Research Article
BibTex RIS Cite

Dicle Havzası Toprak Özelliklerinin Yersel Değişimlerinin Jeoistatistik ve Coğrafi Bilgi Sistemleri ile Belirlenmesi ve Haritalanması

Year 2018, Volume: 5 Issue: 2, 103 - 115, 30.06.2018
https://doi.org/10.19159/tutad.361237

Abstract

Toprak özelliklerinin mesafeye bağlı değişkenliklerinin belirlenmesi, incelenmesi ve haritalanması yoğun tarımsal üretim yapılan arazilerde uygun amenajmanların geliştirilmesi ve üretimin sürdürülebilirliğinin sağlanması açısından son derece önemlidir. Bu çalışmada
ülkemizin su rezervlerinin büyük bir kısmının
yer
aldığı, önemli sulama
projelerinin gerçekleşmekte olduğu Dicle Havzası’nda bir kısım fiziksel ve kimyasal toprak özellikleri belirlenmiş, mesafeye bağlı değişkenlikleri modellenmiş ve haritalanmıştır. Toprak örneklemeleri, Diyarbakır ile Siirt illeri arasında
5 x 5 km gridlere ayrılmış 4.341 km
2’lik alanda her gridin yaklaşık köşesinden toplam 175 noktada 0-20 cm derinlikten alınmıştır. Toprak özelliklerinin 5 km’den kısa mesafelerdeki değişimlerinin daha doğru tahmin edilebilmesi amacıyla ardışık iki gridin köşe noktaları arasında 250 m, 750 m ve 1750 m mesafelerden de 33 toprak örneği alınmıştır. Alınan bozulmuş örneklerin
tekstür
(kum, kil ve silt),
organik madde, kireç, toprak reaksiyonu, elektriksel iletkenlik, alınabilir fosfor ve potasyum analizleri yapılmıştır. Mesafeye bağlı değişkenliğin modellenmesi ile örneklenme yapılmayan noktaların ilgili özellikleri tahmin edilmiş ve yersel değişim haritaları oluşturulmuştur. Çalışma alanında en düşük
değişkenliğin pH (% VK= 3.9) ve en yüksek
değişkenliğin ise alınabilir fosfor (% VK= 137.77) konsantrasyonunda olduğu görülmüştür. En yüksek range değerine sahip toprak özelliği elektriksel iletkenlik (135.4 km) iken en küçük range değeri pH (4.74 km) için elde edilmiştir. Her bir özelliğin en düşük ve en yüksek olduğu yerlerin rahatlıkla tespit edilebildiği toprak haritaları, uygun amenajman yöntemlerinin belirlenmesi, sorunların
giderilmesi
ve girdilerin en uygun kullanımı açısından
son derece yararlı
araçlardır.

