Recovery response of coenzyme Q10 to exercise-related physiological muscle damage, inflammation and oxidative stress: A systematic review
Year 2024,
, 48 - 60, 25.03.2024
Yavuz Yasul
,
Büşra Yılmaz
,
Muhammet Enes Yasul
,
Ömer Şenel
,
Vedat Çınar
Abstract
This systematic review aims to demonstrate that coenzyme Q10 (CoQ10) supplementation may be an effective molecule in improving exercise performance and recovering muscle damage, improving antioxidant capacity, and suppressing inflammatory processes. The study covers the literature in PubMed, Google Scholar, Web of Science and Scopus databases from 2011 to 2023. The final review was conducted on June 6. In the literature analysis, eight keywords (exercise, oxidative stress, CoQ10, muscle damage, inflammation, skeletal muscle, heart muscle, and performance) were employed to investigate the publications. The full texts of 362 full texts of articles were included in this study. These were analyzed according to the PRISMA reporting criteria. In the analysis, one study was conducted with experimental animals, two studies were conducted with male and female participants, and 12 studies were conducted with only male participants. Participants in twelve studies were well-trained. However, two studies were conducted with a sedentary group. In addition, CoQ10 supplementation was present in all studies. CoQ10 supplementation was between 5-60 mg/kg in 4 studies and 100 mg/kg and above in the remaining 10 studies. Antioxidant capacities and inflammation markers were among the parameters of most interest. There were fewer studies on skeletal and cardiac muscle damage and performance markers. CoQ10 supplementation during intense exercise elevates plasma CoQ10 and antioxidant levels while reducing inflammation markers. Additionally, it enhances contractile function in sarcomeres and cardiomyocytes. Nevertheless, additional studies are necessary to comprehensively as certain CoQ10 impact on athletic performance.
Ethical Statement
"Effects of Coenzyme Q10 Supplementation on Physiological Muscle Damage, Inflammation, Antioxidant Markers, and Performance", I declare that the’ Turkish Journal of Kinesiology ‘ has no responsibility for any ethical violations that may be encountered in the study, and I undertake that all responsibility belongs to the Responsible Author."
References
- Abbasi, A., Hauth, M., Walter, M., Hudemann, J., Wank, V., Niess, A. M., & Northoff, H. (2014). Exhaustive exercise modifies different gene expression profiles and pathways in LPS-stimulated and un-stimulated whole blood cultures. Brain Behav Immun, 39, 130-141.
- Allen, D. G., Lamb, G. D., & Westerblad, H. (2008). Skeletal muscle fatigue: cellular mechanisms. Physiol Rev, 88(1), 287-332.
- Andrade, F. H., Reid, M. B., & Westerblad, H. (2001). Contractile response to low peroxide concentrations: myofibrillar calcium sensitivity as a likely target for redox‐modulation of skeletal muscle function. FASEB J, 15(2), 309-311.
- Armanfar, M., Jafari, A., Dehghan, G. R., & Abdizadeh, L. (2015). Effect of coenzyme Q10 supplementation on exercise-induced response of inflammatory indicators and blood lactate in male runners. Med J Islam Repub Iran, 29, 202.
- Belardinelli, R., Muçaj, A., Lacalaprice, F., Solenghi, M., Seddaiu, G., Principi, F., Tiano, L., & Littarru, G. P. (2006). Coenzyme Q10 and exercise training in chronic heart failure. Eur Heart J, 27(22), 2675–2681.
- Bloomer, R. J., Canale, R. E., McCarthy, C. G., & Farney, T. M. (2012). Impact of oral ubiquinol on blood oxidative stress and exercise performance. Oxid Med Cel Longev, 2012, 465020.
- Bonakdar, R. A., & Guarneri, E. (2005). Coenzyme Q10. Am Fam Physician, 72(6), 1065-1070.
Borekova, M., Hojerova, J., Koprda, V., & Bauerova, K. (2008). Nourishing and health benefits of coenzyme Q10. Czech J Food Sci, 26(4), 229.
- Bouviere, J., Fortunato, R. S., Dupuy, C., Werneck-de-Castro, J. P., Carvalho, D. P., & Louzada, R. A. (2021). Exercise-stimulated ROS sensitive signaling pathways in skeletal muscle. Antioxidants, 10(4), 537.
- Braun, H., Koehler, K., Geyer, H., Kleinert, J., Mester, J., & Schänzer, W. (2009). Dietary supplement use among elite young German athletes. Int J Sport Nutr Exerc Metab, 19(1), 97-109.
