Research Article
BibTex RIS Cite

Hıyar (Cucumis sativus L.) Bitkisinin Yüksek Sıcaklık Stresine Verdiği Antioksidant Cevaplar

Year 2021, Volume: 8 Issue: 1, 42 - 48, 28.02.2021
https://doi.org/10.19159/tutad.793990

Abstract

Bu çalışmanın amacı, hıyar (Cucumis sativus L.) bitkisinin “Beith Alpha F1” adlı çeşidinin yüksek sıcaklık stresi (45 C ve 55 C, 4 saat) altında oluşturduğu antioksidant cevapların araştırılmasıdır. Hıyar bitkileri perlit içeren plastik saksılarda Hoagland besin çözeltisi ile sulanarak iklim dolabında on gün boyunca yetiştirilmiştir. Yüksek sıcaklık uygulamasından 24 saat sonra bitkiler hasat edilmiştir. Hıyar bitkisinin kotiledonlarındaki klorofil-a, klorofil-b ve toplam klorofil miktarı, sıcaklığın artışı ile birlikte dereceli olarak azalmıştır. Hıyar kotiledonlarında yüksek sıcaklıkla indüklenen süperoksit dismutaz aktivitesi, süperoksit radikalinin etkili bir şekilde detoksifiye edildiğini göstermektedir. Yüksek sıcaklık koşullarında kotiledonlardaki düşük askorbat peroksidaz ve yüksek glutatyon redüktaz aktivitesi askorbat-glutatyon döngüsünün inhibe edildiğini işaret etmektedir. Ancak yüksek sıcaklık stresi kotiledonlarda H2O2 (hidrojen peroksit) birikimine yol açmamıştır. Yüksek sıcaklık stresi altında kotiledonlardaki malondialdehit miktarının azalması, membran sistemlerinin kimyasal olarak hasar görmediğini göstermiştir. Buna göre, hıyar kotiledonlarında yüksek sıcaklık stresi etkisiyle süperoksit radikali birikiminin gerçekleşmediği ve katalazın H2O2 detoksifikasyonundan sorumlu enzim olduğu sonucuna varılabilir. Ayrıca hıyar kotiledonlarındaki membran sistemlerinin yüksek sıcaklığın etkisiyle fiziksel olarak zarar görmüş olabileceği söylenebilir.

