Research Article
BibTex RIS Cite

Use of Geostatistics and Geographical Information Systems Techniques in the Management of Gökhöyük Agricultural Farm

Year 2019, Volume: 6 Issue: 1, 102 - 114, 28.02.2019
https://doi.org/10.19159/tutad.517447

Abstract

Spatial variability of soil properties which
vary greatly depending on land use, parent material and topography
significantly affects soil fertility, quality, and overall sustainability. This
study was carried out to determine and map the spatial variability of some of
soil properties in Gökhöyük Agricultural Farm, which is approximately 1900 ha,
and to identify the problems that may affect the sustainable use of the land
and to propose solutions. For this purpose, soil samples representing the study
area were collected from 63 points and 4 different depths (0-30, 30-60, 60-90
and 90-120) along with 19 water samples from 1.5-2.0 m depths. Electrical
conductivity (EC), pH, clay, sand, silt contents and hydraulic conductivity
values of soil samples, and pH and EC values of the groundwater samples were
determined from 19 points. The general status and spatial variability of soil
properties studied were characterized by classical statistics and
geostatistical methods. According to the results of the study, the hydraulic
conductivity values (<20 mm h
-1) were found to be very low in
both surface and subsoil soils having high clay content. The pH values, which
have a significant effect on plant nutrient availability, were higher than 8.5
at all depths in a significant portion of the study area. The EC values of
soils (60-120 cm depth) located in the middle part of the study area were high
(>4 dS m-1),
to be considered as problematic. The EC values of water samples in this
location were above 20 dS m
-1. Highly saline ground water that
transported to the soil surface with capillarity in the dry and hot seasons can
harm the productivity function of soils. Spatial distribution maps of the soil
properties will enable to make the accurate decisions which will contribute to
the development of plant production and improvement of soil quality in the farm
land.