- Braakhuis, A. J., & Hopkins, W. G. (2015). Impact of dietary antioxidants on sport performance: a review. J Sports Med, 45, 939-955.
- Broome, S. C., Braakhuis, A. J., Mitchell, C. J., & Merry, T. L. (2021). Mitochondria-targeted antioxidant supplementation improves 8 km time trial performance in middle-aged trained male cyclists. J Int Soc Sports Nutr, 18(1), 58.
- Burgoyne, J. R., Mongue-Din, H., Eaton, P., & Shah, A. M. (2012). Redox signaling in cardiac physiology and pathology. Circ Res, 111(8), 1091-1106.
- Díaz-Castro, J., Guisado, R., Kajarabille, N., García, C., Guisado, I. M., de Teresa, C., & Ochoa, J. J. (2012). Coenzyme Q 10 supplementation ameliorates inflammatory signaling and oxidative stress associated with strenuous exercise. Eur J Nutr, 51, 791-799.
- Diaz-Castro, J., Moreno-Fernandez, J., Chirosa, I., Chirosa, L. J., Guisado, R., & Ochoa, J. J. (2020). Beneficial effect of ubiquinol on hematological and inflammatory signaling during exercise. Nutrients, 12(2), 424.
- Di Meo, S., Iossa, S., & Venditti, P. (2017). Skeletal muscle insulin resistance: role of mitochondria and other ROS sources. J Endocrinol, 233(1), R15-R42.
- Di Meo, S., Napolitano, G., & Venditti, P. (2019). Mediators of physical activity protection against ROS-linked skeletal muscle damage. Int J Mol Sci, 20(12), 3024.
- Drobnic, F., Riera Riera, J., Artuch Iriberri, R., Jou, C., Codina, A., Montero, R., ... & Togni, S. (2020). Efficient muscle distribution reflects the positive influence of coenzyme Q10 Phytosome in healthy aging athletes after stressing exercise. J Food Nut Res, 3(4), 262-275.
- Drobnic, F., Lizarraga, M. A., Caballero-García, A., & Cordova, A. (2022). Coenzyme Q10 supplementation and its impact on exercise and sport performance in humans: a recovery or a performance-enhancing molecule? Nutrients, 14(9), 1811.
- Emami, A., Tofighi, A., Asri-Rezaei, S., & Bazargani-Gilani, B. (2018). The effect of short-term coenzyme Q10 supplementation and pre-cooling strategy on cardiac damage markers in elite swimmers. Br J Nutr, 119(4), 381-390.
- Frei, B., Kim, M. C., & Ames, B. N. (1990). Ubiquinol-10 is an effective lipid-soluble antioxidant at physiological concentrations. Proc Natl Acad Sci USA, 87(12), 4879-4883.
- Gillon, A., Nielsen, K., Steel, C., Cornwall, J., & Sheard, P. (2018). Exercise attenuates age-associated changes in motoneuron number, nucleocytoplasmic transport proteins and neuromuscular health. Geroscience, 40, 177-192.
- Gomez‐Cabrera, M. C., Borrás, C., Pallardó, F. V., Sastre, J., Ji, L. L., & Viña, J. (2005). Decreasing xanthine oxidase‐mediated oxidative stress prevents useful cellular adaptations to exercise in rats. J Physiol, 567(1), 113-120.
- Gomez-Cabrera, M. C., Salvador-Pascual, A., Cabo, H., Ferrando, B., & Viña, J. (2015). Redox modulation of mitochondriogenesis in exercise. Does antioxidant supplementation blunt the benefits of exercise training? Free Radic Biol Med, 86, 37-46.
- Goncalves, R. L., Quinlan, C. L., Perevoshchikova, I. V., Hey-Mogensen, M., & Brand, M. D. (2015). Sites of superoxide and hydrogen peroxide production by muscle mitochondria assessed ex vivo under conditions mimicking rest and exercise. J Biol Chem, 290(1), 209-227.
- Gutierrez-Mariscal, F. M., Arenas-de Larriva, A. P., Limia-Perez, L., Romero-Cabrera, J. L., Yubero-Serrano, E. M., & López-Miranda, J. (2020). Coenzyme Q10 supplementation for the reduction of oxidative stress: Clinical implications in the treatment of chronic diseases. Int J Mol Sci, 21(21), 7870.
