Research Article
BibTex RIS Cite
Year 2025, Volume: 12 Issue: 2, 516 - 530, 16.04.2025
https://doi.org/10.30910/turkjans.1655464

Abstract

Project Number

Burdur Mehmet Akif Ersoy University Scientific Research Projects Coordination. Project 0908-YL-23.

References

  • Al-Asmari, K.M., Abu Zeid, I.M., Altayb, H.N., Al-Attar, A.M., Alomar, M.Y. (2021).Alleviation of Malathion Toxicity Effect by Coffea arabica L. Oil and Olea europaea L. Oil on Lipid Profile: Physiological and In Silico Study. Plants, 10, 2314. https://doi.org/10.3390/plants10112314
  • Cerretani, L., Giuliani, A., Maggio, R.M., Bendini, A., Toschi, T.G. & Cichelli, A. (2010). Rapid FTIR determination of water, phenolics and antioxidant activity of olive oil. European Journal of Lipid Science and Technology, 112, 1150–1157. https://doi.org/10.1002/ejlt.201000356
  • Chandra, S., Khan, S., Avula, B., Lata, H., Yang, M.H., ElSohly, M.A., & Khan, I.A. (2014). Assessment of total phenolic and flavonoid content, antioxidant properties, and yield of aeroponically and conventionally grown leafy vegetables and fruit crops: A comparative study. Evidence-Based Complementary and Alternative Medicine, Article ID 253875. http://dx.doi.org/10.1155/2014/253875
  • Djurić, M., Maškovic, P., Murtić, S., Veljković, B., Ćurčić, S., Paunović, G., & Rakočević, L.B. (2014). Quantitation of ellagic acid in blackberries. Hemijska Industrija, 68(2), 241-245. https://doi.org/10.2298/HEMIND130306048D
  • Dueñas, M., Fernańdez, D., Hernańdez, T., Estrella, I., & Munõz, R. (2005). Bioactive phenolic compounds of cowpeas (Vigna sinensis L). Modifications by fermentation with natural microflora and with Lactobacillus plantarum ATCC 14917. Journal of the Science of Food and Agriculture, 85, 297–304. https://doi.org/10.1002/jsfa.1924
  • Duh, P.-D., & Yen, G.-C. (1995). Changes in antioxidant activity and components of methanolic extracts of peanut hulls irradiated with ultraviolet light. Food Chemistry, 54, 127-131. https://doi.org/10.1016/0308-8146(94)00148-X
  • Giampieri, F., Forbes-Hernandez, T.Y., Gasparrini, M., Alvarez-Suarez, J.M., Afrin, S., Bompadre, S., Quiles, J.L., Mezzetti, B., & Battino, M. (2015). Strawberry as a health promoter: an evidence based review. Food Function, 6, 1386-1398. https://doi.org/10.1039/C5FO00147A
  • Gomes, T., Caponio, F.ve Alloggio, V. (1999). Phenolic compounds of virgin olive oil: influence of paste preperation techniques. Food Chemistry, 64, 203-209. https://doi.org/10.1016/S0308-8146(98)00146-0
  • Gorai, T., Sakthivel, S., & Maitra, U. (). An inexpensive paper-based photoluminescent sensor for gallate derived green tea polyphenols. Chemistry an Asian Journal, 15(23), 4023-4027. https://doi.org/10.1002/asia.202001054
  • Guasch‐Ferré, M., Hu, F.B., Martínez-González, M.A., Fitó, M., Bulló, M., Estruch, R., Ros, E., Corella, D., Recondo, J., Gómez-Gracia, E., Fiol, M., Lapetra, J., Serra-Majem, L., Muñoz, M.A., Pintó, X., Lamuela-Raventós, R.M., Basora, J., Buil-Cosiales, P., Sorlí, J.V., Ruiz-Gutiérrez, V., Martínez, J.A. & Salas-Salvadó, J. (2014). Olive oil intake and risk of cardiovascular disease and mortality in the PREDIMED Study. BMC Medicine, 12, 78. http://www.biomedcentral.com/1741-7015/12/78
  • Haddad, B., Gristina, A.S., Mercati, F., Saadi, A.E., Aiter, N., Martorana, A., Sharaf, A.,& Carimi, F. (2020). Molecular analysis of the ocial algerian olive collection highlighted a hotspot of biodiversity in the central mediterranean basin. Genes, 11, 303; https://doi.org/10.3390/genes11030303
  • Hsieh, S.-C., Hsieh, W.-J., Chiang, A.-N., Su, N.-W., Yeh, Y.-T., & Liao, Y.-C. (2016). The methanol-ethyl acetate partitioned fraction from Chinese olive fruits inhibits cancer cell proliferation and tumor growth by promoting apoptosis through the suppression of the NF-κB signaling pathway. Food & Function, 7, 4797–4803. https://doi.org/10.1039/c6fo01202g
