. Proceedings of the National Academy of Sciences, 116(40), 19857-19862. https://doi.org/10.1073/pnas.1905030116
  • Uguz, S., & Sozcu, A. (2024). Pollutant Gases to Algal Animal Feed: Impacts of Poultry House Exhaust Air on Amino Acid Profile of Algae. Animals, 14(5), 754. https://doi.org/10.3390/ani14050754
  • Uguz, S., Anderson, G., Yang, X., Simsek, E., Osabutey, A. 2022. Cultivation of Scenedesmus dimorphus with air contaminants from a pig confinement building. Journal of Environmental Management, 314, 115129. https://doi.org/10.1016/j.jenvman.2022.115129
  • Uguz, S., Anderson, G., Yang, X., Simsek, E., Osabutey, A., Yilmaz, M., Min, K. 2024. Microalgae cultivation using ammonia and carbon dioxide concentrations typical of pig barns. Environmental Technology, 1-13. https://doi.org/10.1080/09593330.2024.2311082
  • Vasileva, I. A., Ivanova, J. G., & Gigova, L. G. 2020. Selection of nitrogen source affects the growth and metabolic enzyme activities of Chlorella vulgaris (Beijerinck) strain R-06/2 (Chlorophyta). Archives of Biological Sciences, 72(2), 291-300. https://doi.org/10.2298/ABS200219023V
  • Wei, F., Hu, X., Xu, B., Zhang, M. H., Li, S. Y., Sun, Q., … Lin, P. 2015. Ammonia concentration and relative humidity in poultry houses affect the immune response of broilers. Genetics and Molecular Research, 14(2), 3160-3169. http://dx.doi.org/10.4238/2015.April.10.27
  • Wrede, D., Hussainy, S. U., Rajendram, W., Gray, S. 2018. Investigation and modelling of high rate algal ponds utilising secondary effluent at Western Water, Bacchus Marsh Recycled Water Plant. Water Science and Technology, 78(1), 20-30.
  • Wu, P., Lu, Y., Lu, Y., Dai, J., Huang, T. 2020. Response of the photosynthetic activity and biomass of the phytoplankton community to increasing nutrients during cyanobacterial blooms in Meiliang Bay, Lake Taihu. Water Environment Research, 92(1), 138-148. https://doi.org/10.1002/wer.1220
  • Xi, M., Shen, D., Dai, P., Han, G., Li, C. 2022. Tbhq alleviates pyroptosis and necroptosis in chicken alveolar epithelial cells induced by fine particulate matter from broiler houses. Poultry Science, 101(2), 101593. https://doi.org/10.1016/j.psj.2021.101593
  • Yi, B., Chen, L., Sa, R., Zhong, R., Xing, H., Zhang, H. 2016. Transcriptome profile analysis of breast muscle tissues from high or low levels of atmospheric ammonia exposed broilers (Gallus gallus). PLoS One, 11(9), e0162631. https://doi.org/10.1371/journal.pone.0162631
  • Zhang, Q. H., Wu, X., Xue, S. Z., Wang, Z. H., Yan, C. H., Cong, W. 2012. Hydrodynamic characteristics and microalgae cultivation in a novel flat‐plate photobioreactor. Biotechnology Progress, 29(1), 127-134. https://doi.org/10.1002/btpr.1641
  • Zhang, S., Liu, H., Fan, J., Yu, H. 2014. Cultivation ofscenedesmus dimorphuswith domestic secondary effluent and energy evaluation for biodiesel production. Environmental Technology, 36(7), 929-936. https://doi.org/10.1080/09593330.2014.966769
  • Zhao, H., Chen, J., Liu, C., Shen, W., Cai, C., Ren, Y. 2015. Solubility of calcium carbonate in ammonium chloride aqueous solution at T=(298.15, 323.15, and 348.15) K. Journal of Chemical & Engineering Data, 60(11), 3201-3208.
  • Zhu, L., Shi, W., Dam, B. V., Kong, L., Yu, J., Qin, B. 2020. Algal accumulation decreases sediment nitrogen removal by uncoupling nitrification-denitrification in shallow eutrophic lakes. Environmental Science &Amp; Technology, 54(10), 6194-6201. https://doi.org/10.1021/acs.est.9b05549

Impact of Elevated Ammonia Concentration on Scenedesmus dimorphus Growth in a Flat-Plate Photobioreactor

Year 2025, Volume: 12 Issue: 2, 482 - 491, 16.04.2025
https://doi.org/10.30910/turkjans.1559035