Supporting Institution

Sakarya Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Project Number

2015-50-01-048

References

  • Abdelrahman, M., El-Sayed, M., Jogaiah, S., Burritt, D.J., Tran, L.S.P., 2017. The “stay green” trait and phytohormone signaling networks in plan under heat stress. Plant Cell Reports, 36(7): 1009-1025.
  • Aebi, H., 1984. Catalase in vitro. Methods in Enzymology, 105: 121-126.
  • Agati, G., Azzarello, S., Poolastri, M., Tattini, M., 2012. Flavonoids as antioxidants in plants: location and functional significance. Plant Science, 196: 67-76.
  • Akter, N., Islam, M.R., 2017. Heat stress effects and management in wheat. A review. Agronomy for Sustainable Development, 37: 37-53.
  • Asada, K., 2006. Production and scavenging of reactive oxygen species in chloroplasts and their function. Plant Physiology, 141(2): 391-396.
  • Beyer, W.F., Fridovich, I., 1987. Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions. Analytical Biochemistry, 161(2): 559-566.
  • Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2): 248-254.
  • Czarnocka, W., Karpinski, S., 2018. Friend or foe? Reactive oxygen species production, scavenging and signaling in plant response to environmental stress. Free Radical Biology and Medicine, 122: 4-20.
  • Djanaguiraman, M., Prasad, P.V.V., Boyle, D.L., Schapaugh, W.T., 2011. High-temperature stress and soybean leaves: Leaf anatomy and photosynthesis. Crop Science, 51(5): 2125-2131.
  • Djanaguiraman, M., Prasad, P.V.V., Murugan, M., Perumal, R., Reddy, U.K., 2014. Physiological differences among sorghum (Sorghum bicolor L. Moench) genotypes under high temperature stress. Environmental and Experimental Botany, 100: 43-54.
  • Doğru, A., 2019. Bitkilerde antioksidant sistemler ve tuz stresine verdikleri cevaplar. Uluslararası Doğu Anadolu Fen Mühendislik ve Tasarım Dergisi, 1(2): 164-185.
  • Doğru, A., 2020. Antioxidant responses of barley (Hordeum vulgare L.) genotypes to lead toxicity. Biologia, 75(9): 1265-1272.
  • Doğru, A., Çakırlar H., 2020a. Effects of leaf age on chlorophyll fluorescence and antioxidant enzymes activity in winter rapeseed leaves under cold acclimation conditions. Brazilian Journal of Botany, 43(1): 11-20.
  • Doğru, A., Çakırlar, H., 2020b. Is leaf age a predictor for cold tolerance in winter oilseed rape plants? Functional Plant Biology, 47(3): 250-262.
  • Ginsburg, S., Schellenberg, M., Matile, P., 1994. Cleavage of chlorophyll-porphyrin (requirement for reduced ferrodoxin and oxygen). Plant Physiology, 105(2): 545-554.
  • Hashimoto, H., Uragami, C., Cogdell, R.J., 2016. Carotenoids and photosynthesis. In: C. Stange (Ed.), Carotenoids in Nature, Subcellular Biochemistry. Cham, Springer, pp. 111-139.
  • Heath, R.L., Packer, L. 1968. Photoperoxidation in isolated chloroplasts I. Kinetic and stoichiometry of fatty acid peroxidation. Archieves of Biochemistry and Biophysics, 125(1): 189-198.
  • Hoagland, D.R., 1920. Optimum murtient solution for plants. Science, 52(1354): 562-564.
  • Hörtensteiner, S., 2006. Chlorophyll degradation during senescence. Annual Review of Plant Biology, 57(1): 55-77.
  • Hörtensteiner, S., 2009. Stay-green regulates chlorophyll and chlorophyll-binding protein degradation during senescence. Trends in Plant Science, 14(3): 155-162.
  • Hu, S., Ding, Y., Zhu, C., 2020. Sensitivity and responses of chloroplasts to heat stress in plants. Frontiers in Plant Science, 11: 375-385.
  • Karim, M.A., Fracheboud, Y., Stamp, P., 1997. Heat tolerance of maize with reference of some physiological characteristics. Annals of Bangladesh Agriculture, 7(1): 27-33.
  • Kumar, P., Yadav, S., Singh, M.P., 2020. Possible involvement of xanthophyll cycle pigments in heat tolerance of chickpea (Cicer arietinum L.). Physiology and Molecular Biology of Plants, 26(1): 1773-1785.
  • Lichtenthaler, H.K., 1987. Chlorophylls and carotenoids: pigments of photosynthetic membranes. Methods in Enzymology, 148: 350-382.
  • Ohkawa, H., Ohishi, N., Yagi, N.Y., 1979. Assay of lipid peroxides in animal tissue by thiobarbituric acid reaction. Analytical Biochemistry, 95(2): 351-358.
  • Pospisil, P., Prasad, A., 2014. Formation of singlet oxygen and protection against its oxidative damage in photosystem II under abiotic stress. Journal of Photochemistry and Photobiology, 137: 39-48.
  • Rossi, S., Burgess, P., Jespersen, D., Huang, B., 2017. Heat-induced leaf senescence associated with chlorophyll metabolism in bentgrass lines differeing in heat tolerance. Crop Science, 57(S1): 169-178.
  • Schöffl, F., Prandl, R., Reindl, A., 1999. Molecular responses to heat stress. In: K. Shinozaki, K. Yamaguchi-Shinozaki (Eds.), Molecular Responses to Cold, Drought, Heat and Salt Stress in Higher Plants, R.G. Landes Co., Austin, Texas, pp. 81-99.
  • Sehgal, A., Sita, K., Nayyar, H., 2016. Heat stress in plants: Sensing and defence mechanism. Journal of Plant Science Research, 32(2): 195-210.
  • Sgherri, C.L.M., Loggini, B., Puliga, S., Navari-Izzo, F., 1994. Antioxidant system in Sporobolus stapfianus: changes in response to desiccation and rehydration. Phytochemistry, 35(3): 561-565.
  • Suzuki, N., Koussevitzky, S., Mittler, R., Miller, G., 2012. ROS and redox signaling in response to plants to abiotic stress. Plant, Cell and Environment, 35(2): 259-270.
  • Trebst, A., 2003. Function of -carotene and tocopherol in photosystem II. Zeitcshrift für Naturforschung, 58(9-10): 609-620.
  • Wahid, A., Gelani, S., Ashraf, M., Foolad, M.R., 2007. Heat tolerance in plants: an overview. Environmental and Experimental Botany, 61(3): 199-223.
  • Wang, Q.L., Chen, J.H., He, N.Y., Guo, F.Q., 2018. Metabolic reprogramming in chloroplasts under heat stress in plants. International Journal of Molecular Science, 19(3): 849-870.
  • Wang, S.Y., Jiao, H., Faust, M., 1991. Changes in ascorbate, glutathione and related enzyme activity during thidiazuron-induced bud break of apple. Plant Physiology, 82: 231-236.
  • Xu, S., Li, J., Zhang, X., Wei, H., Cui, L., 2006. Effect of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two cool season turfgrass species under heat stress. Environmental and Experimental Botany, 56(3): 274-285.
  • Yurtsever, N., 1984. Deneysel İstatistik Metodları. Tarım Orman ve Köyişleri Bakanlığı, Köy Hizmetleri Genel Müdürlüğü, Genel Yayın No: 121, Teknik Yayın No: 56, Ankara.
  • Zhang, J.H., Huang, W.D., Liu, Y.P., Pan, Q.H., 2005. Effects of temperature acclimation pretreatment on the ultrastructure of mesophyll cells in young grape plants (Vitis vinifera L. cv. Jingxiu) under cross temperature setresses. Journal of Integrative Plant Biology, 47(8): 959-970.