  • Ingólfsson, H.I., Koeppe II, R.E., & Andersen, O.S. (2011). Effects of green tea catechins on gramicidin channel function and inferred changes in bilayer properties. FEBS Letters, 585(19), 3101-3105. https://doi.org/10.1016/j.febslet.2011.08.040
  • Kamdem, J.P., Stefanello, S.T., Boligon, A.A., Wagner, C., Kade, I.O., Pereira, R.P., Preste, A.S., Roos, D.H., Waczuk, E.P., Appel, A.S., Athayde, M.L., Souza, D.O., & Rocha, J.B.T. (2012). In vitro antioxidant activity of stem bark of Trichilia catigua Adr. Juss. Acta Pharmaceutica, 62, 371–382. https://doi.org/10.2478/v10007-012-0026-x Khan, N., & Mukhtar, H. (2019). Tea polyphenols in promotion of human health. Nutrients, 11, 39. https://doi.org/10.3390/nu11010039
  • Khanal, R.C., Howard, L.R., Wilkes, S.E., Rogers, T.J., & Prior R.l. (2010). Urinary excretion of (Epi)catechins in rats fed different berries or berry products. Journal of Agricultural and Food Chemistry, 58, 11257–11264. https://doi.org/10.1021/jf102916m
  • Khoddami, A., Wilkes, M.A., & Roberts, T.H. (2013). Techniques for analysis of plant phenolic compounds. Molecules, 18, 2328-2375. https://doi.org/10.3390/molecules18022328
  • Kosanić, M., Ranković, B., & Stanojković, T. (2011). Antioxidant, antimicrobial, and anticancer activity of 3 umbilicaria species. Journal of Food Science, 77(1), 20-25. https://doi.org/10.1111/j.1750-3841.2011.02459.x
  • Loureiro, J., Rodriguez, E., Costa, A., Santos, C. (2007). Nuclear DNA content estimations in wild olive (Olea europaea L. ssp. europaea var. sylvestris Brot.) and Portuguese cultivars of O. europaea using flow cytometry. Genetic Resources and Crop Evolution, 54, 21–25. https://doi.org/10.1007/s10722-006-9115-3
  • Maesano, G., Chinnici, G., Falcone, G., Bellia, C., Raimondo, M., & D’Amico, M. (2021). Economic and environmental sustainability of olive production: A case study. Agronomy, 11, 1753. https://doi.org/10.3390/agronomy11091753
  • Makhafola, T.J., Elgorashi, E.E., McGaw, L.J., Verschaeve, L., & Eloff, J.N. (2016). The correlation between antimutagenic activity and total phenolic content of extracts of 31 plant species with high antioxidant activity. BMC Complementary and Alternative Medicine, 16, 490. http://dx.doi.org/10.1186/s12906-016-1437-x
  • Maraulo, G.E., Ferreira, C.S., Mazzobre, M.F. (2021). β-cyclodextrin enhanced ultrasound-assisted extraction as a green method to recover olive pomace bioactive compounds. Journal of Food Processing and Preservation, 45, e15194. https://doi.org/10.1111/jfpp.15194
  • Marcelino, G., Hiane, P.A., Freitas, K.C., Santana, L.F., Pott, A., Donadon, J.R., & Guimarães, R.C.A. (2019). E ects of olive oil and ıts minor components on cardiovascular diseases, ınflammation, and gut microbiota. Nutrients, 11, 1826; https://doi.org/10.3390/nu11081826
  • Mishra, K., Ojha, H., & Chaudhury, N.K. (2012). Estimation of antiradical properties of antioxidants using DPPH assay: A critical review and results. Food Chemistry, 130(4), 1036-1043. https://doi.org/10.1016/j.foodchem.2011.07.127
  • Mishra, S., & Vinayak, M. (2015). Role of ellagic acid in regulation of apoptosis by modulating novel and atypical PKC in lymphoma bearing mice. BMC Complementary and Alternative Medicine, 15, 281. https://doi.org/10.1186/s12906-015-0810-5
  • Neveu, V., Perez-Jimeńez, J., Vos, F., Crespy, V., du Chaffaut, L., Mennen, L., Knox, C., Eisner, R., Cruz, J., Wishart, D., & Scalbert, A. (2010). Phenol-Explorer: an online comprehensive database on polyphenol contents in foods. Database, Article ID bap024. https://doi.org/10.1093/database/bap024