Abstract

Animal feeding operations (AFOs) are significant sources of airborne pollutants, particularly ammonia (NH₃), which pose considerable environmental and health risks. In response to these challenges, photobioreactor (PBR) systems utilizing microalgae have emerged as a promising solution. These systems can effectively absorb and metabolize pollutants such as NH₃ and carbon dioxide (CO₂), thereby improving air quality while simultaneously producing valuable biomass. The present study specifically investigated the effects of elevated NH₃ concentrations on algal growth within PBRs. Ammonium chloride (NH₄Cl) was employed to simulate NH₃ concentrations typical of animal housing, specifically at a loading rate of 50 ppm (78 mg L⁻¹ d⁻¹ NH₄Cl). Over a 21-day experimental period, control tanks containing standard Bold's Basal Medium (BBM) were compared against those with NH₃ exposure. Results indicated that while normalized cell concentrations were highest in control tanks (1.79±0.09, p<0.01), the dry biomass was significantly greater in tanks subjected to the 50 ppm NH₃ loading rate (1.34±0.02, p<0.01). These findings suggest that microalgae possess a remarkable capacity to adapt to high NH₃ levels, highlighting their potential role in emission mitigation and sustainable biofuel production. The integration of PBR systems utilizing microalgae represents a viable strategy for addressing the environmental and health challenges posed by AFOs. By effectively utilizing pollutants such as NH₃, these systems not only enhance air quality but also contribute to the development of sustainable biofuels, thus supporting broader environmental sustainability goals.