References

  • Allison, L.E., Moodie, C.D., 1965. Carbonate. In: C.A. Black et al. (Ed.) Methods of soil Analaysis, Part 2. Agronomy Series, American Society of Agronomy U.S.A., p: 1379-1400.
  • Arshad, M.A., Coen, G.M., 1992. Characterization of soil quality: Physical and chemical criteria. American Journal of Alternative Agriculture, 7(1-2): 25-31.
  • Barik, K., Aksakal, E.L., Islam, K.R., Sari, S., Angin, I., 2014. Spatial variability in soil compaction properties associated with field traffic operations. Catena, 120: 122-133.
  • Budak, M., 2012. Tuzlu alkali toprakların oluşumu, sınıflandırılması ve klasik toprak etüd ve jeoistatistik yöntemlerle haritalanması. Doktora tezi, Gaziosmanpaşa Üniversitesi Fen Bilimleri Enstitüsü, Tokat.
  • Cambardella, C.A., Moorman, T.B., Parkin, T.B., Karlen, D.L., Novak, J.M., Turco, R.F., Konopka, A.E., 1994. Field-scale variability of soil properties in central Iowa soils. Soil Science Society of America Journal, 58(5): 1501-1511.
  • Cao, S., Lu, A., Wang, J., Huo, L., 2017. Modeling and mapping of cadmium in soils based on qualitative and quantitative auxiliary variables in a cadmium contaminated area. Science of the Total Environment, 580: 430-439.
  • Çelik, R., 2015. Temporal changes in the groundwater level in the Upper Tigris Basin, Turkey, determined by a GIS technique. Journal of African Earth Sciences, 107: 134-143.
  • De Soto, I.S., Virto, I., Barré, P., Fernández-Ugalde, O., Antón, R., Martínez, I., Chaduteau, C., Enrique A., Bescansa, P., 2017. A model for field-based evidences of the impact of irrigation on carbonates in the tilled layer of semi-arid Mediterranean soils. Geoderma, 297: 48-60.
  • Denton, O.A., Aduramigba-Modupe, V.O., Ojo, A.O., Adeoyolanu, O.D., Are, K.S., Adelana, A.O., Oke, A.O., 2017. Assessment of spatial variability and mapping of soil properties for sustainable agricultural production using geographic information system techniques (GIS). Cogent Food and Agriculture, 3(1): 1-12.
  • Deutsch, V., Journel, A.G., 1992. Geostatistical Software Library and User’s Guide. Oxford University Press, New York.
  • Dexter, A.R., 2004. Soil physical quality: Part I. Theory, effects of soil texture, density, and organic matter, and effects on root growth. Geoderma, 120(3): 201- 214.
  • Dexter, A.R., Richard, G., Arrouays, D., Czyz, E.A., Jolivet, C., Duval, O., 2008. Complexed organic matter controls soil physical properties. Geoderm, 144(3-4): 620-627.
  • Dey, P., Karwariya, S., Bhogal, N.S., 2017. Spatial variability analysis of soil properties using geospatial technique in katni district of Madhya Pradesh, India. International Journal of Plant & Soil Science, 17(3): 1-13.
  • Emadi, M., Baghernejad, M., Emadi, M., Maftoun, M., 2008. Assessment of some soil properties by spatial variability in saline and sodic affected soils in Arsanjan Plain, Fars Province, Southern Iran. Pakistan Journal of Biological Sciences, 11(2): 238- 243.
  • Erdem, H., Budak, M., Acir, N., Gökmen, F., 2012. Micronutrient variability in a lacustrine environment of calcic haplosalids. Fresenius Environmental Bulletin, 21(3): 553-562.
  • Frossard, E., Condron, L.M., Oberson, A., Sınaj, S., Fardean, J.C., 2000. Procesess governing phosphorus availability in temperate soils. Journal of Environmental Quality, 29(1): 15-23.
  • Gee, G.W., Bauder, J.W., 1986. Particle-size Analysis. Methods of Soil Analysis: Part 1-Physical and Mineralogical Methods, (Methodsofsoilan1). Soil Science Society of America, American Society of Agronomy, Book Series 5.1, South Segoe Road, Madison, USA, p: 383-411.
  • Glendell, M., Granger, S.J., Bol, R., Brazier, R.E., 2014. Quantifying the spatial variability of soil physical and chemical properties in relation to mitigation of diffuse water pollution. Geoderma, 214: 25-41.
  • Goovaerts, P., 1998. Geostatistical tools for characterizing the spatial variability of microbiological and physico-chemical soil properties. Biology and Fertility of Soils, 27(4): 315- 334.
  • Günal, H., Acir, N., Budak, M., 2012. Heavy metal variability of a native saline pasture in arid regions of Central Anatolia. Carpathian Journal of Earth and Environmental Sciences, 7(2): 183-193.
  • Horneck, D.A., Sullivan, D.M., Owen, J.S., Hart, J.M., 2011. Soil Test Interpretation Guide. [Corvallis, Or.]: Oregon State University, Extension Service.
  • Iqbal, J., Thomasson, J.A., Jenkins, J.N., Owens, P.R., Whisler, F.D., 2005. Spatial variability analysis of soil physical properties of alluvial soils. Soil Science Society of America Journal, 69(4): 1338-1350.
  • Isaaks, E.H., Srivastava, R.M., 1988. Spatial continuity measures for probabilistic and deterministic geostatistics. Mathematical Geology, 20(4): 313-341.
  • Jakson, M.L., 1958. Soil Chemical Analysis. Prentice- Hall Inc., Englowed Cliffts, New Jersey U.S.A.
  • Kalivas, D.P., Triantakonstantis, D.P., Kollias, V.J., 2002. Spatial prediction of two soil properties using topographic information. Global NEST Journal, 4(1): 41-49.