  • Redford, K.E., Rognant, S., Jepps, T.A., & Abbott, G.W. (2021). KCNQ5 potassium channel activation underlies vasodilation by tea. Cellular Physiology and Biochemistry, 55(S3), 46-64. https://doi.org/10.33594/000000337
  • Rocha, J., Borges, N., & Pinho, O. (2020). Table olives and health: a review. Journal of Nutritional Science, 9(57), 1-16. https://doi.org/10.1017/jns.2020.50
  • Rohman, A., Riyanta, A.B., Lukitaningsih, E. & Riyanto, S. (2020). Olive (Olea europea) oil: physico-chemical characterization and antioxidant activities in vitro and in vivo. Food Research, 4 (3), 563 – 570. https://doi.org/10.26656/fr.2017.4(3).220
  • Rudrapal, M., Khairnar, S.J., Khan, J., Dukhyil, A.B., Ansari, M.A., Alomary, M.N., Alshabrmi, F.M., Palai, S., Deb, P.K., & Devi, R. (). Dietary polyphenols and their role in oxidative stress-ınduced human diseases: ınsights ınto protective effects, antioxidant potentials and mechanism(s) of action. Frontiers in Pharmacology, 13, 806470. https://doi.org/10.3389/fphar.2022.806470
  • Sánchez-Romero, C. (2021). Somatic embryogenesis in olive. Plants, 10, 433. https://doi.org/10.3390/plants10030433
  • Sharifi-Rad, M., Kumar, N.V.A., Zucca, P., Varoni, E.M., Dini, L., Panzarini, E., Rajkovic, J., Fokou, P.V.T., Azzini, E., Peluso, I., Mishra, A.P., Nigam, M., El Rayess, Y., El Beyrouthy, M., Polito, L., Iriti, M., Martins, N., Martorell, M., Docea, A.O., Setzer, W.N., Calina, D., Cho, W.C., & Sharifi-Rad, J. (2020). Frontiers in Physiology, 11, 694. https://doi.org/10.3389/fphys.2020.00694
  • Sheik, S. & Chandrashekar, K.R. (2014). Antimicrobial and antioxidant activities of Kingiodendron pinnatum (DC.) Harms and Humboldtia brunonis Wallich: endemic plants of the Western Ghats of India. Journal of the National Science Foundation of Sri Lanka, 42 (4), 307-313. http://dx.doi.org/10.4038/jnsfsr.v42i4.7729
  • Shim S.-M. (2011). Changes in profiling of phenolic compounds, antıoxidatıve effect and total phenolic content ın smilax China under in vitro physiological condition. Journal of Food Biochemistry, https://doi:10.1111/j.1745-4514.2011.00589.x
  • Singh, B.N., Shankar, S., & Srivastava, R.K. (). Green tea catechin, epigallocatechin-3-gallate (EGCG): Mechanisms, perspectives and clinical applications. Biochemical Pharmacology, 82(12), 1807-1821. https://doi.org/10.1016/j.bcp.2011.07.093
  • Singleton, V. L. ve Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 16(3), 144-158. https://doi.org/10.5344/ajev.1965.16.3.144
  • Solar, A., & Stampar, F. (2011). Characterisation of selected hazelnut cultivars: phenology, growing and yielding capacity, market quality and nutraceutical value. Journal of the Science of Food and Agriculture, 91, 1205–1212. https://doi.org/10.1002/jsfa.4300
  • Susanti, H. (2019). Total phenolic content and antioxidant activities of binahong (Anredera cordifolia.). Indonesian Journal of Medicine and Health, 10(2), 171-175. https://doi.org/10.20885/10.20885/JKKI.Vol10.Iss2.art9
  • Vázquez-Ruiz, Z., Toledo, E., Vitelli-Storelli, F., Goni, L., de la O, V., Bes-Rastrollo, M., & Martínez-González, M.Á. (2022). Effect of dietary phenolic compounds on ıncidence of cardiovascular disease in the SUN Project; 10 Years of Follow-Up. Antioxidants, 11, 783. https://doi.org/10.3390/antiox11040783
  • Yubero-Serrano, E.M., Lopez-Moreno, J., Gomez-Delgado, F., & Lopez-Miranda, J. (2019). Extra virgin olive oil: More than a healthy fat. European Journal of Clinical Nutrition, 72, 8–17. https://doi.org/10.1038/s41430-018-0304-x
  • Zuorro, A., Maffei, G., & Lavecchia, R. (2014). Effect of solvent type and extraction conditions on the recovery of phenolic compounds from artichoke waste. Chemical Engineering Transactions, 39. https://doi.org/10.3303/CET1439078