References

  • Anonymous, 1999. Soil Survey Staff. Soil Taxonomy, a Basic System of Soil Classification for Making and Interpreting Soil Surveys, 2nd Ed.: United States Department of Agriculture, Natural Resources Conservation Service, Agriculture Handbook Number 436, Washington, pp. 870.
  • Blaylock, A.D., 1994. Soil Salinity, Salt Tolerance, and Growth Potential of Horticultural and Landscape Plants. University of Wyoming, Cooperative Extension Service, Department of Plant, Soil, and Insect Sciences, College of Agriculture. B 988: 1-4.
  • Bloem, E., Van Der Zee, S.E.A.T.M., Toth, T., Hagyó, A., 2007. Risk Assessment Methods of Salinity. JCR-IES. Sixth Framework Programme, Scientific Support to Policies Project Report 2.4, pp. 6-13.
  • Budak, M., Günal, H., 2015. Tuzlu-alkali topraklarda bor konsantrasyonunun uzaysal değişkenliğinin jeoistatistiksel analizi ve haritalanması. Ege Üniversitesi Ziraat Fakültesi Dergisi, 52(2): 191-200.
  • Cambardella, C.A., Moorman, T.B., Parkin, T.B., Karlen, D.L., Novak, J.M., Turco, R.F., Konopka, A.E., 1994. Field-scale variability of soil properties in central Iowa soils. Soil Science Society of America Journal, 58(5): 1501-1511.
  • Candemir, F., Gülser, C., 2012. Influencing factors and prediction of hydraulic conductivity in fine-textured alkaline soils. Arid Land Research and Management, 26(1): 15-31.
  • Corwin, D.L., Rhoades, J.D., Šimůnek, J., 2007. Leaching requirement for soil salinity control: Steady-state versus transient models. Agricultural Water Management, 90(3): 165-180.
  • Dengiz, O., Özyazıcı, M.A., Sağlam, M., 2015. Multi-criteria assessment and geostatistical approach for determination of rice growing suitability sites in Gokirmak catchment. Paddy and Water Environment, 13(1): 1-10.
  • Eckelmann, W.R., Baritz, S., Bialousz, P., Bielek, F., Carre, B., Houšková, R.J.A., Jones, M.G., Kibblewhite, J., Kozak, C., Le Bas, G., Tóth, T., Tóth, G., Várallyay, M., Yli Halla, M., Zupan, M., 2006. Common Criteria for Risk Area Identification According to Soil Threats. European Soil Bureau Research Report No.20, EUR 22185 EN, Office for Official Publications of the European Communities, Luxembourg.
  • Eliáš, P., Dítě, D., Šuvada, R., Píš, V., Ikrényi, I., 2013. Hordeum geniculatum in the Pannonian Basin: Ecological requirements and grassland vegetation on salt-affected soils. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 147(2): 429-444.
  • Emadi, M., Baghernejad, M., Maftoun, M., 2008. Assessment of some soil properties by spatial variability in saline and sodic affected soils in Arsanjan Plain, Fars Province, Southern Iran. Pakistan Journal of Biological Sciences, 11(2): 238-243.
  • Ettema, C.H., Wardle, D.A., 2002. Spatial soil ecology. Trends in Ecology & Evolution, 17(4): 177-183.
  • Gao, X., Niu, C., Chen, Y., Yin, X., 2014. Spatial heterogeneity of stream environmental conditions and macroinvertebrates community in an agriculture dominated watershed and management implications for a large river (the Liao River, China) basin. Environmental Monitoring and Assessment, 186(4): 2375-2391.
  • Gee, G.W., Bauder, J.W., 1986. Particle-Size Analysis. Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods, (Methodsofsoilan1), Soil Science Society of America, American Society of Agronomy, pp.383-411.
  • Goovaerts, P., 1999. Geostatistics in soil science: State of the art and perspectives. Geoderma, 89(12): 1-45.
  • Gupta, N., Rudra, R.P., Parkin, G., 2006. Analysis of spatial variability of hydraulic conductivity at field scale. Canadian Biosystems Engineering, 48(1): 55-62.
  • Günal, H., Acir, N., Polat, A., Günal, E., Budak, M., Erdem, N., Malı, Z., Önen, H., 2015. Tuzlu ve bor toksikliği bulunan arazilerin idaresinde mesafeye bağlı değişkenliğin önemi. Anadolu Tarım Bilimleri Dergisi. 30: 189-198.
  • Gwenzi, W., Hinz, C., Holmes, K., Phillips, I.R., Mullins, I.J., 2011. Field-scale spatial variability of saturated hydraulic conductivity on a recently constructed artificial ecosystem. Geoderma, 166(1): 43-56.
  • Hillel, D., 1998. Environmental Soil physics: Fundamentals, Applications, and Environmental Considerations. Elsevier, Academic Press, New York, United States of America, pp. 771.
  • Horneck, D.A., Ellsworth, J.W., Hopkins, B.G., Sullivan, D.M., Stevens, R.G., 2007. Managing Salt-Affected Soils for Crop Production. A Pacific Northwest Extension, Oragen State University, pp.1-24.
  • Horney, R.D., Taylor, B., Munk, D.S., Roberts, B.A., Lesch, S.M., Plant, R.E., 2005. Development of practical site-specific management methods for reclaiming salt-affected soil. Computers and Electronics in Agriculture, 46: 379-397.
  • Huang, M., Zettl, J.D., Barbour, S.L., Pratt, D., 2016. Characterizing the spatial variability of the hydraulic conductivity of reclamation soils using air permeability. Geoderma, 262: 285-293.