  • Karadoğan, S., Çağlıyan, A., Durmuş, E., 2008. Ergani (Diyarbakır) çevresinde kuvaterner’de meydana gelen drenaj değişiklikleri ve bölge jeomorfolojisine etkileri. Ulusal Jeomorfoloji Sempozyumu, 20-23 Mart, Çanakkale, s. 1-12. Lindsay, W.L., Vlek, P.L.G., Chien, S.H., 1989. Phosphate minerals. In: JB Dixon and SB Weed (Eds.), Minerals in Soil Environment, 2nd edn. Soil Science Society of America, pp. 1089-1130.
  • Mali, S.S., Naik, S.K., Bhatt, B.P., 2016. Spatial variability in soil properties of Mango Orchards in Eastern Plateau and Hill Region of India. Vegetos-An International Journal of Plant Research, 29(3): 74- 79.
  • Nelson, D.W., Sommers, L., 1982. Total carbon, organic carbon, and organic matter1. Methods of Soil Analysis, Part 2- Chemical and Microbiological Properties (Methodsofsoilan), pp: 539-579.
  • O’Halloran, I.P., Kachanoski, R.G., Stewart, J.W.B., 1985. Spatial variability of soil phosphorus as influenced by soil texture and management. Canadian Journal of Soil Science, 65(3): 475-487.
  • Olsen, S.R., Sommers, L.E., 1982. Phosphorus. In Methods of Soil Analysis Part 2. In: A.L. Page, R.H. Miller and D.R. Keeney (Eds). Chemical and Microbiological Properties of Phosphorus. American Society of Agronomy and Soil Science Society of America Madison, pp. 403-430.
  • Pedrera-Parrilla, A., Van De Vijver, E., Van Meirvenne, M., Espejo-Pérez, A.J., Giráldez, J.V., Vanderlinden, K., 2016. Apparent electrical conductivity measurements in an olive orchard under wet and dry soil conditions: Significance for clay and soil water content mapping. Precision Agriculture, 17(5): 531-545.
  • Presley, D.R., Ransom, M.D., Kluitenberg, G.J., Finnell, P.R., 2004. Effects of thirty years of irrigation on the genesis and morphology of two semiarid soils in Kansas. Soil Science Society of America Journal, 68(6): 1916-1926.
  • Rhoades, J.D., Chanduvi, F., Lesch, S., 1999. Soil Salinity Assessment, Methods and Interpretation of Electrical Conductivity Measurements. Food and Agriculture Orginization of the United Nations, Rome, Italy.
  • Roger, A., Libohova, Z., Rossier, N., Joost, S., Maltas, A., Frossard, E., Sinaj, S., 2014. Spatial variability of soil phosphorus in the Fribourg canton, Switzerland. Geoderma, 217-218: 26-36.
  • Sabeti, H., Moradzadeh, A., Ardejani, F.D., Azevedo, L., Soares, A., Pereira, P., Nunes, R., 2017. Geostatistical seismic inversion for non‐stationary patterns using direct sequential simulation and co‐simulation. Geophysical Prospecting, 65(1): 25-48.
  • Salvati, L., Zitti, M., Perini, L., 2016. Fifty Years on: Long‐term Patterns of Land Sensitivity to Desertification in Italy. Land Degradation and Development, 27(2): 97-107.
  • Suarez, D.L., 1995. Carbonate chemistry in computer programs and application to soil chemistry. Soil Science Society of America, Special Publication, 42: 53-53.
  • Tan, K.H., Dowling, P.S., 1984. Effect of organic matter on CEC due to permanent and variable charges in selected temperate region soils. Geoderma, 32(2): 89- 101.
  • Tripathi, R., Nayak, A.K., Shahid, M., Raja, R., Panda, B.B., Mohanty, S., Kumar, H., Lal, B., Gautam, P., Sahoo, R.N., 2015. Characterizing spatial variability of soil properties in salt affected coastal India using geostatistics and kriging. Arabian Journal of Geosciences, 8(12): 10693-10703.
  • Truog, E., 1947. Soil reaction influence on availability of plant nutrients. Soil Science Society of America Journal, 11(C): 305-308. Usowicz, B., Lipiec, J., 2017. Spatial variability of soil properties and cereal yield in a cultivated field on sandy soil. Soil and Tillage Research, 174: 241-250.
  • Uzun, C., 2013. Farklı yaşlardaki volkanik materyal üzerinde oluşan toprakların ayrışma oranlarının belirlenmesi. Doktora tezi, Selçuk Üniversitesi Fen Bilimleri Enstitüsü, Konya.
  • Vasu, D., Singh, S.K., Sahu, N., Tiwary, P., Chandran, P., Duraisami, V.P., Ramamurthy, V., Lalitha, M., Kalaiselvi, B., 2017. Assessment of spatial variability of soil properties using geospatial techniques for farm level nutrient management. Soil and Tillage Research, 169: 25-34. Wang, Y.Q., Shao, M.A., 2013. Spatial variability of soil physical properties in a region of the Loess Plateau of PR China subject to wind and water erosion. Land Degradation and Development, 24(3): 296-304.
  • Webster, R., Oliver, M.A., 2007. Geostatistics for Environmental Scientisits. Second Edition. John Wiley and Sons Limited, Chichester, England.
  • Weindorf, D.C., Zhu, Y., 2010. Spatial variability of soil properties at Capulin Volcano, New Mexico, USA: Implications for sampling strategy. Pedosphere, 20(2): 185-197.
  • Wilding, L.P., Bouma, J., Goss, D.W., 1994. Impact of Satial Variability on Interpretative Modelling. In: R.B. Bryant and R.W. Arnold (Eds.). Quantitative Modeling of Soil Forming Processes. Soil Science Society of American Jouırnal Special Publication, Madison Wisconsin, USA, pp. 65-75.
  • Yang, F., Zhang, G., Yin, X., Liu, Z., 2011. Field-scale spatial variation of saline-sodic soil and its relation with environmental factors in Western Songnen Plain of China. International Journal of Environmental Research and Public Health, 8(2): 374-387.

