Research Article
BibTex RIS Cite

MEASURING AIR QUALITY IMPACTS OF GREEN AREAS AND ECOSYSTEM SERVICES (ESS) USING WEB-BASED I-TREE CANOPY TOOL: A CASE STUDY IN ISTANBUL

Year 2023, Volume: 7 Issue: 2, 253 - 266, 30.10.2023
https://doi.org/10.32328/turkjforsci.1341656

Abstract

In this study, it was aimed to evaluate the regulating ecosystem services for improving the air quality provided in the Kuzguncuk Neighborhood, which is located within the borders of Üsküdar district of Istanbul province. In this context, 5500 random points were identified within the boundaries of the research area by using the i-Tree canopy tool, which is a web-based tool. The land cover represented by each point is grouped into five classes: i) Tree/Shrub (tree and tall shrub vegetations), ii) Grass/herbaceous (areas covered with herbaceous vegetation, iii) Soil/Bare Ground (soil surface with little or no vegetation), iv) Impervious Surfaces (building, structures, asphalt, impervious roads, etc.) and v) Water (areas with streams or stagnant water). According to these classifications, the annual amount of carbon sequestered by the tree-shrub canopy in the Kuzguncuk neighborhood, the amount of CO₂, the amount of carbon they stored over their lifetimes, the amount of CO₂, and their economic contribution have been calculated. Additionally, the amount of significant air pollutants removed by this canopy, such as carbon monoxide (CO), nitrogen dioxide (NO2), ozone (O3), sulfur dioxide (SO2), and particulate matter PM2.5 and PM10, and the economic benefits of removing these pollutants have been determined. The results showed that trees sequestered 855.93 tons of CO2 annually and stored 21,495.71 tons of CO2 in the neighborhood, 46.05% of which is covered with canopy. However, it was calculated that 69.94 kg of CO, 381.39 kg of NO2, 3,798.45 kg of O3, 240.34 kg of SO2, 184.57 kg of PM2.5 and 1,272.34 kg of PM10 particulate matter were removed from the atmosphere in a year by the vegetation cover. It has been calculated that the economic contribution provided by this removal is $ 2,251 per year. This study reveals the ecological and economic importance of green spaces for ecosystem services studies in urban areas by considering a neighborhood scale in determining the ecosystem services provided by the canopy cover. It is thought that the numerical values obtained in this sample region will contribute to urban planning strategies in terms of green infrastructures for future studies.