  • Iqbal, J., Thomasson, J.A., Jenkins, J.N., Owens, P.R., Whisler, F.D., 2005. Spatial variability analysis of soil physical properties of alluvial soils. Soil Science Society of America Journal, 69(4): 1338-1350.
  • Iversen, B.V., Moldrup, P., Schjonning, P., Jacobsen, O.H., 2003. Field application of a portable air permeameter to characterize spatial variability in air and water permeability. Vadose Zone Journal, 2(4): 618-626.
  • Kalivas, D.P., Triantakonstantis, D.P., Kollias, V.J., 2002. Spatial prediction of two soil properties using topographic information. Global Nest: The International Journal, 4(1): 41-49.
  • Karaca, S., 2008. Amasya-Doğantepe Beldesi ve yakın çevresinin kırsal arazi değerlendirmesi. Doktora Tezi, Ankara Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • Karlen, D.L., Tomer, M.D., Neppel, J., Cambardella, A., 2008. A preliminary watershed scale soil quality assessment in north central Iowa. Soil and Tillage Research, 99: 291-299.
  • Mau, Y., Porporato, A., 2016. Optimal control solutions to sodic soil reclamation. Advances in Water Resources, 91: 37-45.
  • Mulla, D.J., McBratney, A.B., 2000. Soil spatial variability. ME Sumner (Ed.), Handbook of Soil Science, CRC Press, Boca Raton, FL. pp. A321-A352.
  • Özyazıcı, M.A., Dengiz, O., Aydoğan, M., Bayraklı, B., Kesim, E., Urla, Ö., Yıldız, H., Ünal, E., 2015. Orta ve Doğu Karadeniz Bölgesi tarım topraklarının bazı makro ve mikro bitki besin maddesi konsantrasyonları ve ters mesafe ağırlık yöntemi (IDW) ile haritalanması. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 16(2): 187-202.
  • Özyazıcı, M.A., Dengiz, O., Aydoğan, M., Bayraklı, B., Kesim, E., Urla, Ö., Yıldız, H., Ünal, E., 2016. Orta ve Doğu Karadeniz Bölgesi tarım topraklarının temel verimlilik düzeyleri ve alansal dağılımları. Anadolu Tarım Bilimleri Dergisi, 31(1): 136-148.
  • Özyazıcı, M.A., Dengiz, O., Özyazıcı, G., 2017. Spatial distribution of heavy metals density in cultivated soils of Central and East Parts of Black Sea Region in Turkey. Eurasian Journal of Soil Science, 6(3): 197-205.
  • Rhoades, J.D., Chanduvi, F., 1999. Soil salinity assessment: Methods and interpretation of electrical conductivity measurements. Food and Agriculture Orginization of the United Nations, 57, pp: 5-15.
  • Richards, L.A., Allison, L.E., Bernstein, L., Bower C.A., Brown, J.W., Fireman, M., Hatcher, J.T., Hayward, H.E., Pearson, G.E., Reeve, R.C., Wilcox, L.V., 1954. United States Salinity Laboratory Staff. Diagnosis and Improvement of Saline and Alkali Soils. United States Department of Agriculture, Agriculture Handbook No: 60, United States Government Printing Office, Washington, pp. 160.
  • Russo, D., 1984. Spatial Variability Considerations in Salinity Management. In: I. Shainberg and J. Shalhvet (Ed.), Soil Salinity Under Irrigation, Springer Berlin, pp. 198-216.
  • Sağlam, M., Öztürk, H.S., Erşahin, S., Özkan, A.İ., 2011. Spatial variation of soil physical properties in adjacent alluvial and colluvial soils under Ustic moisture regime. Hydrology and Earth System Sciences Discussions, 8(2): 4261-4280.
  • Samra, J.S., Singh, V.P., 1990. Spatial dependence of soil reclamation. Soil Technology, 3(2): 153-165.
  • Saxton, K.E., Rawls, W., Romberger, J.S., Papendick, R.I., 1986. Estimating generalized soil-water characteristics from texture. Soil Science Society of America Journal, 50(4): 1031-1036.
  • Shainberg, I., Rhoades, J.D., Prather, R.J., 1981. Effect of low electrolyte concentration on clay dispersion and hydraulic conductivity of a sodic soil. Soil Science Society of America Journal, 45(2): 273-277.
  • Shwetha, P., Varija, K., 2015. Soil water retention curve from saturated hydraulic conductivity for sandy loam and loamy sand textured soils. Aquatic Procedia, 4: 1142-1149.
  • Sürücü, A., Günal, H., Acir, N., 2013. Importance of spatial distribution in reclamation of boron toxic soils from Central Anatolia of Turkey. Fresenius Environmental Bullettin, 22(11): 3111-3122.
  • Triantafilis, J., Lesch, S.M., 2005. Mapping clay content variation using electromagnetic induction techniques. Computers and Electronics in Agriculture, 46: 203-237.
  • Webster, R., Oliver, M.A., 2001. Geostatistics for Environmenntal Scientists. Statistics in Practice. John Wiley, England, pp. 265.
  • Wilding, L.G., 1985. Spatial Variability: Its Documentation, Accommodation and Implication to Soil Surveys. In: D.R. Nielsen and J. Bouma (Eds), Soil Spatial Variability, Pudoc, Wageningen, pp. 166-193.
  • Yang, F., Zhang, G., Yin, X., Liu, Z., 2011. Field-scale spatial variation of saline-sodic soil and its relation with environmental factors in Western Songnen Plain of China. International Journal of Environmental Research and Public Health, 8(2): 374-387.