Determination of Phenolic Content and Antioxidant Capacity of Olives in Fethiye Region

Year 2025, Volume: 12 Issue: 2, 516 - 530, 16.04.2025
https://doi.org/10.30910/turkjans.1655464

Abstract

In this study, the phenolic compound content and antioxidant activity of olive fruits collected from olive groves in the Fethiye region of Türkiye from different geographical directions (North, South, East and West) were investigated. Olive samples were extracted using different solvents, and the total phenolic content of the extracts was determined by spectrophotometric method. Individual phenolic compound analysis HPLC and antioxidant activities were determined by free radical cleaning analyses. The results showed that olive fruit has a wide range of phenolic compounds, such as katehin, ellagik, epicathery, gallic acid, protocolic, siriyngik, caffeic, sinnamic, vanilik, p-cumaric, ferulic, rintirinic, and routine. In addition, significant differences have been determined between breeding zones in terms of phenolic composition and antioxidant capacity due to genetic and environmental factors. These results reveal that olives in the Fethiye region can be considered as important functional food components in terms of health and contribute to the regional economy.

Supporting Institution

I would like to thank the Burdur Mehmet Akif Ersoy University Scientific Research Projects Coordination Unit for financially supporting my thesis with Project 0908-YL-23.

Project Number

Burdur Mehmet Akif Ersoy University Scientific Research Projects Coordination. Project 0908-YL-23.