References

  • Arslan, N. Ş. (2021). Parkların Hava Kirliğini Azaltıcı Etkisinin Çorum Örneğinde İncelenmesi. Turkish Journal of Forest Science, 5(2), 401-407.
  • Aslan, M. (2020). Topluluk Bahçelerinin Sosyal Etkileşim ve Sosyal Sermaye Kazanımına Etkileri: Kuzguncuk Bostanı Örneği, İstanbul. Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Şehir ve Bölge Planlama Ana Bilim Dalı Yüksek Lisans Tezi. 136 s.
  • Balvanera, P., Quijas, S., Karp, D. S., Ash, N., Bennett, E. M., Boumans, R., ... & Walz, A. (2017). Ecosystem services. The GEO handbook on biodiversity observation networks, M. Walters and R. J. Scholes, Eds., Cham: Springer International Publishing, 39-78. doi: 10.1007/978-3-319-27288-7_3.
  • Bloniarz, D. (2014). i-Tree Canopy Assessment of Springfield, Massachusetts, US Forest Service Todd Beals, University of Massachusetts Dominic Savoie, Regreen Springfield, Inc.
  • Bolund, P. & Hunhammar, S. (1999). Ecosystem services in urban areas. Ecological economics, 29(2), 293-301. doi: 10.1016/S0921-8009(99)00013-0.
  • Çakmak, M. H. & Can, M. (2020). Mamak ilçesinin (Ankara) hava kalitesinin iyileştirilmesine yönelik düzenleyici ekosistem hizmetlerinin hesaplanması. Bilge International Journal of Science and Technology Research, 4(2), 141-149.
  • Daily, G. C. (1997). Introduction: what are ecosystem services. Nature’s services: Societal dependence on natural ecosystems, 1(1).
  • Demir, S. & Demirel, Ö. (2018). Peyzaj planlamada peyzaj ekolojisi yaklaşımı. Türkiye Peyzaj Araştırmaları Dergisi, 1(1), 1-8.
  • Demirel, Ö., Pirselimoğlu, Z., Sarıkoç, E. & Özdemir, B. (2005). Kent Ormanlarının Sosyal ve Çevresel İşlevlerinin Kullanıma Dayalı Bozulma Süreci. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 36(2), 201-208.
  • Erkılıç, N. H., Özmen, E. D. & Taştan, H. (2021). Interpreting the factors in forming the sense of place: The case of Kuzguncuk Neighbourhood, Istanbul. ICONARP International Journal of Architecture and Planning, 9(1), 261-285.
  • Fan, Y., Ding, X., Hang, J. & Ge, J. (2020). Characteristics of urban air pollution in different regions of China between 2015 and 2019. Building and Environment, 180, 107048.
  • Fares, S., Conte, A., Alivernini, A., Chianucci, F., Grotti, M., Zappitelli, I., ... & Corona, P. (2020). Testing removal of carbon dioxide, ozone, and atmospheric particles by urban parks in Italy. Environmental Science & Technology, 54(23), 14910-14922.
  • Fenger, J. (1999). Urban air quality. Atmospheric environment, 33(29), 4877-4900.
  • Fu, B., Wang, S., Su, C. & Forsius, M. (2013). Linking ecosystem processes and ecosystem services. Current Opinion in Environmental Sustainability, 5(1), 4-10.
  • Ghorbankhani, Z., Zarrabi, M. M. & Ghorbankhani, M. (2023). The significance and benefits of green infrastructures using I-Tree canopy software with a sustainable approach. Environment, Development and Sustainability, 1-21. https://doi.org/10.1007/s10668-023-03226-9.
  • Ghose, M. K., Paul, R. & Banerjee, R. K. (2005). Assessment of the status of urban air pollution and its impact on human health in the city of Kolkata. Environmental Monitoring and Assessment, 108, 151-167.
  • He, K., Huo, H. & Zhang, Q. (2002). Urban air pollution in China: current status, characteristics, and progress. Annual review of energy and the environment, 27(1), 397-431.
  • Hepcan, Ç. C. & Hepcan, Ş. (2017). Ege Üniversitesi Lojmanlar Yerleşkesinin Hava Kalitesinin İyileştirilmesine Yönelik Düzenleyici Ekosistem Servislerinin Hesaplanması. Ege Üniversitesi Ziraat Fakültesi Dergisi, 54(1), 113-120.
  • Hirabayashi, S. (2014). i-Tree Canopy air pollutant removal and monetary value model descriptions. The Davey Institute, Syracuse, New York, 11.
  • Hwang, W. H. & Wiseman, P. E. (2020). Geospatial methods for tree canopy assessment: A case study of an urbanized college campus. Arboriculture & Urban Forestry, 46(1), 51-65.
  • Ilyas, S. Z., Khattak, A. I., Nasir, S. M., Qurashi, T. & Durrani, R. (2010). Air pollution assessment in urban areas and its impact on human health in the city of Quetta, Pakistan. Clean Technologies and Environmental Policy, 12, 291-299.
  • İstanbul Metropolitan Municipality, (2023). Mevzuat Hava Kalitesi İndeksi, Hava Kalitesi İzleme Projesi, https://havakalitesi.ibb.gov.tr/Icerik/mevzuat/hava-kalitesi-indeksi (accessed May 30, 2023).
  • Jacobs, S., Dendoncker, N., & Keune, H. (Eds.). (2013). Ecosystem services: global issues, local practices. Elsevier.
  • Jax, K., Barton, D. N., Chan, K. M., De Groot, R., Doyle, U., Eser, U., ... & Wichmann, S. (2013). Ecosystem services and ethics. Ecological economics, 93, 260-268.
  • Kim, J. & Kang, W. (2022). Assessing Green Roof Contributions to Tree Canopy Ecosystem Services and Connectivity in a Highly Urbanized Area. Land, 11(8), 1281.
  • King, K. L. & Locke, D. H. (2013). A comparison of three methods for measuring local urban tree canopy cover. Arboriculture & Urban Forestry, 39(2), 62-67.
  • Koçan, N. & Rüzgar, H. (2016). Kuzguncuk (Üsküdar) tarihi doku koruma ve yayalaştırma projesi. Uluslararası Kültürel ve Sosyal Araştırmalar Dergisi, 2(Special Issue 1), 125-134.
  • Korkut, A., Kiper, T. & Topal, T. Ü. (2017a). Kentsel peyzaj tasarımda ekolojik yaklaşımlar. Artium, 5(1), 14-26.