Gökhöyük Tarım İşletmesi Arazilerinin İdaresinde Jeoistatistik ve Coğrafi Bilgi Sistemleri Tekniklerinin Kullanımı

Year 2019, Volume: 6 Issue: 1, 102 - 114, 28.02.2019
https://doi.org/10.19159/tutad.517447

Abstract

Arazi kullanımı, ana materyal ve topoğrafyaya bağlı olarak büyük
değişkenlik gösteren toprak özelliklerinin mesafeye bağlı değişkenlikleri;
toprağın verimliliği, kalitesi ve genel olarak sürdürülebilirliğini önemli
düzeyde etkilemektedir. Bu çalışma; yaklaşık 1900 hektar genişliğindeki
Gökhöyük Tarım İşletmesi arazilerinin bir kısım toprak özelliklerinin mesafeye
bağlı değişkenliklerini belirlemek, haritalamak ve işletme arazilerinin
sürdürülebilir kullanımlarını etkileyecek sorunların tespit edilerek çözüm
önerilerini ortaya koymak amacı ile gerçekleştirilmiştir. Bu amaçla, çalışma
alanını temsil edecek şekilde 63 noktadan ve 4 farklı derinlikten (0-30, 30-60,
60-90 ve 90-120 cm) toprak ve 19 noktadan da taban suyu örnekleri alınmıştır.
Toprak örneklerinde elektriksel iletkenlik (EC), pH, kil, kum ve silt
içerikleri ile hidrolik iletkenlik değerleri; taban suyu örneklerinde ise pH ve
EC değerleri belirlenmiştir. Klasik istatistik ve jeoistatistik yöntemler ile
çalışılan özelliklerin, arazideki genel durumu ve mesafeye bağlı
değişkenlikleri karakterize edilmiştir. Araştırma sonucuna göre, yüksek kil
içeriğine sahip olan hem yüzey hem de yüzey altı topraklarında hidrolik
iletkenlik değerleri (<20 mm h
-1) oldukça düşük bulunmuştur. Bitki
besin elementi alımı üzerine önemli bir etkisi olan pH değerlerinin tüm
derinliklerde ve arazinin önemli bir kısmında 8.5’in üzerinde; çalışma alanının
orta kısmında bir hatta yer alan toprakların 60-120 cm derinliğinde EC
değerleri (>4 dS m
-1) sorun oluşturabilecek düzeylerde olduğu
tespit edilmiştir. Bu bölgedeki su örneklerinin de EC değerleri 20 dS m
-1’nin
üzerinde olduğu görülmüştür. Kurak ve sıcak dönemlerde tuz içeriği yüksek taban
suyunun kapilarite ile yüzeye taşınması, toprağın üretkenlik fonksiyonuna zarar
verebilir. Toprak özelliklerinin mesafeye bağlı değişimini gösteren haritaların
kullanımı ile çiftlik arazisinde bitkisel üretimin geliştirilmesine ve toprak
kalitesinin iyileştirilmesine katkı sağlayacak kararların doğru bir şekilde
alınması mümkün olabilecektir.