- Gül, I., Gökbel, H., Belviranli, M., Okudan, N., Büyükbaş, S., & Başarali, K. (2011). Oxidative stress and antioxidant defense in plasma after repeated bouts of supramaximal exercise: the effect of coenzyme Q10. J Sports Med Phys Fitness, 51(2), 305-312.
- Ho, C. C., Chang, P. S., Chen, H. W., Lee, P. F., Chang, Y. C., Tseng, C. Y., & Lin, P. T. (2020). Ubiquinone supplementation with 300 mg on glycemic control and antioxidant status in athletes: A randomized, double-blinded, placebo-controlled trial. Antioxidants, 9(9), 823.
- James, A. M., Smith, R. A., & Murphy, M. P. (2004). Antioxidant and prooxidant properties of mitochondrial Coenzyme Q. Arch Biochem Biophys, 423(1), 47-56.
- Jäger, R., Purpura, M., & Kerksick, C. M. (2019). Eight weeks of a high dose of curcumin supplementation may attenuate performance decrements following muscle-damaging exercise. Nutrients, 11(7), 1692.
- Karlsson, J., Lin, L., Sylvén, C., & Jansson, E. (1996). Muscle ubiquinone in healthy physically active males. Mol Cell Biochem, 156, 169-172.
- Kemp, M., Donovan, J., Higham, H., & Hooper, J. (2004). Biochemical markers of myocardial injury. Br J Anaesth, 93(1), 63-73.
- Kokkinos, P. (2008). Physical activity and cardiovascular disease prevention: current recommendations. Angiology, 59 (2 Suppl), 26S-9S.
- Laaksonen, R., Fogelholm, M., Himberg, J. J., Laakso, J., & Salorinne, Y. (1995). Ubiquinone supplementation and exercise capacity in trained young and older men. Eur J Appl Physiol, 72(1-2), 95-100.
- Lamb, G. D., & Westerblad, H. (2011). Acute effects of reactive oxygen and nitrogen species on the contractile function of skeletal muscle. Physiol J, 589(9), 2119-2127.
- LaRoche, D. P., Melanson, E. L., Baumgartner, M. P., Bozzuto, B. M., Libby, V. M., & Marshall, B. N. (2018). Physiological determinants of walking effort in older adults: should they be targets for physical activity intervention? GeroScience, 40, 305-315.
- Lenaz, G., Fato, R., Di Bernardo, S., Jarreta, D., Costa, A., Genova, M. L., & Castelli, G. P. (1999). Localization and mobility of coenzyme Q in lipid bilayers and membranes. Biofactors, 9(2‐4), 87-93.
- Malm, C., Svensson, M., Ekblom, B., & Sjödin, B. (1997). Effects of ubiquinone‐10 supplementation and high intensity training on physical performance in humans. Acta Physiol Scand, 161(3), 379-384.
- Mason, S. A., Trewin, A. J., Parker, L., & Wadley, G. D. (2020). Antioxidant supplements and endurance exercise: Current evidence and mechanistic insights. Redox Biol, 35, 101471.
- Matheson, G. O., Klügl, M., Dvorak, J., Engebretsen, L., Meeuwisse, W. H., Schwellnus, M., ... & Weiler, R. (2011). Responsibility of sport and exercise medicine in preventing and managing chronic disease: applying our knowledge and skill is overdue. Br J Sports Med, 45(16), 1272-1282.
- McArdle, A., Pattwell, D., Vasilaki, A., Griffiths, R. D., & Jackson, M. J. (2001). Contractile activity-induced oxidative stress: cellular origin and adaptive responses. Am J Physiol Cell Physiol, 280(3), C621-C627.
- McKenna, M. J., Medved, I., Goodman, C. A., Brown, M. J., Bjorksten, A. R., Murphy, K. T., ... & Gong, X. (2006). N‐acetylcysteine attenuates the decline in muscle Na+, K+‐pump activity and delays fatigue during prolonged exercise in humans. Physiol J, 576(1), 279-288.
- Merry, T. L., & Ristow, M. (2016). Do antioxidant supplements interfere with skeletal muscle adaptation to exercise training? Physiol J, 594(18), 5135-5147.
- Norling, A. M., Gerstenecker, A. T., Buford, T. W., Khan, B., Oparil, S., & Lazar, R. M. (2020). The role of exercise in the reversal of IGF-1 deficiencies in microvascular rarefaction and hypertension. Geroscience, 42(1), 141-158.
- Nordberg, J., & Arnér, E. S. (2001). Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med, 31(11), 1287-1312.