Characterizing Spatial Variability of Soil Properties in Tigris Basin Using Geostatistics and Geographical Information Systems

Year 2018, Volume: 5 Issue: 2, 103 - 115, 30.06.2018
https://doi.org/10.19159/tutad.361237

Abstract



Assessment, evaluation and mapping of the spatial characteristics of soil properties are crucial to ensure the sustainability of plant production and the development of appropriate management practices in the areas of intensive
agricultural production. In this study, some physical and chemical soil characteristics
of Dicle
Basin, where most of the
water reserves of our country are located,
and large irrigation projects are taking place, were determined and spatial
distributions are modeled and mapped. One hundred seventy-five soil samples from Diyarbakır and Siirt provinces were collected from 0-20 cm depth at approximate corners of each 5 x 5 km grids. Coverage
of study area was 4.341 km
2. In order to make a more accurate
estimation of
the changes of soil properties at distances
shorter
than 5
km,
33 soil samples
were taken at 250 m, 750 m and 1750 m distances between two consecutive grid points. Soil samples were analyzed for texture (sand, clay and silt contents), organic matter (OM), lime content, soil reaction (pH), electrical conductivity (EC), available phosphorus and extractable potassium (K). The
modeling
of spatial variability allowed to predict
the soil characteristics
of
locations that were 
not sampled and spatial distribution maps was created.
The lowest variability in
the study area
was found for pH
(CV=3.9%) and the highest variability was on available
phosphorus (CV=137.8%) concentration. The highest range value was obtained
for EC (135.4 km)
while
the smallest
range value was
obtained
for pH
(4.74 km). The soil maps
where
the lowest and highest
values of each soil characteristic can be easily detected are extremely
useful to determine
appropriate management methods, remediate
problems
and optimize the use of inputs.