  • Korkut, A., Kiper, T. & Topal, T. Ü. (2017b). Kentsel Yeşil Alanlara Yönelik Ekolojik Farkındalık: Tekirdağ Örneği, 5th International Symposium on Innovative Technologies in Engineering and Science, Baku - Azerbaijan, 2017, pp. 1005–1014.
  • Krupnick, A. J. & Portney, P. R. (1991). Controlling urban air pollution: a benefit-cost assessment. Science, 252(5005), 522-528.
  • Kurdoğlu, O., Düzgüneş, E. & Kurdoğlu, B. Ç. (2011). Kent ormanlarının kavramsal hukuksal ve çevresel boyutuyla değerlendirilmesi. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 12(1): 72–85.
  • Leung, D. Y. (2015). Outdoor-indoor air pollution in urban environment: challenges and opportunity. Frontiers in Environmental Science, 2, 69.
  • Mage, D., Ozolins, G., Peterson, P., Webster, A., Orthofer, R., Vandeweerd, V. & Gwynne, M. (1996). Urban air pollution in megacities of the world. Atmospheric environment, 30(5), 681-686.
  • Mayer, H. (1999). Air pollution in cities. Atmospheric environment, 33(24-25), 4029-4037.
  • McKinney, M. L. (2002). Urbanization, biodiversity, and conservation: the impacts of urbanization on native species are poorly studied, but educating a highly urbanized human population about these impacts can greatly improve species conservation in all ecosystems. Bioscience, 52(10), 883-890.
  • Mills, G., Anjos, M., Brennan, M., Michael, J., McAleavey, C. & Ningal, T. (2015). The green ‘signature’of Irish cities: an examination of the ecosystem services provided by trees using iTree Canopy software. Irish Geography, 48, 62-77.
  • Morcalı, M. H. & Akan, D. S. (2017). Kahramanmaraş hava kirliliği kaynaklarının izlenmesi ve belirlenmesi. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 20(2), 105-115.
  • Nowak, D. J., Crane, D. E. & Stevens, J. C. (2006). Air pollution removal by urban trees and shrubs in the United States. Urban forestry & urban greening, 4(3-4), 115-123.
  • Olivatto, T. F. (2019). Using i-Tree Canopy to Estimate and Value Ecosystem Services of Air Pollutant Removal, Proceedings of the 3rd Brazilian Technology Symposium, Y. Iano, R. Arthur, O. Saotome, V. Vieira Estrela, and H. J. Loschi, Eds., Cham: Springer International Publishing, 2019, pp. 291–299. doi: 10.1007/978-3-319-93112-8_30.
  • Oltra, C., Sala, R., Boso, À. & Asensio, S. L. (2017). Public engagement on urban air pollution: an exploratory study of two interventions. Environmental monitoring and assessment, 189(6), 296.
  • Openstreetmap, (2023). [Online]. Available: https://www.openstreetmap.org/ (accessed 29.05.2023). Pace, R., Guidolotti, G., Baldacchini, C., Pallozzi, E., Grote, R., Nowak, D. J. & Calfapietra, C. (2021). Comparing i-Tree eco estimates of particulate matter deposition with leaf and canopy measurements in an urban mediterranean Holm Oak Forest. Environmental science & technology, 55(10), 6613-6622.
  • Paker, Ç. (2009). Boğaziçi köylerinden Kuzguncuk’ta kıyı yerleşimi üzerine bir inceleme, Maltepe Üniversitesi, Fen Bilimleri Enstitüsü, Mimarlık Ana Bilim Dalı Yüksek Lisans Tezi. 252 s.
  • Right to Clean Air Platform, (2018). https://www.temizhavahakki.org/ (accessed 30.05.2023).
  • Rowicki, E. & Bruhn, F. (2023). i-Tree Canopy-beräkning och historisk jämförelse för Jönköpings kommun.
  • Saksena, S. (2011). Public perceptions of urban air pollution risks. Risk, hazards & crisis in public policy, 2(1), 1-19.
  • Seinfeld, J. H. (1989). Urban air pollution: state of the science. Science, 243(4892), 745-752.
  • Selim, S., Dönmez, B. & Kilçik, A. (2023). Determination of the optimum number of sample points to classify land cover types and estimate the contribution of trees on ecosystem services using the I‐Tree Canopy tool. Integrated Environmental Assessment and Management, 19(3), 726-734.
  • Tonyaloğlu, E. E., Atak, B. K. & Yiğit, M. (2021). Düzenleyici ekosistem hizmetlerinden hava kalitesinin Efeler-Aydın örneğinde incelenmesi. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, 18(1), 119-125.
  • Topal, T. Ü. (2022a). The New Normal for the Sustainable Future of Cities: ‘Biophilic Cities,’ in Current Studies in Landscape Architecture, Z. P. Batman and E. E. Altay, Eds., Gece Kitaplığı, 2022, pp. 11–28.
  • Topal, T. Ü. (2022b). Nature-based Solutions for Biodiversity in Cities, in Sustainability, Conservation and Ecology in Spatial Planning and Design, M. Özyavuz, Ed., Peter Lang, 2022, pp. 211–228.
  • TUIK, (2023). Türkiye İstatistik Kurumu. https://www.tuik.gov.tr/ (accessed 10.05.2023).
  • USDA, (2022). i-Tree Tool, Forest Service U.S. Department of Agriculture, Feb. 11, 2022. https://www.fs.usda.gov/research/products/dataandtools/tools/i-tree (accessed 29.05.2023).
  • Üsküdar Municipality, (2023). Kuzguncuk Mahallesi. https://www.uskudar.bel.tr/tr/main/mahalleler/kuzguncuk-mahallesi/22) (accessed 02.05.2023).
  • Vafa-Arani, H., Jahani, S., Dashti, H., Heydari, J., Moazen, S. (2014). A system dynamics modeling for urban air pollution: A case study of Tehran, Iran. Transportation Research Part D: Transport and Environment, 31, 21-36.
  • Vahidi, H., Ramezani Mehrian, M., Jalayer, A., Esfahani Zadeh, M. & Ali Hosseini, A. (2023). Evaluating the Value of Vegetation Ecosystem Services in District 16 of Tehran Municipality using the i-Tree Model. Environmental Energy and Economic Research, 7(1), 1-17.
  • Vlachokostas, C., Achillas, C., Moussiopoulos, N. & Banias, G. (2011). Multicriteria methodological approach to manage urban air pollution. Atmospheric Environment, 45(25), 4160-4169.