References

  • Al-Asmari, K.M., Abu Zeid, I.M., Altayb, H.N., Al-Attar, A.M., Alomar, M.Y. (2021).Alleviation of Malathion Toxicity Effect by Coffea arabica L. Oil and Olea europaea L. Oil on Lipid Profile: Physiological and In Silico Study. Plants, 10, 2314. https://doi.org/10.3390/plants10112314
  • Cerretani, L., Giuliani, A., Maggio, R.M., Bendini, A., Toschi, T.G. & Cichelli, A. (2010). Rapid FTIR determination of water, phenolics and antioxidant activity of olive oil. European Journal of Lipid Science and Technology, 112, 1150–1157. https://doi.org/10.1002/ejlt.201000356
  • Chandra, S., Khan, S., Avula, B., Lata, H., Yang, M.H., ElSohly, M.A., & Khan, I.A. (2014). Assessment of total phenolic and flavonoid content, antioxidant properties, and yield of aeroponically and conventionally grown leafy vegetables and fruit crops: A comparative study. Evidence-Based Complementary and Alternative Medicine, Article ID 253875. http://dx.doi.org/10.1155/2014/253875
  • Djurić, M., Maškovic, P., Murtić, S., Veljković, B., Ćurčić, S., Paunović, G., & Rakočević, L.B. (2014). Quantitation of ellagic acid in blackberries. Hemijska Industrija, 68(2), 241-245. https://doi.org/10.2298/HEMIND130306048D
  • Dueñas, M., Fernańdez, D., Hernańdez, T., Estrella, I., & Munõz, R. (2005). Bioactive phenolic compounds of cowpeas (Vigna sinensis L). Modifications by fermentation with natural microflora and with Lactobacillus plantarum ATCC 14917. Journal of the Science of Food and Agriculture, 85, 297–304. https://doi.org/10.1002/jsfa.1924
  • Duh, P.-D., & Yen, G.-C. (1995). Changes in antioxidant activity and components of methanolic extracts of peanut hulls irradiated with ultraviolet light. Food Chemistry, 54, 127-131. https://doi.org/10.1016/0308-8146(94)00148-X
  • Giampieri, F., Forbes-Hernandez, T.Y., Gasparrini, M., Alvarez-Suarez, J.M., Afrin, S., Bompadre, S., Quiles, J.L., Mezzetti, B., & Battino, M. (2015). Strawberry as a health promoter: an evidence based review. Food Function, 6, 1386-1398. https://doi.org/10.1039/C5FO00147A
  • Gomes, T., Caponio, F.ve Alloggio, V. (1999). Phenolic compounds of virgin olive oil: influence of paste preperation techniques. Food Chemistry, 64, 203-209. https://doi.org/10.1016/S0308-8146(98)00146-0
  • Gorai, T., Sakthivel, S., & Maitra, U. (). An inexpensive paper-based photoluminescent sensor for gallate derived green tea polyphenols. Chemistry an Asian Journal, 15(23), 4023-4027. https://doi.org/10.1002/asia.202001054
  • Guasch‐Ferré, M., Hu, F.B., Martínez-González, M.A., Fitó, M., Bulló, M., Estruch, R., Ros, E., Corella, D., Recondo, J., Gómez-Gracia, E., Fiol, M., Lapetra, J., Serra-Majem, L., Muñoz, M.A., Pintó, X., Lamuela-Raventós, R.M., Basora, J., Buil-Cosiales, P., Sorlí, J.V., Ruiz-Gutiérrez, V., Martínez, J.A. & Salas-Salvadó, J. (2014). Olive oil intake and risk of cardiovascular disease and mortality in the PREDIMED Study. BMC Medicine, 12, 78. http://www.biomedcentral.com/1741-7015/12/78
  • Haddad, B., Gristina, A.S., Mercati, F., Saadi, A.E., Aiter, N., Martorana, A., Sharaf, A.,& Carimi, F. (2020). Molecular analysis of the ocial algerian olive collection highlighted a hotspot of biodiversity in the central mediterranean basin. Genes, 11, 303; https://doi.org/10.3390/genes11030303
  • Hsieh, S.-C., Hsieh, W.-J., Chiang, A.-N., Su, N.-W., Yeh, Y.-T., & Liao, Y.-C. (2016). The methanol-ethyl acetate partitioned fraction from Chinese olive fruits inhibits cancer cell proliferation and tumor growth by promoting apoptosis through the suppression of the NF-κB signaling pathway. Food & Function, 7, 4797–4803. https://doi.org/10.1039/c6fo01202g
  • Ingólfsson, H.I., Koeppe II, R.E., & Andersen, O.S. (2011). Effects of green tea catechins on gramicidin channel function and inferred changes in bilayer properties. FEBS Letters, 585(19), 3101-3105. https://doi.org/10.1016/j.febslet.2011.08.040