References

  • Anonymous, 1999. Soil Survey Staff. Soil Taxonomy, a Basic System of Soil Classification for Making and Interpreting Soil Surveys, 2nd Ed.: United States Department of Agriculture, Natural Resources Conservation Service, Agriculture Handbook Number 436, Washington, pp. 870.
  • Blaylock, A.D., 1994. Soil Salinity, Salt Tolerance, and Growth Potential of Horticultural and Landscape Plants. University of Wyoming, Cooperative Extension Service, Department of Plant, Soil, and Insect Sciences, College of Agriculture. B 988: 1-4.
  • Bloem, E., Van Der Zee, S.E.A.T.M., Toth, T., Hagyó, A., 2007. Risk Assessment Methods of Salinity. JCR-IES. Sixth Framework Programme, Scientific Support to Policies Project Report 2.4, pp. 6-13.
  • Budak, M., Günal, H., 2015. Tuzlu-alkali topraklarda bor konsantrasyonunun uzaysal değişkenliğinin jeoistatistiksel analizi ve haritalanması. Ege Üniversitesi Ziraat Fakültesi Dergisi, 52(2): 191-200.
  • Cambardella, C.A., Moorman, T.B., Parkin, T.B., Karlen, D.L., Novak, J.M., Turco, R.F., Konopka, A.E., 1994. Field-scale variability of soil properties in central Iowa soils. Soil Science Society of America Journal, 58(5): 1501-1511.
  • Candemir, F., Gülser, C., 2012. Influencing factors and prediction of hydraulic conductivity in fine-textured alkaline soils. Arid Land Research and Management, 26(1): 15-31.
  • Corwin, D.L., Rhoades, J.D., Šimůnek, J., 2007. Leaching requirement for soil salinity control: Steady-state versus transient models. Agricultural Water Management, 90(3): 165-180.
  • Dengiz, O., Özyazıcı, M.A., Sağlam, M., 2015. Multi-criteria assessment and geostatistical approach for determination of rice growing suitability sites in Gokirmak catchment. Paddy and Water Environment, 13(1): 1-10.
  • Eckelmann, W.R., Baritz, S., Bialousz, P., Bielek, F., Carre, B., Houšková, R.J.A., Jones, M.G., Kibblewhite, J., Kozak, C., Le Bas, G., Tóth, T., Tóth, G., Várallyay, M., Yli Halla, M., Zupan, M., 2006. Common Criteria for Risk Area Identification According to Soil Threats. European Soil Bureau Research Report No.20, EUR 22185 EN, Office for Official Publications of the European Communities, Luxembourg.
  • Eliáš, P., Dítě, D., Šuvada, R., Píš, V., Ikrényi, I., 2013. Hordeum geniculatum in the Pannonian Basin: Ecological requirements and grassland vegetation on salt-affected soils. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 147(2): 429-444.
  • Emadi, M., Baghernejad, M., Maftoun, M., 2008. Assessment of some soil properties by spatial variability in saline and sodic affected soils in Arsanjan Plain, Fars Province, Southern Iran. Pakistan Journal of Biological Sciences, 11(2): 238-243.
  • Ettema, C.H., Wardle, D.A., 2002. Spatial soil ecology. Trends in Ecology & Evolution, 17(4): 177-183.
  • Gao, X., Niu, C., Chen, Y., Yin, X., 2014. Spatial heterogeneity of stream environmental conditions and macroinvertebrates community in an agriculture dominated watershed and management implications for a large river (the Liao River, China) basin. Environmental Monitoring and Assessment, 186(4): 2375-2391.
  • Gee, G.W., Bauder, J.W., 1986. Particle-Size Analysis. Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods, (Methodsofsoilan1), Soil Science Society of America, American Society of Agronomy, pp.383-411.
  • Goovaerts, P., 1999. Geostatistics in soil science: State of the art and perspectives. Geoderma, 89(12): 1-45.
  • Gupta, N., Rudra, R.P., Parkin, G., 2006. Analysis of spatial variability of hydraulic conductivity at field scale. Canadian Biosystems Engineering, 48(1): 55-62.
  • Günal, H., Acir, N., Polat, A., Günal, E., Budak, M., Erdem, N., Malı, Z., Önen, H., 2015. Tuzlu ve bor toksikliği bulunan arazilerin idaresinde mesafeye bağlı değişkenliğin önemi. Anadolu Tarım Bilimleri Dergisi. 30: 189-198.
  • Gwenzi, W., Hinz, C., Holmes, K., Phillips, I.R., Mullins, I.J., 2011. Field-scale spatial variability of saturated hydraulic conductivity on a recently constructed artificial ecosystem. Geoderma, 166(1): 43-56.
  • Hillel, D., 1998. Environmental Soil physics: Fundamentals, Applications, and Environmental Considerations. Elsevier, Academic Press, New York, United States of America, pp. 771.
  • Horneck, D.A., Ellsworth, J.W., Hopkins, B.G., Sullivan, D.M., Stevens, R.G., 2007. Managing Salt-Affected Soils for Crop Production. A Pacific Northwest Extension, Oragen State University, pp.1-24.
  • Horney, R.D., Taylor, B., Munk, D.S., Roberts, B.A., Lesch, S.M., Plant, R.E., 2005. Development of practical site-specific management methods for reclaiming salt-affected soil. Computers and Electronics in Agriculture, 46: 379-397.
  • Huang, M., Zettl, J.D., Barbour, S.L., Pratt, D., 2016. Characterizing the spatial variability of the hydraulic conductivity of reclamation soils using air permeability. Geoderma, 262: 285-293.