Antioxidant Responses of Cucumber (Cucumis sativus L.) Plant to Heat Stress

Year 2021, Volume: 8 Issue: 1, 42 - 48, 28.02.2021
https://doi.org/10.19159/tutad.793990

Abstract

The aim of this this study is to study the antioxidant responses of cucumber (Cucumis sativus L.) cultivar, Beith Alpha F1, under heat stress (45 C and 55 C, 4 hours). Cucumber plants were grown in plastic pots containing perlite in the climate chamber for ten days and irrigated with Hoagland nutrient solution. Plants were harvested 24 hours after high temperature application. The amount of chlorophyll-a, chlorophyll-b and total chlorophyll in the cotyledons of the cucumber plant gradually decreased with the increase in temperature. Superoxide dismutase activity induced by high temperature in cucumber cotyledons indicates that the superoxide radical is effectively detoxified. Low ascorbate peroxidase and high glutathione reductase activity in cotyledons at high temperature conditions indicate that the ascorbate-glutathione cycle is inhibited. However, heat stress did not lead to the accumulation of H2O2 in cotyledons. In addition, lower level of malondialdehyde in the cotyledons showed that membrane systems were not chemically damaged under heat stress. Accordingly, it could be concluded that superoxide radical accumulation did not occur in the cotyledons of cucumber and catalase was the predominant H2O2-detoxifying enzyme under heat stress. In addition, membrane systems in cucumber cotyledons may be physically affected by high temperature applications.