YEŞİL ALANLARIN HAVA KALİTESİ ETKİLERİ VE EKOSİSTEM SERVİSLERİNİN (ES) WEB TABANLI I-TREE CANOPY ARACI KULLANARAK ÖLÇÜLMESI: İSTANBUL'DA BIR VAKA ÇALIŞMASI

Year 2023, Volume: 7 Issue: 2, 253 - 266, 30.10.2023
https://doi.org/10.32328/turkjforsci.1341656

Abstract

Bu çalışmada, İstanbul ili Üsküdar ilçesi sınırları içinde yer alan Kuzguncuk Mahallesinde sağlanan hava kalitesinin iyileştirilmesine yönelik düzenleyici ekosistem hizmetlerinin değerlendirilmesi amaçlanmıştır. Bu kapsamda web-tabanlı bir araç olan i-Tree canopy aracı kullanılarak araştırma alanı sınırları içerisinde 5500 adet rastgele nokta tanımlanmış ve her bir noktanın temsil ettiği arazi örtüsü i) Ağaç/Çalı (ağaç ve boylu çalı vejetasyonları), ii) Çim/otsu bitkiler (otsu bitki örtüsüyle kaplı alanlar, iii) Toprak/Çıplak Zemin (bitki örtüsünün az olduğu veya olmadığı toprak yüzeyleri), iv) Geçirimsiz Yüzeyler (bina, yapılar, asfalt, geçirimsiz yollar vb.) ve v) Su (akarsu veya durgun su bulunan alanlar) olmak üzere beş sınıf olarak gruplandırılmıştır. Bu sınıflara göre, Kuzguncuk mahallesindeki ağaç-çalı örtüsünce tutulan yıllık karbon miktarı, CO₂ miktarı ve yaşamları süresince depoladığı karbon miktarı, CO₂ miktarı ve bunların sağladığı ekonomik katkı hesaplanmıştır. Ayrıca bu örtünün karbon monoksit (CO), nitrojen dioksit (NO2), ozon (O3), kükürt dioksit (SO2) gazlarını ve ince partikül PM2,5 ve PM10 parçacıkları içeren önemli hava kirleticilerini uzaklaştırma miktarları ile bu kirleticilerin uzaklaştırılmasının sağladığı ekonomik katkı belirlenmiştir. Sonuçlar %46,05’i taç örtüsüyle kaplı olan mahallede ağaçların yıllık 855.93 ton CO2 tuttuğunu ve 21,495.71 ton CO2 depoladığını göstermiştir. Bununla birlikte, bitki taç örtüsünce bir yılda atmosferden 69.94 kg CO, 381.39 kg NO2, 3,798.45 kg O3, 240.34 kg SO2, 184.57 kg PM2.5 ve 1,272.34 kg PM10 parçacık madde uzaklaştırıldığı hesaplanmıştır. Bu uzaklaştırmanın sağladığı ekonomik katkının ise yıllık $2,251 olduğu hesaplanmıştır. Bu çalışma, taç örtüsü sayesinde sağlanan ekosistem hizmetlerini belirlemede bir mahalle ölçeğini ele alarak, yeşil alanların kentsel alanlardaki ekosistem hizmetleri çalışmaları için ekolojik ve ekonomik önemini ortaya koymaktadır. Bu örnek bölgede elde edilen sayısal değerlerin gelecek çalışmaları için yeşil altyapılar açısından kentsel planlama stratejilerine yönelik katkı sağlayacağı düşünülmektedir.