References

  • Allison, L.E., Moodie, C.D., 1965. Carbonate. In: C.A. Black et al. (Ed.) Methods of soil Analaysis, Part 2. Agronomy Series, American Society of Agronomy U.S.A., p: 1379-1400.
  • Arshad, M.A., Coen, G.M., 1992. Characterization of soil quality: Physical and chemical criteria. American Journal of Alternative Agriculture, 7(1-2): 25-31.
  • Barik, K., Aksakal, E.L., Islam, K.R., Sari, S., Angin, I., 2014. Spatial variability in soil compaction properties associated with field traffic operations. Catena, 120: 122-133.
  • Budak, M., 2012. Tuzlu alkali toprakların oluşumu, sınıflandırılması ve klasik toprak etüd ve jeoistatistik yöntemlerle haritalanması. Doktora tezi, Gaziosmanpaşa Üniversitesi Fen Bilimleri Enstitüsü, Tokat.
  • Cambardella, C.A., Moorman, T.B., Parkin, T.B., Karlen, D.L., Novak, J.M., Turco, R.F., Konopka, A.E., 1994. Field-scale variability of soil properties in central Iowa soils. Soil Science Society of America Journal, 58(5): 1501-1511.
  • Cao, S., Lu, A., Wang, J., Huo, L., 2017. Modeling and mapping of cadmium in soils based on qualitative and quantitative auxiliary variables in a cadmium contaminated area. Science of the Total Environment, 580: 430-439.
  • Çelik, R., 2015. Temporal changes in the groundwater level in the Upper Tigris Basin, Turkey, determined by a GIS technique. Journal of African Earth Sciences, 107: 134-143.
  • De Soto, I.S., Virto, I., Barré, P., Fernández-Ugalde, O., Antón, R., Martínez, I., Chaduteau, C., Enrique A., Bescansa, P., 2017. A model for field-based evidences of the impact of irrigation on carbonates in the tilled layer of semi-arid Mediterranean soils. Geoderma, 297: 48-60.
  • Denton, O.A., Aduramigba-Modupe, V.O., Ojo, A.O., Adeoyolanu, O.D., Are, K.S., Adelana, A.O., Oke, A.O., 2017. Assessment of spatial variability and mapping of soil properties for sustainable agricultural production using geographic information system techniques (GIS). Cogent Food and Agriculture, 3(1): 1-12.
  • Deutsch, V., Journel, A.G., 1992. Geostatistical Software Library and User’s Guide. Oxford University Press, New York.
  • Dexter, A.R., 2004. Soil physical quality: Part I. Theory, effects of soil texture, density, and organic matter, and effects on root growth. Geoderma, 120(3): 201- 214.
  • Dexter, A.R., Richard, G., Arrouays, D., Czyz, E.A., Jolivet, C., Duval, O., 2008. Complexed organic matter controls soil physical properties. Geoderm, 144(3-4): 620-627.
  • Dey, P., Karwariya, S., Bhogal, N.S., 2017. Spatial variability analysis of soil properties using geospatial technique in katni district of Madhya Pradesh, India. International Journal of Plant & Soil Science, 17(3): 1-13.
  • Emadi, M., Baghernejad, M., Emadi, M., Maftoun, M., 2008. Assessment of some soil properties by spatial variability in saline and sodic affected soils in Arsanjan Plain, Fars Province, Southern Iran. Pakistan Journal of Biological Sciences, 11(2): 238- 243.
  • Erdem, H., Budak, M., Acir, N., Gökmen, F., 2012. Micronutrient variability in a lacustrine environment of calcic haplosalids. Fresenius Environmental Bulletin, 21(3): 553-562.
  • Frossard, E., Condron, L.M., Oberson, A., Sınaj, S., Fardean, J.C., 2000. Procesess governing phosphorus availability in temperate soils. Journal of Environmental Quality, 29(1): 15-23.