Project Number

2015-50-01-048

References

  • Abdelrahman, M., El-Sayed, M., Jogaiah, S., Burritt, D.J., Tran, L.S.P., 2017. The “stay green” trait and phytohormone signaling networks in plan under heat stress. Plant Cell Reports, 36(7): 1009-1025.
  • Aebi, H., 1984. Catalase in vitro. Methods in Enzymology, 105: 121-126.
  • Agati, G., Azzarello, S., Poolastri, M., Tattini, M., 2012. Flavonoids as antioxidants in plants: location and functional significance. Plant Science, 196: 67-76.
  • Akter, N., Islam, M.R., 2017. Heat stress effects and management in wheat. A review. Agronomy for Sustainable Development, 37: 37-53.
  • Asada, K., 2006. Production and scavenging of reactive oxygen species in chloroplasts and their function. Plant Physiology, 141(2): 391-396.
  • Beyer, W.F., Fridovich, I., 1987. Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions. Analytical Biochemistry, 161(2): 559-566.
  • Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2): 248-254.
  • Czarnocka, W., Karpinski, S., 2018. Friend or foe? Reactive oxygen species production, scavenging and signaling in plant response to environmental stress. Free Radical Biology and Medicine, 122: 4-20.
  • Djanaguiraman, M., Prasad, P.V.V., Boyle, D.L., Schapaugh, W.T., 2011. High-temperature stress and soybean leaves: Leaf anatomy and photosynthesis. Crop Science, 51(5): 2125-2131.
  • Djanaguiraman, M., Prasad, P.V.V., Murugan, M., Perumal, R., Reddy, U.K., 2014. Physiological differences among sorghum (Sorghum bicolor L. Moench) genotypes under high temperature stress. Environmental and Experimental Botany, 100: 43-54.
  • Doğru, A., 2019. Bitkilerde antioksidant sistemler ve tuz stresine verdikleri cevaplar. Uluslararası Doğu Anadolu Fen Mühendislik ve Tasarım Dergisi, 1(2): 164-185.
  • Doğru, A., 2020. Antioxidant responses of barley (Hordeum vulgare L.) genotypes to lead toxicity. Biologia, 75(9): 1265-1272.
  • Doğru, A., Çakırlar H., 2020a. Effects of leaf age on chlorophyll fluorescence and antioxidant enzymes activity in winter rapeseed leaves under cold acclimation conditions. Brazilian Journal of Botany, 43(1): 11-20.
  • Doğru, A., Çakırlar, H., 2020b. Is leaf age a predictor for cold tolerance in winter oilseed rape plants? Functional Plant Biology, 47(3): 250-262.
  • Ginsburg, S., Schellenberg, M., Matile, P., 1994. Cleavage of chlorophyll-porphyrin (requirement for reduced ferrodoxin and oxygen). Plant Physiology, 105(2): 545-554.
  • Hashimoto, H., Uragami, C., Cogdell, R.J., 2016. Carotenoids and photosynthesis. In: C. Stange (Ed.), Carotenoids in Nature, Subcellular Biochemistry. Cham, Springer, pp. 111-139.
  • Heath, R.L., Packer, L. 1968. Photoperoxidation in isolated chloroplasts I. Kinetic and stoichiometry of fatty acid peroxidation. Archieves of Biochemistry and Biophysics, 125(1): 189-198.
  • Hoagland, D.R., 1920. Optimum murtient solution for plants. Science, 52(1354): 562-564.
  • Hörtensteiner, S., 2006. Chlorophyll degradation during senescence. Annual Review of Plant Biology, 57(1): 55-77.
  • Hörtensteiner, S., 2009. Stay-green regulates chlorophyll and chlorophyll-binding protein degradation during senescence. Trends in Plant Science, 14(3): 155-162.
  • Hu, S., Ding, Y., Zhu, C., 2020. Sensitivity and responses of chloroplasts to heat stress in plants. Frontiers in Plant Science, 11: 375-385.
  • Karim, M.A., Fracheboud, Y., Stamp, P., 1997. Heat tolerance of maize with reference of some physiological characteristics. Annals of Bangladesh Agriculture, 7(1): 27-33.
  • Kumar, P., Yadav, S., Singh, M.P., 2020. Possible involvement of xanthophyll cycle pigments in heat tolerance of chickpea (Cicer arietinum L.). Physiology and Molecular Biology of Plants, 26(1): 1773-1785.