References

  • Arslan, N. Ş. (2021). Parkların Hava Kirliğini Azaltıcı Etkisinin Çorum Örneğinde İncelenmesi. Turkish Journal of Forest Science, 5(2), 401-407.
  • Aslan, M. (2020). Topluluk Bahçelerinin Sosyal Etkileşim ve Sosyal Sermaye Kazanımına Etkileri: Kuzguncuk Bostanı Örneği, İstanbul. Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Şehir ve Bölge Planlama Ana Bilim Dalı Yüksek Lisans Tezi. 136 s.
  • Balvanera, P., Quijas, S., Karp, D. S., Ash, N., Bennett, E. M., Boumans, R., ... & Walz, A. (2017). Ecosystem services. The GEO handbook on biodiversity observation networks, M. Walters and R. J. Scholes, Eds., Cham: Springer International Publishing, 39-78. doi: 10.1007/978-3-319-27288-7_3.
  • Bloniarz, D. (2014). i-Tree Canopy Assessment of Springfield, Massachusetts, US Forest Service Todd Beals, University of Massachusetts Dominic Savoie, Regreen Springfield, Inc.
  • Bolund, P. & Hunhammar, S. (1999). Ecosystem services in urban areas. Ecological economics, 29(2), 293-301. doi: 10.1016/S0921-8009(99)00013-0.
  • Çakmak, M. H. & Can, M. (2020). Mamak ilçesinin (Ankara) hava kalitesinin iyileştirilmesine yönelik düzenleyici ekosistem hizmetlerinin hesaplanması. Bilge International Journal of Science and Technology Research, 4(2), 141-149.
  • Daily, G. C. (1997). Introduction: what are ecosystem services. Nature’s services: Societal dependence on natural ecosystems, 1(1).
  • Demir, S. & Demirel, Ö. (2018). Peyzaj planlamada peyzaj ekolojisi yaklaşımı. Türkiye Peyzaj Araştırmaları Dergisi, 1(1), 1-8.
  • Demirel, Ö., Pirselimoğlu, Z., Sarıkoç, E. & Özdemir, B. (2005). Kent Ormanlarının Sosyal ve Çevresel İşlevlerinin Kullanıma Dayalı Bozulma Süreci. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 36(2), 201-208.
  • Erkılıç, N. H., Özmen, E. D. & Taştan, H. (2021). Interpreting the factors in forming the sense of place: The case of Kuzguncuk Neighbourhood, Istanbul. ICONARP International Journal of Architecture and Planning, 9(1), 261-285.
  • Fan, Y., Ding, X., Hang, J. & Ge, J. (2020). Characteristics of urban air pollution in different regions of China between 2015 and 2019. Building and Environment, 180, 107048.
  • Fares, S., Conte, A., Alivernini, A., Chianucci, F., Grotti, M., Zappitelli, I., ... & Corona, P. (2020). Testing removal of carbon dioxide, ozone, and atmospheric particles by urban parks in Italy. Environmental Science & Technology, 54(23), 14910-14922.
  • Fenger, J. (1999). Urban air quality. Atmospheric environment, 33(29), 4877-4900.
  • Fu, B., Wang, S., Su, C. & Forsius, M. (2013). Linking ecosystem processes and ecosystem services. Current Opinion in Environmental Sustainability, 5(1), 4-10.
  • Ghorbankhani, Z., Zarrabi, M. M. & Ghorbankhani, M. (2023). The significance and benefits of green infrastructures using I-Tree canopy software with a sustainable approach. Environment, Development and Sustainability, 1-21. https://doi.org/10.1007/s10668-023-03226-9.
  • Ghose, M. K., Paul, R. & Banerjee, R. K. (2005). Assessment of the status of urban air pollution and its impact on human health in the city of Kolkata. Environmental Monitoring and Assessment, 108, 151-167.
  • He, K., Huo, H. & Zhang, Q. (2002). Urban air pollution in China: current status, characteristics, and progress. Annual review of energy and the environment, 27(1), 397-431.
  • Hepcan, Ç. C. & Hepcan, Ş. (2017). Ege Üniversitesi Lojmanlar Yerleşkesinin Hava Kalitesinin İyileştirilmesine Yönelik Düzenleyici Ekosistem Servislerinin Hesaplanması. Ege Üniversitesi Ziraat Fakültesi Dergisi, 54(1), 113-120.