  • Kamdem, J.P., Stefanello, S.T., Boligon, A.A., Wagner, C., Kade, I.O., Pereira, R.P., Preste, A.S., Roos, D.H., Waczuk, E.P., Appel, A.S., Athayde, M.L., Souza, D.O., & Rocha, J.B.T. (2012). In vitro antioxidant activity of stem bark of Trichilia catigua Adr. Juss. Acta Pharmaceutica, 62, 371–382. https://doi.org/10.2478/v10007-012-0026-x Khan, N., & Mukhtar, H. (2019). Tea polyphenols in promotion of human health. Nutrients, 11, 39. https://doi.org/10.3390/nu11010039
  • Khanal, R.C., Howard, L.R., Wilkes, S.E., Rogers, T.J., & Prior R.l. (2010). Urinary excretion of (Epi)catechins in rats fed different berries or berry products. Journal of Agricultural and Food Chemistry, 58, 11257–11264. https://doi.org/10.1021/jf102916m
  • Khoddami, A., Wilkes, M.A., & Roberts, T.H. (2013). Techniques for analysis of plant phenolic compounds. Molecules, 18, 2328-2375. https://doi.org/10.3390/molecules18022328
  • Kosanić, M., Ranković, B., & Stanojković, T. (2011). Antioxidant, antimicrobial, and anticancer activity of 3 umbilicaria species. Journal of Food Science, 77(1), 20-25. https://doi.org/10.1111/j.1750-3841.2011.02459.x
  • Loureiro, J., Rodriguez, E., Costa, A., Santos, C. (2007). Nuclear DNA content estimations in wild olive (Olea europaea L. ssp. europaea var. sylvestris Brot.) and Portuguese cultivars of O. europaea using flow cytometry. Genetic Resources and Crop Evolution, 54, 21–25. https://doi.org/10.1007/s10722-006-9115-3
  • Maesano, G., Chinnici, G., Falcone, G., Bellia, C., Raimondo, M., & D’Amico, M. (2021). Economic and environmental sustainability of olive production: A case study. Agronomy, 11, 1753. https://doi.org/10.3390/agronomy11091753
  • Makhafola, T.J., Elgorashi, E.E., McGaw, L.J., Verschaeve, L., & Eloff, J.N. (2016). The correlation between antimutagenic activity and total phenolic content of extracts of 31 plant species with high antioxidant activity. BMC Complementary and Alternative Medicine, 16, 490. http://dx.doi.org/10.1186/s12906-016-1437-x
  • Maraulo, G.E., Ferreira, C.S., Mazzobre, M.F. (2021). β-cyclodextrin enhanced ultrasound-assisted extraction as a green method to recover olive pomace bioactive compounds. Journal of Food Processing and Preservation, 45, e15194. https://doi.org/10.1111/jfpp.15194
  • Marcelino, G., Hiane, P.A., Freitas, K.C., Santana, L.F., Pott, A., Donadon, J.R., & Guimarães, R.C.A. (2019). E ects of olive oil and ıts minor components on cardiovascular diseases, ınflammation, and gut microbiota. Nutrients, 11, 1826; https://doi.org/10.3390/nu11081826
  • Mishra, K., Ojha, H., & Chaudhury, N.K. (2012). Estimation of antiradical properties of antioxidants using DPPH assay: A critical review and results. Food Chemistry, 130(4), 1036-1043. https://doi.org/10.1016/j.foodchem.2011.07.127
  • Mishra, S., & Vinayak, M. (2015). Role of ellagic acid in regulation of apoptosis by modulating novel and atypical PKC in lymphoma bearing mice. BMC Complementary and Alternative Medicine, 15, 281. https://doi.org/10.1186/s12906-015-0810-5
  • Neveu, V., Perez-Jimeńez, J., Vos, F., Crespy, V., du Chaffaut, L., Mennen, L., Knox, C., Eisner, R., Cruz, J., Wishart, D., & Scalbert, A. (2010). Phenol-Explorer: an online comprehensive database on polyphenol contents in foods. Database, Article ID bap024. https://doi.org/10.1093/database/bap024
  • Redford, K.E., Rognant, S., Jepps, T.A., & Abbott, G.W. (2021). KCNQ5 potassium channel activation underlies vasodilation by tea. Cellular Physiology and Biochemistry, 55(S3), 46-64. https://doi.org/10.33594/000000337
  • Rocha, J., Borges, N., & Pinho, O. (2020). Table olives and health: a review. Journal of Nutritional Science, 9(57), 1-16. https://doi.org/10.1017/jns.2020.50
  • Rohman, A., Riyanta, A.B., Lukitaningsih, E. & Riyanto, S. (2020). Olive (Olea europea) oil: physico-chemical characterization and antioxidant activities in vitro and in vivo. Food Research, 4 (3), 563 – 570. https://doi.org/10.26656/fr.2017.4(3).220