- Ovchinnikov, A. N., Deryugina, A. V., & Paoli, A. (2022). Royal jelly plus coenzyme q10 supplementation enhances high-intensity interval exercise performance via alterations in cardiac autonomic regulation and blood lactate concentration in runners. Front Nutr, 9, 893515.
- Okudan, N., Belviranli, M., & Torlak, S. (2017). Coenzyme Q10 does not prevent exercise-induced muscle damage and oxidative stress in sedentary men. J Sports Med Phys Fitness, 58(6), 889-894.
- Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., ... & Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, 372, n71.
- Pala, R., Orhan, C., Tuzcu, M., Sahin, N., Ali, S., Cinar, V., ... & Sahin, K. (2016). Coenzyme Q10 supplementation modulates NFκB and Nrf2 pathways in exercise training. J Sports Sci Med, 15(1), 196.
- Paredes-Fuentes, A. J., Montero, R., Codina, A., Jou, C., Fernández, G., Maynou, J., ... & Artuch, R. (2020). Coenzyme Q10 treatment monitoring in different human biological samples. Antioxidants, 9(10), 979.
- Patwell, D. M., McArdle, A., Morgan, J. E., Patridge, T. A., & Jackson, M. J. (2004). Release of reactive oxygen and nitrogen species from contracting skeletal muscle cells. Free Radic Biol Med, 37(7), 1064-1072.
- Petróczi, A., Naughton, D. P., Pearce, G., Bailey, R., Bloodworth, A., & McNamee, M. (2008). Nutritional supplement use by elite young UK athletes: fallacies of advice regarding efficacy. J Int Soc Sports Nutr, 5(1), 22.
- Petrofsky, J. S., Laymon, M. D., & Al-Nakhli, H. (2011). The Effect of Vitamin D and E and Coenzyme Q-10 on Endothelial Function in a Young Population. Anatom Physiol, 2, 101.
- Powers, S. K., & Jackson, M. J. (2008). Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev, 88(4), 1243-1276.
- Powers, S. K., Hudson, M. B., Nelson, W. B., Talbert, E. E., Min, K., Szeto, H. H., ... & Smuder, A. J. (2011). Mitochondrial-targeted antioxidants protect against mechanical ventilation-induced diaphragm weakness. Crit Care Med, 39(7), 1749.
- Ross, M. F., Kelso, G. F., Blaikie, F. H., James, A. M., Cocheme, H. M., Filipovska, A., ... & Murphy, M. P. (2005). Lipophilic triphenylphosphonium cations as tools in mitochondrial bioenergetics and free radical biology. Biochem, 70, 222-230.
- Sarmiento, A., Diaz-Castro, J., Pulido-Moran, M., Kajarabille, N., Guisado, R., & J Ochoa, J. (2016). Coenzyme Q10 supplementation and exercise in healthy humans: A systematic review. Curr Drug Metab, 17(4), 345-358.
- Shave, R., Dawson, E., Whyte, G., George, K., Gaze, D., & Collinson, P. (2004). Altered cardiac function and minimal cardiac damage during prolonged exercise. Med Sci Sports Exerc, 36(7), 1098–1103.
- Simon, H. B. (2015). Exercise and health: dose and response, considering both ends of the curve. Am J Med, 128(11), 1171-1177.
- Suzuki, Y., Nagato, S., Sakuraba, K., Morio, K., & Sawaki, K. (2020). Short-term ubiquinol-10 supplementation alleviates tissue damage in muscle and fatigue caused by strenuous exercise in male distance runners. Int J Vitam Nutr Res, 91(3-4), 261–270..
- Tauler, P., Ferrer, M. D., Romaguera, D., Sureda, A., Aguilo, A., Tur, J., & Pons, A. (2008). Antioxidant response and oxidative damage induced by a swimming session: influence of gender. J Sports Sci, 26(12), 1303-1311.
- Vincent, H. K., Powers, S. K., Stewart, D. J., Demirel, H. A., Shanely, R. A., & Naito, H. (2000). Short-term exercise training improves diaphragm antioxidant capacity and endurance. Eur J Appl Physiol, 81, 67-74.
- Zheng, A., & Moritani, T. (2008). Influence of CoQ10 on autonomic nervous activity and energy metabolism during exercise in healthy subjects. J Nutr Sci Vitaminol 54(4), 286-290.
- Williamson, J., Hughes, C. M., Cobley, J. N., & Davison, G. W. (2020). The mitochondria-targeted antioxidant MitoQ, attenuates exercise-induced mitochondrial DNA damage. Redox Biol, 36, 101673.