  • Gee, G.W., Bauder, J.W., 1986. Particle-size Analysis. Methods of Soil Analysis: Part 1-Physical and Mineralogical Methods, (Methodsofsoilan1). Soil Science Society of America, American Society of Agronomy, Book Series 5.1, South Segoe Road, Madison, USA, p: 383-411.
  • Glendell, M., Granger, S.J., Bol, R., Brazier, R.E., 2014. Quantifying the spatial variability of soil physical and chemical properties in relation to mitigation of diffuse water pollution. Geoderma, 214: 25-41.
  • Goovaerts, P., 1998. Geostatistical tools for characterizing the spatial variability of microbiological and physico-chemical soil properties. Biology and Fertility of Soils, 27(4): 315- 334.
  • Günal, H., Acir, N., Budak, M., 2012. Heavy metal variability of a native saline pasture in arid regions of Central Anatolia. Carpathian Journal of Earth and Environmental Sciences, 7(2): 183-193.
  • Horneck, D.A., Sullivan, D.M., Owen, J.S., Hart, J.M., 2011. Soil Test Interpretation Guide. [Corvallis, Or.]: Oregon State University, Extension Service.
  • Iqbal, J., Thomasson, J.A., Jenkins, J.N., Owens, P.R., Whisler, F.D., 2005. Spatial variability analysis of soil physical properties of alluvial soils. Soil Science Society of America Journal, 69(4): 1338-1350.
  • Isaaks, E.H., Srivastava, R.M., 1988. Spatial continuity measures for probabilistic and deterministic geostatistics. Mathematical Geology, 20(4): 313-341.
  • Jakson, M.L., 1958. Soil Chemical Analysis. Prentice- Hall Inc., Englowed Cliffts, New Jersey U.S.A.
  • Kalivas, D.P., Triantakonstantis, D.P., Kollias, V.J., 2002. Spatial prediction of two soil properties using topographic information. Global NEST Journal, 4(1): 41-49.
  • Karadoğan, S., Çağlıyan, A., Durmuş, E., 2008. Ergani (Diyarbakır) çevresinde kuvaterner’de meydana gelen drenaj değişiklikleri ve bölge jeomorfolojisine etkileri. Ulusal Jeomorfoloji Sempozyumu, 20-23 Mart, Çanakkale, s. 1-12. Lindsay, W.L., Vlek, P.L.G., Chien, S.H., 1989. Phosphate minerals. In: JB Dixon and SB Weed (Eds.), Minerals in Soil Environment, 2nd edn. Soil Science Society of America, pp. 1089-1130.
  • Mali, S.S., Naik, S.K., Bhatt, B.P., 2016. Spatial variability in soil properties of Mango Orchards in Eastern Plateau and Hill Region of India. Vegetos-An International Journal of Plant Research, 29(3): 74- 79.
  • Nelson, D.W., Sommers, L., 1982. Total carbon, organic carbon, and organic matter1. Methods of Soil Analysis, Part 2- Chemical and Microbiological Properties (Methodsofsoilan), pp: 539-579.
  • O’Halloran, I.P., Kachanoski, R.G., Stewart, J.W.B., 1985. Spatial variability of soil phosphorus as influenced by soil texture and management. Canadian Journal of Soil Science, 65(3): 475-487.
  • Olsen, S.R., Sommers, L.E., 1982. Phosphorus. In Methods of Soil Analysis Part 2. In: A.L. Page, R.H. Miller and D.R. Keeney (Eds). Chemical and Microbiological Properties of Phosphorus. American Society of Agronomy and Soil Science Society of America Madison, pp. 403-430.
  • Pedrera-Parrilla, A., Van De Vijver, E., Van Meirvenne, M., Espejo-Pérez, A.J., Giráldez, J.V., Vanderlinden, K., 2016. Apparent electrical conductivity measurements in an olive orchard under wet and dry soil conditions: Significance for clay and soil water content mapping. Precision Agriculture, 17(5): 531-545.
  • Presley, D.R., Ransom, M.D., Kluitenberg, G.J., Finnell, P.R., 2004. Effects of thirty years of irrigation on the genesis and morphology of two semiarid soils in Kansas. Soil Science Society of America Journal, 68(6): 1916-1926.