References

  • Abdel-Baset, A., Matter, I. A., Ali, M. A. 2024. Enhanced scenedesmus obliquus cultivation in plastic-type flat panel photobioreactor for biodiesel production. Sustainability, 16(8), 3148. https://doi.org/10.3390/su16083148
  • Ambat, I., Bec, S., Peltomaa, E., Srivastava, V., Ojala, A., Sillanpää, M. 2019. A synergic approach for nutrient recovery and biodiesel production by the cultivation of microalga species in the fertilizer plant wastewater. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-55748-w
  • Ayre, J. M., Moheimani, N. R., Borowitzka, M. A. 2017. Growth of microalgae on undiluted anaerobic digestate of piggery effluent with high ammonium concentrations. Algal Research, 24, 218-226. https://doi.org/10.1016/j.algal.2017.03.023
  • Chaudhuri, S. and Pezzi, K. 2020. Effect of different growth media on algae’s ability for carbon dioxide biofixation. Journal of Emerging Investigators.
  • Dumont, É. 2018. Impact of the treatment of nh3 emissions from pig farms on greenhouse gas emissions. quantitative assessment from the literature data. New Biotechnology, 46, 31-37. https://doi.org/10.1016/j.nbt.2018.06.001
  • Gris, B., Morosinotto, T., Giacometti, G. M., Bertucco, A., Sforza, E. 2013. Cultivation of scenedesmus obliquus in photobioreactors: effects of light intensities and light–dark cycles on growth, productivity, and biochemical composition. Applied Biochemistry and Biotechnology, 172(5), 2377-2389. https://doi.org/10.1007/s12010-013-0679-z
  • Guo, L., Zhao, B., Jia, Y., He, F., Chen, W. 2022. Mitigation strategies of air pollutants for mechanical ventilated livestock and poultry housing—a review. Atmosphere, 13(3), 452. https://doi.org/10.3390/atmos13030452
  • James, S. C., Janardhanam, V., Hanson, D. T. 2013. Simulating ph effects in an algal‐growth hydrodynamics model1. Journal of Phycology, 49(3), 608-615. https://doi.org/10.1111/jpy.12071
  • Jiang, Y., Zhang, W., Wang, J., Chen, Y., Shen, S., Liu, T. 2013. Utilization of simulated flue gas for cultivation of Scenedesmus dimorphus. Bioresource technology, 128, 359-364. https://doi.org/10.1016/j.biortech.2012.10.119
  • Julianto, S., Hidayati, F., Kurniasari, A. M., Lail, A. H., Safitri, I., Antoh, A. E. 2024. Eco-Friendly Innovation: Hydra-Enhanced Miniature Photobioreactor for Air Pollution Reduction. Jurnal Penelitian Pendidikan IPA, 10(1), 92–99.
  • Kang, J., Wang, T., Xin, H., Wen, Z. 2014. A laboratory study of microalgae-based ammonia gas mitigation with potential application for improving air quality in animal production operations. Journal of the Air & Waste Management Association, 64(3), 330-339. https://doi.org/10.1080/10962247.2013.859185
  • Kim, H., Song, E., Lee, J., Gautam, R., Shin, S., Cho, A., ... & Kim, H. 2021. Dysregulation of murine immune functions on inhalational exposure to ammonia, dimethyl disulfide, 3-methylindole, or propionic acid. Toxicology and Industrial Health, 37(4), 219-228. https://doi.org/10.1177/0748233721996559
  • Koller, A., Löwe, H., Schmid, V., Mundt, S., Weuster‐Botz, D. 2016. Model‐supported phototrophic growth studies with scenedesmus obtusiusculus in a flat‐plate photobioreactor. Biotechnology and Bioengineering, 114(2), 308-320. https://doi.org/10.1002/bit.26072
  • Liu, J., Qiao, W., Song, Y., Peng, H., Zhao, Y. 2017. The growth and lipid productivity of chlorella pyrenoidosa enhanced by plant hormones under ammonium stress. Environmental Progress &Amp; Sustainable Energy, 36(4), 1187-1193. https://doi.org/10.1002/ep.12547
  • Pahl, S. L., Lewis, D. M., King, K. D., Chen, F. 2012. Heterotrophic growth and nutritional aspects of the diatom Cyclotella cryptica (Bacillariophyceae): effect of nitrogen source and concentration. Journal of applied phycology, 24, 301-307. https://doi.org/10.1007/s10811-011-9680-5
  • Palkar, J., Navale, M., Lali, A., Pandit, R. 2020. Rapid and de-centralized model for municipal effluent reclamation using microalgae. Blue-Green Systems, 2(1), 318-330. https://doi.org/10.2166/bgs.2020.013
  • Qian, J., Xu, C., Song, H., Zhou, W., Toda, T., Li, H., Liu, J. 2023. Enhancing algal growth and nutrient recovery from anaerobic digestion piggery effluent by an integrated pretreatment strategy of ammonia stripping and flocculation. Frontiers in Bioengineering and Biotechnology, 11, 1219103. https://doi.org/10.3389/fbioe.2023.1219103
  • Rana, Q. U. A., Latif, S., Perveen, S., Haq, A., Ali, S., Irfan, M., ... & Badshah, M. 2024. Utilization of microalgae for agricultural runoff remediation and sustainable biofuel production through an integrated biorefinery approach. Bioresources and Bioprocessing, 11(1), 8. https://doi.org/10.1186/s40643-023-00720-w
  • Roopnarain, A., Sym, S. D., Gray, V. M. 2014. Effect of nitrogenous resource on growth, biochemical composition and ultrastructure of isochrysis galbana (isochrysidales, haptophyta). Phycological Research, 63(1), 43-50. https://doi.org/10.1111/pre.12070
  • Scherholz, M. L., & Curtis, W. R. 2013. Achieving pH control in microalgal cultures through fed-batch addition of stoichiometrically-balanced growth media. BMC biotechnology, 13, 1-17. https://doi.org/10.1186/1472-6750-13-39
  • Shabana, E. F., Senousy, H. H., Khourshid, E. B. 2019. Pharmaceutical wastewater treatment using free and immobilized Cyanobacteria. Egyptian Journal of Phycology, 20(1), 123-154. https://doi.org/10.21608/egyjs.2019.116025