  • Hirabayashi, S. (2014). i-Tree Canopy air pollutant removal and monetary value model descriptions. The Davey Institute, Syracuse, New York, 11.
  • Hwang, W. H. & Wiseman, P. E. (2020). Geospatial methods for tree canopy assessment: A case study of an urbanized college campus. Arboriculture & Urban Forestry, 46(1), 51-65.
  • Ilyas, S. Z., Khattak, A. I., Nasir, S. M., Qurashi, T. & Durrani, R. (2010). Air pollution assessment in urban areas and its impact on human health in the city of Quetta, Pakistan. Clean Technologies and Environmental Policy, 12, 291-299.
  • İstanbul Metropolitan Municipality, (2023). Mevzuat Hava Kalitesi İndeksi, Hava Kalitesi İzleme Projesi, https://havakalitesi.ibb.gov.tr/Icerik/mevzuat/hava-kalitesi-indeksi (accessed May 30, 2023).
  • Jacobs, S., Dendoncker, N., & Keune, H. (Eds.). (2013). Ecosystem services: global issues, local practices. Elsevier.
  • Jax, K., Barton, D. N., Chan, K. M., De Groot, R., Doyle, U., Eser, U., ... & Wichmann, S. (2013). Ecosystem services and ethics. Ecological economics, 93, 260-268.
  • Kim, J. & Kang, W. (2022). Assessing Green Roof Contributions to Tree Canopy Ecosystem Services and Connectivity in a Highly Urbanized Area. Land, 11(8), 1281.
  • King, K. L. & Locke, D. H. (2013). A comparison of three methods for measuring local urban tree canopy cover. Arboriculture & Urban Forestry, 39(2), 62-67.
  • Koçan, N. & Rüzgar, H. (2016). Kuzguncuk (Üsküdar) tarihi doku koruma ve yayalaştırma projesi. Uluslararası Kültürel ve Sosyal Araştırmalar Dergisi, 2(Special Issue 1), 125-134.
  • Korkut, A., Kiper, T. & Topal, T. Ü. (2017a). Kentsel peyzaj tasarımda ekolojik yaklaşımlar. Artium, 5(1), 14-26.
  • Korkut, A., Kiper, T. & Topal, T. Ü. (2017b). Kentsel Yeşil Alanlara Yönelik Ekolojik Farkındalık: Tekirdağ Örneği, 5th International Symposium on Innovative Technologies in Engineering and Science, Baku - Azerbaijan, 2017, pp. 1005–1014.
  • Krupnick, A. J. & Portney, P. R. (1991). Controlling urban air pollution: a benefit-cost assessment. Science, 252(5005), 522-528.
  • Kurdoğlu, O., Düzgüneş, E. & Kurdoğlu, B. Ç. (2011). Kent ormanlarının kavramsal hukuksal ve çevresel boyutuyla değerlendirilmesi. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 12(1): 72–85.
  • Leung, D. Y. (2015). Outdoor-indoor air pollution in urban environment: challenges and opportunity. Frontiers in Environmental Science, 2, 69.
  • Mage, D., Ozolins, G., Peterson, P., Webster, A., Orthofer, R., Vandeweerd, V. & Gwynne, M. (1996). Urban air pollution in megacities of the world. Atmospheric environment, 30(5), 681-686.
  • Mayer, H. (1999). Air pollution in cities. Atmospheric environment, 33(24-25), 4029-4037.
  • McKinney, M. L. (2002). Urbanization, biodiversity, and conservation: the impacts of urbanization on native species are poorly studied, but educating a highly urbanized human population about these impacts can greatly improve species conservation in all ecosystems. Bioscience, 52(10), 883-890.
  • Mills, G., Anjos, M., Brennan, M., Michael, J., McAleavey, C. & Ningal, T. (2015). The green ‘signature’of Irish cities: an examination of the ecosystem services provided by trees using iTree Canopy software. Irish Geography, 48, 62-77.
  • Morcalı, M. H. & Akan, D. S. (2017). Kahramanmaraş hava kirliliği kaynaklarının izlenmesi ve belirlenmesi. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 20(2), 105-115.
  • Nowak, D. J., Crane, D. E. & Stevens, J. C. (2006). Air pollution removal by urban trees and shrubs in the United States. Urban forestry & urban greening, 4(3-4), 115-123.