  • Rhoades, J.D., Chanduvi, F., Lesch, S., 1999. Soil Salinity Assessment, Methods and Interpretation of Electrical Conductivity Measurements. Food and Agriculture Orginization of the United Nations, Rome, Italy.
  • Roger, A., Libohova, Z., Rossier, N., Joost, S., Maltas, A., Frossard, E., Sinaj, S., 2014. Spatial variability of soil phosphorus in the Fribourg canton, Switzerland. Geoderma, 217-218: 26-36.
  • Sabeti, H., Moradzadeh, A., Ardejani, F.D., Azevedo, L., Soares, A., Pereira, P., Nunes, R., 2017. Geostatistical seismic inversion for non‐stationary patterns using direct sequential simulation and co‐simulation. Geophysical Prospecting, 65(1): 25-48.
  • Salvati, L., Zitti, M., Perini, L., 2016. Fifty Years on: Long‐term Patterns of Land Sensitivity to Desertification in Italy. Land Degradation and Development, 27(2): 97-107.
  • Suarez, D.L., 1995. Carbonate chemistry in computer programs and application to soil chemistry. Soil Science Society of America, Special Publication, 42: 53-53.
  • Tan, K.H., Dowling, P.S., 1984. Effect of organic matter on CEC due to permanent and variable charges in selected temperate region soils. Geoderma, 32(2): 89- 101.
  • Tripathi, R., Nayak, A.K., Shahid, M., Raja, R., Panda, B.B., Mohanty, S., Kumar, H., Lal, B., Gautam, P., Sahoo, R.N., 2015. Characterizing spatial variability of soil properties in salt affected coastal India using geostatistics and kriging. Arabian Journal of Geosciences, 8(12): 10693-10703.
  • Truog, E., 1947. Soil reaction influence on availability of plant nutrients. Soil Science Society of America Journal, 11(C): 305-308. Usowicz, B., Lipiec, J., 2017. Spatial variability of soil properties and cereal yield in a cultivated field on sandy soil. Soil and Tillage Research, 174: 241-250.
  • Uzun, C., 2013. Farklı yaşlardaki volkanik materyal üzerinde oluşan toprakların ayrışma oranlarının belirlenmesi. Doktora tezi, Selçuk Üniversitesi Fen Bilimleri Enstitüsü, Konya.
  • Vasu, D., Singh, S.K., Sahu, N., Tiwary, P., Chandran, P., Duraisami, V.P., Ramamurthy, V., Lalitha, M., Kalaiselvi, B., 2017. Assessment of spatial variability of soil properties using geospatial techniques for farm level nutrient management. Soil and Tillage Research, 169: 25-34. Wang, Y.Q., Shao, M.A., 2013. Spatial variability of soil physical properties in a region of the Loess Plateau of PR China subject to wind and water erosion. Land Degradation and Development, 24(3): 296-304.
  • Webster, R., Oliver, M.A., 2007. Geostatistics for Environmental Scientisits. Second Edition. John Wiley and Sons Limited, Chichester, England.
  • Weindorf, D.C., Zhu, Y., 2010. Spatial variability of soil properties at Capulin Volcano, New Mexico, USA: Implications for sampling strategy. Pedosphere, 20(2): 185-197.
  • Wilding, L.P., Bouma, J., Goss, D.W., 1994. Impact of Satial Variability on Interpretative Modelling. In: R.B. Bryant and R.W. Arnold (Eds.). Quantitative Modeling of Soil Forming Processes. Soil Science Society of American Jouırnal Special Publication, Madison Wisconsin, USA, pp. 65-75.
  • Yang, F., Zhang, G., Yin, X., Liu, Z., 2011. Field-scale spatial variation of saline-sodic soil and its relation with environmental factors in Western Songnen Plain of China. International Journal of Environmental Research and Public Health, 8(2): 374-387.
There are 46 citations in total.