- Yasul, Y., Akbulut, T., & Yasul, M. E. (2023). Physiological changes in exercise-induced modeled angiogenesis mechanism: cardiac muscle and skeletal muscle review. Gümüşhane Unv J Health Sci, 12(1), 334-340.
- Yasul, Y. (2021). Effect of coenzyme Q10 supplementation on tumstatin expressions and lipid profile in serum, cardiac muscle and skeletal muscles in rats subjected to different exercises. Doctoral Thesis, İnönü Unv Health Sci Institute, Malatya, Türkiye.
- Zhou, S., Zhang, Y., Davie, A., & Marshall-Gradisnik, S. (2005). Muscle and plasma coenzyme Q^ sub 10^ concentration, aerobic power and exercise economy of healthy men in response to four weeks of supplementation. J Sports Med Phy Fitness, 45(3), 337-346.
Year 2024,
, 48 - 60, 25.03.2024
Yavuz Yasul
,
Büşra Yılmaz
,
Muhammet Enes Yasul
,
Ömer Şenel
,
Vedat Çınar
References
- Abbasi, A., Hauth, M., Walter, M., Hudemann, J., Wank, V., Niess, A. M., & Northoff, H. (2014). Exhaustive exercise modifies different gene expression profiles and pathways in LPS-stimulated and un-stimulated whole blood cultures. Brain Behav Immun, 39, 130-141.
- Allen, D. G., Lamb, G. D., & Westerblad, H. (2008). Skeletal muscle fatigue: cellular mechanisms. Physiol Rev, 88(1), 287-332.
- Andrade, F. H., Reid, M. B., & Westerblad, H. (2001). Contractile response to low peroxide concentrations: myofibrillar calcium sensitivity as a likely target for redox‐modulation of skeletal muscle function. FASEB J, 15(2), 309-311.
- Armanfar, M., Jafari, A., Dehghan, G. R., & Abdizadeh, L. (2015). Effect of coenzyme Q10 supplementation on exercise-induced response of inflammatory indicators and blood lactate in male runners. Med J Islam Repub Iran, 29, 202.
- Belardinelli, R., Muçaj, A., Lacalaprice, F., Solenghi, M., Seddaiu, G., Principi, F., Tiano, L., & Littarru, G. P. (2006). Coenzyme Q10 and exercise training in chronic heart failure. Eur Heart J, 27(22), 2675–2681.
- Bloomer, R. J., Canale, R. E., McCarthy, C. G., & Farney, T. M. (2012). Impact of oral ubiquinol on blood oxidative stress and exercise performance. Oxid Med Cel Longev, 2012, 465020.
- Bonakdar, R. A., & Guarneri, E. (2005). Coenzyme Q10. Am Fam Physician, 72(6), 1065-1070.
Borekova, M., Hojerova, J., Koprda, V., & Bauerova, K. (2008). Nourishing and health benefits of coenzyme Q10. Czech J Food Sci, 26(4), 229.
- Bouviere, J., Fortunato, R. S., Dupuy, C., Werneck-de-Castro, J. P., Carvalho, D. P., & Louzada, R. A. (2021). Exercise-stimulated ROS sensitive signaling pathways in skeletal muscle. Antioxidants, 10(4), 537.
- Braun, H., Koehler, K., Geyer, H., Kleinert, J., Mester, J., & Schänzer, W. (2009). Dietary supplement use among elite young German athletes. Int J Sport Nutr Exerc Metab, 19(1), 97-109.
- Braakhuis, A. J., & Hopkins, W. G. (2015). Impact of dietary antioxidants on sport performance: a review. J Sports Med, 45, 939-955.
- Broome, S. C., Braakhuis, A. J., Mitchell, C. J., & Merry, T. L. (2021). Mitochondria-targeted antioxidant supplementation improves 8 km time trial performance in middle-aged trained male cyclists. J Int Soc Sports Nutr, 18(1), 58.
- Burgoyne, J. R., Mongue-Din, H., Eaton, P., & Shah, A. M. (2012). Redox signaling in cardiac physiology and pathology. Circ Res, 111(8), 1091-1106.
- Díaz-Castro, J., Guisado, R., Kajarabille, N., García, C., Guisado, I. M., de Teresa, C., & Ochoa, J. J. (2012). Coenzyme Q 10 supplementation ameliorates inflammatory signaling and oxidative stress associated with strenuous exercise. Eur J Nutr, 51, 791-799.