  • Iqbal, J., Thomasson, J.A., Jenkins, J.N., Owens, P.R., Whisler, F.D., 2005. Spatial variability analysis of soil physical properties of alluvial soils. Soil Science Society of America Journal, 69(4): 1338-1350.
  • Iversen, B.V., Moldrup, P., Schjonning, P., Jacobsen, O.H., 2003. Field application of a portable air permeameter to characterize spatial variability in air and water permeability. Vadose Zone Journal, 2(4): 618-626.
  • Kalivas, D.P., Triantakonstantis, D.P., Kollias, V.J., 2002. Spatial prediction of two soil properties using topographic information. Global Nest: The International Journal, 4(1): 41-49.
  • Karaca, S., 2008. Amasya-Doğantepe Beldesi ve yakın çevresinin kırsal arazi değerlendirmesi. Doktora Tezi, Ankara Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • Karlen, D.L., Tomer, M.D., Neppel, J., Cambardella, A., 2008. A preliminary watershed scale soil quality assessment in north central Iowa. Soil and Tillage Research, 99: 291-299.
  • Mau, Y., Porporato, A., 2016. Optimal control solutions to sodic soil reclamation. Advances in Water Resources, 91: 37-45.
  • Mulla, D.J., McBratney, A.B., 2000. Soil spatial variability. ME Sumner (Ed.), Handbook of Soil Science, CRC Press, Boca Raton, FL. pp. A321-A352.
  • Özyazıcı, M.A., Dengiz, O., Aydoğan, M., Bayraklı, B., Kesim, E., Urla, Ö., Yıldız, H., Ünal, E., 2015. Orta ve Doğu Karadeniz Bölgesi tarım topraklarının bazı makro ve mikro bitki besin maddesi konsantrasyonları ve ters mesafe ağırlık yöntemi (IDW) ile haritalanması. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 16(2): 187-202.
  • Özyazıcı, M.A., Dengiz, O., Aydoğan, M., Bayraklı, B., Kesim, E., Urla, Ö., Yıldız, H., Ünal, E., 2016. Orta ve Doğu Karadeniz Bölgesi tarım topraklarının temel verimlilik düzeyleri ve alansal dağılımları. Anadolu Tarım Bilimleri Dergisi, 31(1): 136-148.
  • Özyazıcı, M.A., Dengiz, O., Özyazıcı, G., 2017. Spatial distribution of heavy metals density in cultivated soils of Central and East Parts of Black Sea Region in Turkey. Eurasian Journal of Soil Science, 6(3): 197-205.
  • Rhoades, J.D., Chanduvi, F., 1999. Soil salinity assessment: Methods and interpretation of electrical conductivity measurements. Food and Agriculture Orginization of the United Nations, 57, pp: 5-15.
  • Richards, L.A., Allison, L.E., Bernstein, L., Bower C.A., Brown, J.W., Fireman, M., Hatcher, J.T., Hayward, H.E., Pearson, G.E., Reeve, R.C., Wilcox, L.V., 1954. United States Salinity Laboratory Staff. Diagnosis and Improvement of Saline and Alkali Soils. United States Department of Agriculture, Agriculture Handbook No: 60, United States Government Printing Office, Washington, pp. 160.
  • Russo, D., 1984. Spatial Variability Considerations in Salinity Management. In: I. Shainberg and J. Shalhvet (Ed.), Soil Salinity Under Irrigation, Springer Berlin, pp. 198-216.
  • Sağlam, M., Öztürk, H.S., Erşahin, S., Özkan, A.İ., 2011. Spatial variation of soil physical properties in adjacent alluvial and colluvial soils under Ustic moisture regime. Hydrology and Earth System Sciences Discussions, 8(2): 4261-4280.
  • Samra, J.S., Singh, V.P., 1990. Spatial dependence of soil reclamation. Soil Technology, 3(2): 153-165.
  • Saxton, K.E., Rawls, W., Romberger, J.S., Papendick, R.I., 1986. Estimating generalized soil-water characteristics from texture. Soil Science Society of America Journal, 50(4): 1031-1036.
  • Shainberg, I., Rhoades, J.D., Prather, R.J., 1981. Effect of low electrolyte concentration on clay dispersion and hydraulic conductivity of a sodic soil. Soil Science Society of America Journal, 45(2): 273-277.
  • Shwetha, P., Varija, K., 2015. Soil water retention curve from saturated hydraulic conductivity for sandy loam and loamy sand textured soils. Aquatic Procedia, 4: 1142-1149.
  • Sürücü, A., Günal, H., Acir, N., 2013. Importance of spatial distribution in reclamation of boron toxic soils from Central Anatolia of Turkey. Fresenius Environmental Bullettin, 22(11): 3111-3122.
  • Triantafilis, J., Lesch, S.M., 2005. Mapping clay content variation using electromagnetic induction techniques. Computers and Electronics in Agriculture, 46: 203-237.
  • Webster, R., Oliver, M.A., 2001. Geostatistics for Environmenntal Scientists. Statistics in Practice. John Wiley, England, pp. 265.
  • Wilding, L.G., 1985. Spatial Variability: Its Documentation, Accommodation and Implication to Soil Surveys. In: D.R. Nielsen and J. Bouma (Eds), Soil Spatial Variability, Pudoc, Wageningen, pp. 166-193.
  • Yang, F., Zhang, G., Yin, X., Liu, Z., 2011. Field-scale spatial variation of saline-sodic soil and its relation with environmental factors in Western Songnen Plain of China. International Journal of Environmental Research and Public Health, 8(2): 374-387.
There are 45 citations in total.