  • Olivatto, T. F. (2019). Using i-Tree Canopy to Estimate and Value Ecosystem Services of Air Pollutant Removal, Proceedings of the 3rd Brazilian Technology Symposium, Y. Iano, R. Arthur, O. Saotome, V. Vieira Estrela, and H. J. Loschi, Eds., Cham: Springer International Publishing, 2019, pp. 291–299. doi: 10.1007/978-3-319-93112-8_30.
  • Oltra, C., Sala, R., Boso, À. & Asensio, S. L. (2017). Public engagement on urban air pollution: an exploratory study of two interventions. Environmental monitoring and assessment, 189(6), 296.
  • Openstreetmap, (2023). [Online]. Available: https://www.openstreetmap.org/ (accessed 29.05.2023). Pace, R., Guidolotti, G., Baldacchini, C., Pallozzi, E., Grote, R., Nowak, D. J. & Calfapietra, C. (2021). Comparing i-Tree eco estimates of particulate matter deposition with leaf and canopy measurements in an urban mediterranean Holm Oak Forest. Environmental science & technology, 55(10), 6613-6622.
  • Paker, Ç. (2009). Boğaziçi köylerinden Kuzguncuk’ta kıyı yerleşimi üzerine bir inceleme, Maltepe Üniversitesi, Fen Bilimleri Enstitüsü, Mimarlık Ana Bilim Dalı Yüksek Lisans Tezi. 252 s.
  • Right to Clean Air Platform, (2018). https://www.temizhavahakki.org/ (accessed 30.05.2023).
  • Rowicki, E. & Bruhn, F. (2023). i-Tree Canopy-beräkning och historisk jämförelse för Jönköpings kommun.
  • Saksena, S. (2011). Public perceptions of urban air pollution risks. Risk, hazards & crisis in public policy, 2(1), 1-19.
  • Seinfeld, J. H. (1989). Urban air pollution: state of the science. Science, 243(4892), 745-752.
  • Selim, S., Dönmez, B. & Kilçik, A. (2023). Determination of the optimum number of sample points to classify land cover types and estimate the contribution of trees on ecosystem services using the I‐Tree Canopy tool. Integrated Environmental Assessment and Management, 19(3), 726-734.
  • Tonyaloğlu, E. E., Atak, B. K. & Yiğit, M. (2021). Düzenleyici ekosistem hizmetlerinden hava kalitesinin Efeler-Aydın örneğinde incelenmesi. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, 18(1), 119-125.
  • Topal, T. Ü. (2022a). The New Normal for the Sustainable Future of Cities: ‘Biophilic Cities,’ in Current Studies in Landscape Architecture, Z. P. Batman and E. E. Altay, Eds., Gece Kitaplığı, 2022, pp. 11–28.
  • Topal, T. Ü. (2022b). Nature-based Solutions for Biodiversity in Cities, in Sustainability, Conservation and Ecology in Spatial Planning and Design, M. Özyavuz, Ed., Peter Lang, 2022, pp. 211–228.
  • TUIK, (2023). Türkiye İstatistik Kurumu. https://www.tuik.gov.tr/ (accessed 10.05.2023).
  • USDA, (2022). i-Tree Tool, Forest Service U.S. Department of Agriculture, Feb. 11, 2022. https://www.fs.usda.gov/research/products/dataandtools/tools/i-tree (accessed 29.05.2023).
  • Üsküdar Municipality, (2023). Kuzguncuk Mahallesi. https://www.uskudar.bel.tr/tr/main/mahalleler/kuzguncuk-mahallesi/22) (accessed 02.05.2023).
  • Vafa-Arani, H., Jahani, S., Dashti, H., Heydari, J., Moazen, S. (2014). A system dynamics modeling for urban air pollution: A case study of Tehran, Iran. Transportation Research Part D: Transport and Environment, 31, 21-36.
  • Vahidi, H., Ramezani Mehrian, M., Jalayer, A., Esfahani Zadeh, M. & Ali Hosseini, A. (2023). Evaluating the Value of Vegetation Ecosystem Services in District 16 of Tehran Municipality using the i-Tree Model. Environmental Energy and Economic Research, 7(1), 1-17.
  • Vlachokostas, C., Achillas, C., Moussiopoulos, N. & Banias, G. (2011). Multicriteria methodological approach to manage urban air pollution. Atmospheric Environment, 45(25), 4160-4169.
There are 56 citations in total.