- Diaz-Castro, J., Moreno-Fernandez, J., Chirosa, I., Chirosa, L. J., Guisado, R., & Ochoa, J. J. (2020). Beneficial effect of ubiquinol on hematological and inflammatory signaling during exercise. Nutrients, 12(2), 424.
- Di Meo, S., Iossa, S., & Venditti, P. (2017). Skeletal muscle insulin resistance: role of mitochondria and other ROS sources. J Endocrinol, 233(1), R15-R42.
- Di Meo, S., Napolitano, G., & Venditti, P. (2019). Mediators of physical activity protection against ROS-linked skeletal muscle damage. Int J Mol Sci, 20(12), 3024.
- Drobnic, F., Riera Riera, J., Artuch Iriberri, R., Jou, C., Codina, A., Montero, R., ... & Togni, S. (2020). Efficient muscle distribution reflects the positive influence of coenzyme Q10 Phytosome in healthy aging athletes after stressing exercise. J Food Nut Res, 3(4), 262-275.
- Drobnic, F., Lizarraga, M. A., Caballero-García, A., & Cordova, A. (2022). Coenzyme Q10 supplementation and its impact on exercise and sport performance in humans: a recovery or a performance-enhancing molecule? Nutrients, 14(9), 1811.
- Emami, A., Tofighi, A., Asri-Rezaei, S., & Bazargani-Gilani, B. (2018). The effect of short-term coenzyme Q10 supplementation and pre-cooling strategy on cardiac damage markers in elite swimmers. Br J Nutr, 119(4), 381-390.
- Frei, B., Kim, M. C., & Ames, B. N. (1990). Ubiquinol-10 is an effective lipid-soluble antioxidant at physiological concentrations. Proc Natl Acad Sci USA, 87(12), 4879-4883.
- Gillon, A., Nielsen, K., Steel, C., Cornwall, J., & Sheard, P. (2018). Exercise attenuates age-associated changes in motoneuron number, nucleocytoplasmic transport proteins and neuromuscular health. Geroscience, 40, 177-192.
- Gomez‐Cabrera, M. C., Borrás, C., Pallardó, F. V., Sastre, J., Ji, L. L., & Viña, J. (2005). Decreasing xanthine oxidase‐mediated oxidative stress prevents useful cellular adaptations to exercise in rats. J Physiol, 567(1), 113-120.
- Gomez-Cabrera, M. C., Salvador-Pascual, A., Cabo, H., Ferrando, B., & Viña, J. (2015). Redox modulation of mitochondriogenesis in exercise. Does antioxidant supplementation blunt the benefits of exercise training? Free Radic Biol Med, 86, 37-46.
- Goncalves, R. L., Quinlan, C. L., Perevoshchikova, I. V., Hey-Mogensen, M., & Brand, M. D. (2015). Sites of superoxide and hydrogen peroxide production by muscle mitochondria assessed ex vivo under conditions mimicking rest and exercise. J Biol Chem, 290(1), 209-227.
- Gutierrez-Mariscal, F. M., Arenas-de Larriva, A. P., Limia-Perez, L., Romero-Cabrera, J. L., Yubero-Serrano, E. M., & López-Miranda, J. (2020). Coenzyme Q10 supplementation for the reduction of oxidative stress: Clinical implications in the treatment of chronic diseases. Int J Mol Sci, 21(21), 7870.
- Gül, I., Gökbel, H., Belviranli, M., Okudan, N., Büyükbaş, S., & Başarali, K. (2011). Oxidative stress and antioxidant defense in plasma after repeated bouts of supramaximal exercise: the effect of coenzyme Q10. J Sports Med Phys Fitness, 51(2), 305-312.
- Ho, C. C., Chang, P. S., Chen, H. W., Lee, P. F., Chang, Y. C., Tseng, C. Y., & Lin, P. T. (2020). Ubiquinone supplementation with 300 mg on glycemic control and antioxidant status in athletes: A randomized, double-blinded, placebo-controlled trial. Antioxidants, 9(9), 823.
- James, A. M., Smith, R. A., & Murphy, M. P. (2004). Antioxidant and prooxidant properties of mitochondrial Coenzyme Q. Arch Biochem Biophys, 423(1), 47-56.
- Jäger, R., Purpura, M., & Kerksick, C. M. (2019). Eight weeks of a high dose of curcumin supplementation may attenuate performance decrements following muscle-damaging exercise. Nutrients, 11(7), 1692.