Details

Primary Language Turkish
Journal Section Research Article
Authors

Mesut Budak 0000-0001-5715-1246

Nurullah Acir 0000-0001-7591-0496

Publication Date February 28, 2019
Published in Issue Year 2019 Volume: 6 Issue: 1

Cite

APA Budak, M., & Acir, N. (2019). Gökhöyük Tarım İşletmesi Arazilerinin İdaresinde Jeoistatistik ve Coğrafi Bilgi Sistemleri Tekniklerinin Kullanımı. Türkiye Tarımsal Araştırmalar Dergisi, 6(1), 102-114. https://doi.org/10.19159/tutad.517447
AMA Budak M, Acir N. Gökhöyük Tarım İşletmesi Arazilerinin İdaresinde Jeoistatistik ve Coğrafi Bilgi Sistemleri Tekniklerinin Kullanımı. TÜTAD. February 2019;6(1):102-114. doi:10.19159/tutad.517447
Chicago Budak, Mesut, and Nurullah Acir. “Gökhöyük Tarım İşletmesi Arazilerinin İdaresinde Jeoistatistik Ve Coğrafi Bilgi Sistemleri Tekniklerinin Kullanımı”. Türkiye Tarımsal Araştırmalar Dergisi 6, no. 1 (February 2019): 102-14. https://doi.org/10.19159/tutad.517447.
EndNote Budak M, Acir N (February 1, 2019) Gökhöyük Tarım İşletmesi Arazilerinin İdaresinde Jeoistatistik ve Coğrafi Bilgi Sistemleri Tekniklerinin Kullanımı. Türkiye Tarımsal Araştırmalar Dergisi 6 1 102–114.
IEEE M. Budak and N. Acir, “Gökhöyük Tarım İşletmesi Arazilerinin İdaresinde Jeoistatistik ve Coğrafi Bilgi Sistemleri Tekniklerinin Kullanımı”, TÜTAD, vol. 6, no. 1, pp. 102–114, 2019, doi: 10.19159/tutad.517447.
ISNAD Budak, Mesut - Acir, Nurullah. “Gökhöyük Tarım İşletmesi Arazilerinin İdaresinde Jeoistatistik Ve Coğrafi Bilgi Sistemleri Tekniklerinin Kullanımı”. Türkiye Tarımsal Araştırmalar Dergisi 6/1 (February 2019), 102-114. https://doi.org/10.19159/tutad.517447.
JAMA Budak M, Acir N. Gökhöyük Tarım İşletmesi Arazilerinin İdaresinde Jeoistatistik ve Coğrafi Bilgi Sistemleri Tekniklerinin Kullanımı. TÜTAD. 2019;6:102–114.
MLA Budak, Mesut and Nurullah Acir. “Gökhöyük Tarım İşletmesi Arazilerinin İdaresinde Jeoistatistik Ve Coğrafi Bilgi Sistemleri Tekniklerinin Kullanımı”. Türkiye Tarımsal Araştırmalar Dergisi, vol. 6, no. 1, 2019, pp. 102-14, doi:10.19159/tutad.517447.
Vancouver Budak M, Acir N. Gökhöyük Tarım İşletmesi Arazilerinin İdaresinde Jeoistatistik ve Coğrafi Bilgi Sistemleri Tekniklerinin Kullanımı. TÜTAD. 2019;6(1):102-14.

TARANILAN DİZİNLER

14658    14659     14660   14661  14662  14663  14664        

14665      14667