Details

Primary Language English
Subjects Computer Technology in Landscape Architecture , Landscape Planning, Green Structures and Environments
Journal Section Research Article
Authors

Tuğba Üstün Topal 0000-0002-9687-927X

Öner Demirel 0000-0002-8102-5589

Publication Date October 30, 2023
Published in Issue Year 2023 Volume: 7 Issue: 2

Cite

APA Üstün Topal, T., & Demirel, Ö. (2023). MEASURING AIR QUALITY IMPACTS OF GREEN AREAS AND ECOSYSTEM SERVICES (ESS) USING WEB-BASED I-TREE CANOPY TOOL: A CASE STUDY IN ISTANBUL. Turkish Journal of Forest Science, 7(2), 253-266. https://doi.org/10.32328/turkjforsci.1341656
AMA Üstün Topal T, Demirel Ö. MEASURING AIR QUALITY IMPACTS OF GREEN AREAS AND ECOSYSTEM SERVICES (ESS) USING WEB-BASED I-TREE CANOPY TOOL: A CASE STUDY IN ISTANBUL. Turk J For Sci. October 2023;7(2):253-266. doi:10.32328/turkjforsci.1341656
Chicago Üstün Topal, Tuğba, and Öner Demirel. “MEASURING AIR QUALITY IMPACTS OF GREEN AREAS AND ECOSYSTEM SERVICES (ESS) USING WEB-BASED I-TREE CANOPY TOOL: A CASE STUDY IN ISTANBUL”. Turkish Journal of Forest Science 7, no. 2 (October 2023): 253-66. https://doi.org/10.32328/turkjforsci.1341656.
EndNote Üstün Topal T, Demirel Ö (October 1, 2023) MEASURING AIR QUALITY IMPACTS OF GREEN AREAS AND ECOSYSTEM SERVICES (ESS) USING WEB-BASED I-TREE CANOPY TOOL: A CASE STUDY IN ISTANBUL. Turkish Journal of Forest Science 7 2 253–266.
IEEE T. Üstün Topal and Ö. Demirel, “MEASURING AIR QUALITY IMPACTS OF GREEN AREAS AND ECOSYSTEM SERVICES (ESS) USING WEB-BASED I-TREE CANOPY TOOL: A CASE STUDY IN ISTANBUL”, Turk J For Sci, vol. 7, no. 2, pp. 253–266, 2023, doi: 10.32328/turkjforsci.1341656.
ISNAD Üstün Topal, Tuğba - Demirel, Öner. “MEASURING AIR QUALITY IMPACTS OF GREEN AREAS AND ECOSYSTEM SERVICES (ESS) USING WEB-BASED I-TREE CANOPY TOOL: A CASE STUDY IN ISTANBUL”. Turkish Journal of Forest Science 7/2 (October 2023), 253-266. https://doi.org/10.32328/turkjforsci.1341656.
JAMA Üstün Topal T, Demirel Ö. MEASURING AIR QUALITY IMPACTS OF GREEN AREAS AND ECOSYSTEM SERVICES (ESS) USING WEB-BASED I-TREE CANOPY TOOL: A CASE STUDY IN ISTANBUL. Turk J For Sci. 2023;7:253–266.
MLA Üstün Topal, Tuğba and Öner Demirel. “MEASURING AIR QUALITY IMPACTS OF GREEN AREAS AND ECOSYSTEM SERVICES (ESS) USING WEB-BASED I-TREE CANOPY TOOL: A CASE STUDY IN ISTANBUL”. Turkish Journal of Forest Science, vol. 7, no. 2, 2023, pp. 253-66, doi:10.32328/turkjforsci.1341656.
Vancouver Üstün Topal T, Demirel Ö. MEASURING AIR QUALITY IMPACTS OF GREEN AREAS AND ECOSYSTEM SERVICES (ESS) USING WEB-BASED I-TREE CANOPY TOOL: A CASE STUDY IN ISTANBUL. Turk J For Sci. 2023;7(2):253-66.