- Karlsson, J., Lin, L., Sylvén, C., & Jansson, E. (1996). Muscle ubiquinone in healthy physically active males. Mol Cell Biochem, 156, 169-172.
- Kemp, M., Donovan, J., Higham, H., & Hooper, J. (2004). Biochemical markers of myocardial injury. Br J Anaesth, 93(1), 63-73.
- Kokkinos, P. (2008). Physical activity and cardiovascular disease prevention: current recommendations. Angiology, 59 (2 Suppl), 26S-9S.
- Laaksonen, R., Fogelholm, M., Himberg, J. J., Laakso, J., & Salorinne, Y. (1995). Ubiquinone supplementation and exercise capacity in trained young and older men. Eur J Appl Physiol, 72(1-2), 95-100.
- Lamb, G. D., & Westerblad, H. (2011). Acute effects of reactive oxygen and nitrogen species on the contractile function of skeletal muscle. Physiol J, 589(9), 2119-2127.
- LaRoche, D. P., Melanson, E. L., Baumgartner, M. P., Bozzuto, B. M., Libby, V. M., & Marshall, B. N. (2018). Physiological determinants of walking effort in older adults: should they be targets for physical activity intervention? GeroScience, 40, 305-315.
- Lenaz, G., Fato, R., Di Bernardo, S., Jarreta, D., Costa, A., Genova, M. L., & Castelli, G. P. (1999). Localization and mobility of coenzyme Q in lipid bilayers and membranes. Biofactors, 9(2‐4), 87-93.
- Malm, C., Svensson, M., Ekblom, B., & Sjödin, B. (1997). Effects of ubiquinone‐10 supplementation and high intensity training on physical performance in humans. Acta Physiol Scand, 161(3), 379-384.
- Mason, S. A., Trewin, A. J., Parker, L., & Wadley, G. D. (2020). Antioxidant supplements and endurance exercise: Current evidence and mechanistic insights. Redox Biol, 35, 101471.
- Matheson, G. O., Klügl, M., Dvorak, J., Engebretsen, L., Meeuwisse, W. H., Schwellnus, M., ... & Weiler, R. (2011). Responsibility of sport and exercise medicine in preventing and managing chronic disease: applying our knowledge and skill is overdue. Br J Sports Med, 45(16), 1272-1282.
- McArdle, A., Pattwell, D., Vasilaki, A., Griffiths, R. D., & Jackson, M. J. (2001). Contractile activity-induced oxidative stress: cellular origin and adaptive responses. Am J Physiol Cell Physiol, 280(3), C621-C627.
- McKenna, M. J., Medved, I., Goodman, C. A., Brown, M. J., Bjorksten, A. R., Murphy, K. T., ... & Gong, X. (2006). N‐acetylcysteine attenuates the decline in muscle Na+, K+‐pump activity and delays fatigue during prolonged exercise in humans. Physiol J, 576(1), 279-288.
- Merry, T. L., & Ristow, M. (2016). Do antioxidant supplements interfere with skeletal muscle adaptation to exercise training? Physiol J, 594(18), 5135-5147.
- Norling, A. M., Gerstenecker, A. T., Buford, T. W., Khan, B., Oparil, S., & Lazar, R. M. (2020). The role of exercise in the reversal of IGF-1 deficiencies in microvascular rarefaction and hypertension. Geroscience, 42(1), 141-158.
- Nordberg, J., & Arnér, E. S. (2001). Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med, 31(11), 1287-1312.
- Ovchinnikov, A. N., Deryugina, A. V., & Paoli, A. (2022). Royal jelly plus coenzyme q10 supplementation enhances high-intensity interval exercise performance via alterations in cardiac autonomic regulation and blood lactate concentration in runners. Front Nutr, 9, 893515.
- Okudan, N., Belviranli, M., & Torlak, S. (2017). Coenzyme Q10 does not prevent exercise-induced muscle damage and oxidative stress in sedentary men. J Sports Med Phys Fitness, 58(6), 889-894.
- Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., ... & Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, 372, n71.
- Pala, R., Orhan, C., Tuzcu, M., Sahin, N., Ali, S., Cinar, V., ... & Sahin, K. (2016). Coenzyme Q10 supplementation modulates NFκB and Nrf2 pathways in exercise training. J Sports Sci Med, 15(1), 196.