  • Singh, V. and Thakur, A. 2017. Ecological engineering of microalgae for enhanced energy production. The Scientific Temper, 8(1&2).
  • Sun, Z., Zhang, D., Yan, C., Cong, W., Lu, Y. 2014. Promotion of microalgal biomass production and efficient use of co2 from flue gas by monoethanolamine. Journal of Chemical Technology &Amp; Biotechnology, 90(4), 730-738. https://doi.org/10.1002/jctb.4367
  • Tang, S., Xie, J., Zhang, S., Wu, W., Yi, B., Zhang, H. 2019. Atmospheric ammonia affects myofiber development and lipid metabolism in growing pig muscle. Animals, 10(1), 2. https://doi.org/10.3390/ani10010002
  • Thành, N. T., Uemura, Y., Krishnan, V., Ismail, L. 2016. The effect of air injection rate and medium nitrogen concentration on cell biomass and lipid content of scenedesmus quadricauda in flat plate photobioreactor. Procedia Engineering, 148, 538-545. https://doi.org/10.1016/j.proeng.2016.06.508
  • Toledo-Cervantes, A., Morales, M., Novelo, E., Revah, S. 2013. Carbon dioxide fixation and lipid storage by Scenedesmus obtusiusculus. Bioresource Technology, 130, 652-658. https://doi.org/10.1016/j.biortech.2012.12.081
  • Tschofen, P., Azevedo, I. L., Muller, N. Z. 2019. Fine particulate matter damages and value added in the us economy. Proceedings of the National Academy of Sciences, 116(40), 19857-19862. https://doi.org/10.1073/pnas.1905030116
  • Uguz, S., & Sozcu, A. (2024). Pollutant Gases to Algal Animal Feed: Impacts of Poultry House Exhaust Air on Amino Acid Profile of Algae. Animals, 14(5), 754. https://doi.org/10.3390/ani14050754
  • Uguz, S., Anderson, G., Yang, X., Simsek, E., Osabutey, A. 2022. Cultivation of Scenedesmus dimorphus with air contaminants from a pig confinement building. Journal of Environmental Management, 314, 115129. https://doi.org/10.1016/j.jenvman.2022.115129
  • Uguz, S., Anderson, G., Yang, X., Simsek, E., Osabutey, A., Yilmaz, M., Min, K. 2024. Microalgae cultivation using ammonia and carbon dioxide concentrations typical of pig barns. Environmental Technology, 1-13. https://doi.org/10.1080/09593330.2024.2311082
  • Vasileva, I. A., Ivanova, J. G., & Gigova, L. G. 2020. Selection of nitrogen source affects the growth and metabolic enzyme activities of Chlorella vulgaris (Beijerinck) strain R-06/2 (Chlorophyta). Archives of Biological Sciences, 72(2), 291-300. https://doi.org/10.2298/ABS200219023V
  • Wei, F., Hu, X., Xu, B., Zhang, M. H., Li, S. Y., Sun, Q., … Lin, P. 2015. Ammonia concentration and relative humidity in poultry houses affect the immune response of broilers. Genetics and Molecular Research, 14(2), 3160-3169. http://dx.doi.org/10.4238/2015.April.10.27
  • Wrede, D., Hussainy, S. U., Rajendram, W., Gray, S. 2018. Investigation and modelling of high rate algal ponds utilising secondary effluent at Western Water, Bacchus Marsh Recycled Water Plant. Water Science and Technology, 78(1), 20-30.
  • Wu, P., Lu, Y., Lu, Y., Dai, J., Huang, T. 2020. Response of the photosynthetic activity and biomass of the phytoplankton community to increasing nutrients during cyanobacterial blooms in Meiliang Bay, Lake Taihu. Water Environment Research, 92(1), 138-148. https://doi.org/10.1002/wer.1220
  • Xi, M., Shen, D., Dai, P., Han, G., Li, C. 2022. Tbhq alleviates pyroptosis and necroptosis in chicken alveolar epithelial cells induced by fine particulate matter from broiler houses. Poultry Science, 101(2), 101593. https://doi.org/10.1016/j.psj.2021.101593
  • Yi, B., Chen, L., Sa, R., Zhong, R., Xing, H., Zhang, H. 2016. Transcriptome profile analysis of breast muscle tissues from high or low levels of atmospheric ammonia exposed broilers (Gallus gallus). PLoS One, 11(9), e0162631. https://doi.org/10.1371/journal.pone.0162631
  • Zhang, Q. H., Wu, X., Xue, S. Z., Wang, Z. H., Yan, C. H., Cong, W. 2012. Hydrodynamic characteristics and microalgae cultivation in a novel flat‐plate photobioreactor. Biotechnology Progress, 29(1), 127-134. https://doi.org/10.1002/btpr.1641
  • Zhang, S., Liu, H., Fan, J., Yu, H. 2014. Cultivation ofscenedesmus dimorphuswith domestic secondary effluent and energy evaluation for biodiesel production. Environmental Technology, 36(7), 929-936. https://doi.org/10.1080/09593330.2014.966769
  • Zhao, H., Chen, J., Liu, C., Shen, W., Cai, C., Ren, Y. 2015. Solubility of calcium carbonate in ammonium chloride aqueous solution at T=(298.15, 323.15, and 348.15) K. Journal of Chemical & Engineering Data, 60(11), 3201-3208.
  • Zhu, L., Shi, W., Dam, B. V., Kong, L., Yu, J., Qin, B. 2020. Algal accumulation decreases sediment nitrogen removal by uncoupling nitrification-denitrification in shallow eutrophic lakes. Environmental Science &Amp; Technology, 54(10), 6194-6201. https://doi.org/10.1021/acs.est.9b05549
There are 40 citations in total.

Details

Primary Language English
Subjects Biosystem
Journal Section Research Article
Authors

Seyit Uğuz 0000-0002-3994-8099

Publication Date April 16, 2025
Submission Date October 1, 2024
Acceptance Date April 10, 2025
Published in Issue Year 2025 Volume: 12 Issue: 2

Cite

APA Uğuz, S. (2025). Impact of Elevated Ammonia Concentration on Scenedesmus dimorphus Growth in a Flat-Plate Photobioreactor. Turkish Journal of Agricultural and Natural Sciences, 12(2), 482-491. https://doi.org/10.30910/turkjans.1559035