Details

Primary Language Turkish
Journal Section Research Article
Authors

Mesut Budak 0000-0001-5715-1246

Hikmet Günal This is me 0000-0002-4648-2645

İsmail Çelik 0000-0002-8650-2639

Nurullah Acir 0000-0001-7591-0496

Mesut Sırrı 0000-0001-9793-9599

Publication Date June 30, 2018
Published in Issue Year 2018 Volume: 5 Issue: 2

Cite

APA Budak, M., Günal, H., Çelik, İ., Acir, N., et al. (2018). Dicle Havzası Toprak Özelliklerinin Yersel Değişimlerinin Jeoistatistik ve Coğrafi Bilgi Sistemleri ile Belirlenmesi ve Haritalanması. Türkiye Tarımsal Araştırmalar Dergisi, 5(2), 103-115. https://doi.org/10.19159/tutad.361237
AMA Budak M, Günal H, Çelik İ, Acir N, Sırrı M. Dicle Havzası Toprak Özelliklerinin Yersel Değişimlerinin Jeoistatistik ve Coğrafi Bilgi Sistemleri ile Belirlenmesi ve Haritalanması. TÜTAD. June 2018;5(2):103-115. doi:10.19159/tutad.361237
Chicago Budak, Mesut, Hikmet Günal, İsmail Çelik, Nurullah Acir, and Mesut Sırrı. “Dicle Havzası Toprak Özelliklerinin Yersel Değişimlerinin Jeoistatistik Ve Coğrafi Bilgi Sistemleri Ile Belirlenmesi Ve Haritalanması”. Türkiye Tarımsal Araştırmalar Dergisi 5, no. 2 (June 2018): 103-15. https://doi.org/10.19159/tutad.361237.
EndNote Budak M, Günal H, Çelik İ, Acir N, Sırrı M (June 1, 2018) Dicle Havzası Toprak Özelliklerinin Yersel Değişimlerinin Jeoistatistik ve Coğrafi Bilgi Sistemleri ile Belirlenmesi ve Haritalanması. Türkiye Tarımsal Araştırmalar Dergisi 5 2 103–115.
IEEE M. Budak, H. Günal, İ. Çelik, N. Acir, and M. Sırrı, “Dicle Havzası Toprak Özelliklerinin Yersel Değişimlerinin Jeoistatistik ve Coğrafi Bilgi Sistemleri ile Belirlenmesi ve Haritalanması”, TÜTAD, vol. 5, no. 2, pp. 103–115, 2018, doi: 10.19159/tutad.361237.
ISNAD Budak, Mesut et al. “Dicle Havzası Toprak Özelliklerinin Yersel Değişimlerinin Jeoistatistik Ve Coğrafi Bilgi Sistemleri Ile Belirlenmesi Ve Haritalanması”. Türkiye Tarımsal Araştırmalar Dergisi 5/2 (June 2018), 103-115. https://doi.org/10.19159/tutad.361237.
JAMA Budak M, Günal H, Çelik İ, Acir N, Sırrı M. Dicle Havzası Toprak Özelliklerinin Yersel Değişimlerinin Jeoistatistik ve Coğrafi Bilgi Sistemleri ile Belirlenmesi ve Haritalanması. TÜTAD. 2018;5:103–115.
MLA Budak, Mesut et al. “Dicle Havzası Toprak Özelliklerinin Yersel Değişimlerinin Jeoistatistik Ve Coğrafi Bilgi Sistemleri Ile Belirlenmesi Ve Haritalanması”. Türkiye Tarımsal Araştırmalar Dergisi, vol. 5, no. 2, 2018, pp. 103-15, doi:10.19159/tutad.361237.
Vancouver Budak M, Günal H, Çelik İ, Acir N, Sırrı M. Dicle Havzası Toprak Özelliklerinin Yersel Değişimlerinin Jeoistatistik ve Coğrafi Bilgi Sistemleri ile Belirlenmesi ve Haritalanması. TÜTAD. 2018;5(2):103-15.

Cited By







TARANILAN DİZİNLER

14658    14659     14660   14661  14662  14663  14664        

14665      14667