- Paredes-Fuentes, A. J., Montero, R., Codina, A., Jou, C., Fernández, G., Maynou, J., ... & Artuch, R. (2020). Coenzyme Q10 treatment monitoring in different human biological samples. Antioxidants, 9(10), 979.
- Patwell, D. M., McArdle, A., Morgan, J. E., Patridge, T. A., & Jackson, M. J. (2004). Release of reactive oxygen and nitrogen species from contracting skeletal muscle cells. Free Radic Biol Med, 37(7), 1064-1072.
- Petróczi, A., Naughton, D. P., Pearce, G., Bailey, R., Bloodworth, A., & McNamee, M. (2008). Nutritional supplement use by elite young UK athletes: fallacies of advice regarding efficacy. J Int Soc Sports Nutr, 5(1), 22.
- Petrofsky, J. S., Laymon, M. D., & Al-Nakhli, H. (2011). The Effect of Vitamin D and E and Coenzyme Q-10 on Endothelial Function in a Young Population. Anatom Physiol, 2, 101.
- Powers, S. K., & Jackson, M. J. (2008). Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev, 88(4), 1243-1276.
- Powers, S. K., Hudson, M. B., Nelson, W. B., Talbert, E. E., Min, K., Szeto, H. H., ... & Smuder, A. J. (2011). Mitochondrial-targeted antioxidants protect against mechanical ventilation-induced diaphragm weakness. Crit Care Med, 39(7), 1749.
- Ross, M. F., Kelso, G. F., Blaikie, F. H., James, A. M., Cocheme, H. M., Filipovska, A., ... & Murphy, M. P. (2005). Lipophilic triphenylphosphonium cations as tools in mitochondrial bioenergetics and free radical biology. Biochem, 70, 222-230.
- Sarmiento, A., Diaz-Castro, J., Pulido-Moran, M., Kajarabille, N., Guisado, R., & J Ochoa, J. (2016). Coenzyme Q10 supplementation and exercise in healthy humans: A systematic review. Curr Drug Metab, 17(4), 345-358.
- Shave, R., Dawson, E., Whyte, G., George, K., Gaze, D., & Collinson, P. (2004). Altered cardiac function and minimal cardiac damage during prolonged exercise. Med Sci Sports Exerc, 36(7), 1098–1103.
- Simon, H. B. (2015). Exercise and health: dose and response, considering both ends of the curve. Am J Med, 128(11), 1171-1177.
- Suzuki, Y., Nagato, S., Sakuraba, K., Morio, K., & Sawaki, K. (2020). Short-term ubiquinol-10 supplementation alleviates tissue damage in muscle and fatigue caused by strenuous exercise in male distance runners. Int J Vitam Nutr Res, 91(3-4), 261–270..
- Tauler, P., Ferrer, M. D., Romaguera, D., Sureda, A., Aguilo, A., Tur, J., & Pons, A. (2008). Antioxidant response and oxidative damage induced by a swimming session: influence of gender. J Sports Sci, 26(12), 1303-1311.
- Vincent, H. K., Powers, S. K., Stewart, D. J., Demirel, H. A., Shanely, R. A., & Naito, H. (2000). Short-term exercise training improves diaphragm antioxidant capacity and endurance. Eur J Appl Physiol, 81, 67-74.
- Zheng, A., & Moritani, T. (2008). Influence of CoQ10 on autonomic nervous activity and energy metabolism during exercise in healthy subjects. J Nutr Sci Vitaminol 54(4), 286-290.
- Williamson, J., Hughes, C. M., Cobley, J. N., & Davison, G. W. (2020). The mitochondria-targeted antioxidant MitoQ, attenuates exercise-induced mitochondrial DNA damage. Redox Biol, 36, 101673.
- Yasul, Y., Akbulut, T., & Yasul, M. E. (2023). Physiological changes in exercise-induced modeled angiogenesis mechanism: cardiac muscle and skeletal muscle review. Gümüşhane Unv J Health Sci, 12(1), 334-340.
- Yasul, Y. (2021). Effect of coenzyme Q10 supplementation on tumstatin expressions and lipid profile in serum, cardiac muscle and skeletal muscles in rats subjected to different exercises. Doctoral Thesis, İnönü Unv Health Sci Institute, Malatya, Türkiye.
- Zhou, S., Zhang, Y., Davie, A., & Marshall-Gradisnik, S. (2005). Muscle and plasma coenzyme Q^ sub 10^ concentration, aerobic power and exercise economy of healthy men in response to four weeks of supplementation. J Sports Med Phy Fitness, 45(3), 337-346.