  • Rudrapal, M., Khairnar, S.J., Khan, J., Dukhyil, A.B., Ansari, M.A., Alomary, M.N., Alshabrmi, F.M., Palai, S., Deb, P.K., & Devi, R. (). Dietary polyphenols and their role in oxidative stress-ınduced human diseases: ınsights ınto protective effects, antioxidant potentials and mechanism(s) of action. Frontiers in Pharmacology, 13, 806470. https://doi.org/10.3389/fphar.2022.806470
  • Sánchez-Romero, C. (2021). Somatic embryogenesis in olive. Plants, 10, 433. https://doi.org/10.3390/plants10030433
  • Sharifi-Rad, M., Kumar, N.V.A., Zucca, P., Varoni, E.M., Dini, L., Panzarini, E., Rajkovic, J., Fokou, P.V.T., Azzini, E., Peluso, I., Mishra, A.P., Nigam, M., El Rayess, Y., El Beyrouthy, M., Polito, L., Iriti, M., Martins, N., Martorell, M., Docea, A.O., Setzer, W.N., Calina, D., Cho, W.C., & Sharifi-Rad, J. (2020). Frontiers in Physiology, 11, 694. https://doi.org/10.3389/fphys.2020.00694
  • Sheik, S. & Chandrashekar, K.R. (2014). Antimicrobial and antioxidant activities of Kingiodendron pinnatum (DC.) Harms and Humboldtia brunonis Wallich: endemic plants of the Western Ghats of India. Journal of the National Science Foundation of Sri Lanka, 42 (4), 307-313. http://dx.doi.org/10.4038/jnsfsr.v42i4.7729
  • Shim S.-M. (2011). Changes in profiling of phenolic compounds, antıoxidatıve effect and total phenolic content ın smilax China under in vitro physiological condition. Journal of Food Biochemistry, https://doi:10.1111/j.1745-4514.2011.00589.x
  • Singh, B.N., Shankar, S., & Srivastava, R.K. (). Green tea catechin, epigallocatechin-3-gallate (EGCG): Mechanisms, perspectives and clinical applications. Biochemical Pharmacology, 82(12), 1807-1821. https://doi.org/10.1016/j.bcp.2011.07.093
  • Singleton, V. L. ve Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 16(3), 144-158. https://doi.org/10.5344/ajev.1965.16.3.144
  • Solar, A., & Stampar, F. (2011). Characterisation of selected hazelnut cultivars: phenology, growing and yielding capacity, market quality and nutraceutical value. Journal of the Science of Food and Agriculture, 91, 1205–1212. https://doi.org/10.1002/jsfa.4300
  • Susanti, H. (2019). Total phenolic content and antioxidant activities of binahong (Anredera cordifolia.). Indonesian Journal of Medicine and Health, 10(2), 171-175. https://doi.org/10.20885/10.20885/JKKI.Vol10.Iss2.art9
  • Vázquez-Ruiz, Z., Toledo, E., Vitelli-Storelli, F., Goni, L., de la O, V., Bes-Rastrollo, M., & Martínez-González, M.Á. (2022). Effect of dietary phenolic compounds on ıncidence of cardiovascular disease in the SUN Project; 10 Years of Follow-Up. Antioxidants, 11, 783. https://doi.org/10.3390/antiox11040783
  • Yubero-Serrano, E.M., Lopez-Moreno, J., Gomez-Delgado, F., & Lopez-Miranda, J. (2019). Extra virgin olive oil: More than a healthy fat. European Journal of Clinical Nutrition, 72, 8–17. https://doi.org/10.1038/s41430-018-0304-x
  • Zuorro, A., Maffei, G., & Lavecchia, R. (2014). Effect of solvent type and extraction conditions on the recovery of phenolic compounds from artichoke waste. Chemical Engineering Transactions, 39. https://doi.org/10.3303/CET1439078
There are 40 citations in total.

Details

Primary Language English
Subjects Food Sciences (Other)
Journal Section Research Article
Authors

Ertan Şahinoğlu 0009-0003-4449-4006

Burcu Kabak 0000-0003-4217-1767

Erdal Kendüzler 0000-0002-9457-1503

Project Number Burdur Mehmet Akif Ersoy University Scientific Research Projects Coordination. Project 0908-YL-23.
Publication Date April 16, 2025
Submission Date March 11, 2025
Acceptance Date April 5, 2025
Published in Issue Year 2025 Volume: 12 Issue: 2

Cite

APA Şahinoğlu, E., Kabak, B., & Kendüzler, E. (2025). Determination of Phenolic Content and Antioxidant Capacity of Olives in Fethiye Region. Turkish Journal of Agricultural and Natural Sciences, 12(2), 516-530. https://doi.org/10.30910/turkjans.1655464