  • Lichtenthaler, H.K., 1987. Chlorophylls and carotenoids: pigments of photosynthetic membranes. Methods in Enzymology, 148: 350-382.
  • Ohkawa, H., Ohishi, N., Yagi, N.Y., 1979. Assay of lipid peroxides in animal tissue by thiobarbituric acid reaction. Analytical Biochemistry, 95(2): 351-358.
  • Pospisil, P., Prasad, A., 2014. Formation of singlet oxygen and protection against its oxidative damage in photosystem II under abiotic stress. Journal of Photochemistry and Photobiology, 137: 39-48.
  • Rossi, S., Burgess, P., Jespersen, D., Huang, B., 2017. Heat-induced leaf senescence associated with chlorophyll metabolism in bentgrass lines differeing in heat tolerance. Crop Science, 57(S1): 169-178.
  • Schöffl, F., Prandl, R., Reindl, A., 1999. Molecular responses to heat stress. In: K. Shinozaki, K. Yamaguchi-Shinozaki (Eds.), Molecular Responses to Cold, Drought, Heat and Salt Stress in Higher Plants, R.G. Landes Co., Austin, Texas, pp. 81-99.
  • Sehgal, A., Sita, K., Nayyar, H., 2016. Heat stress in plants: Sensing and defence mechanism. Journal of Plant Science Research, 32(2): 195-210.
  • Sgherri, C.L.M., Loggini, B., Puliga, S., Navari-Izzo, F., 1994. Antioxidant system in Sporobolus stapfianus: changes in response to desiccation and rehydration. Phytochemistry, 35(3): 561-565.
  • Suzuki, N., Koussevitzky, S., Mittler, R., Miller, G., 2012. ROS and redox signaling in response to plants to abiotic stress. Plant, Cell and Environment, 35(2): 259-270.
  • Trebst, A., 2003. Function of -carotene and tocopherol in photosystem II. Zeitcshrift für Naturforschung, 58(9-10): 609-620.
  • Wahid, A., Gelani, S., Ashraf, M., Foolad, M.R., 2007. Heat tolerance in plants: an overview. Environmental and Experimental Botany, 61(3): 199-223.
  • Wang, Q.L., Chen, J.H., He, N.Y., Guo, F.Q., 2018. Metabolic reprogramming in chloroplasts under heat stress in plants. International Journal of Molecular Science, 19(3): 849-870.
  • Wang, S.Y., Jiao, H., Faust, M., 1991. Changes in ascorbate, glutathione and related enzyme activity during thidiazuron-induced bud break of apple. Plant Physiology, 82: 231-236.
  • Xu, S., Li, J., Zhang, X., Wei, H., Cui, L., 2006. Effect of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two cool season turfgrass species under heat stress. Environmental and Experimental Botany, 56(3): 274-285.
  • Yurtsever, N., 1984. Deneysel İstatistik Metodları. Tarım Orman ve Köyişleri Bakanlığı, Köy Hizmetleri Genel Müdürlüğü, Genel Yayın No: 121, Teknik Yayın No: 56, Ankara.
  • Zhang, J.H., Huang, W.D., Liu, Y.P., Pan, Q.H., 2005. Effects of temperature acclimation pretreatment on the ultrastructure of mesophyll cells in young grape plants (Vitis vinifera L. cv. Jingxiu) under cross temperature setresses. Journal of Integrative Plant Biology, 47(8): 959-970.
There are 38 citations in total.

Details

Primary Language Turkish
Journal Section Research Article
Authors

Ali Doğru 0000-0003-0060-4691

Project Number 2015-50-01-048
Publication Date February 28, 2021
Published in Issue Year 2021 Volume: 8 Issue: 1

Cite

APA Doğru, A. (2021). Hıyar (Cucumis sativus L.) Bitkisinin Yüksek Sıcaklık Stresine Verdiği Antioksidant Cevaplar. Türkiye Tarımsal Araştırmalar Dergisi, 8(1), 42-48. https://doi.org/10.19159/tutad.793990
AMA Doğru A. Hıyar (Cucumis sativus L.) Bitkisinin Yüksek Sıcaklık Stresine Verdiği Antioksidant Cevaplar. TÜTAD. February 2021;8(1):42-48. doi:10.19159/tutad.793990
Chicago Doğru, Ali. “Hıyar (Cucumis Sativus L.) Bitkisinin Yüksek Sıcaklık Stresine Verdiği Antioksidant Cevaplar”. Türkiye Tarımsal Araştırmalar Dergisi 8, no. 1 (February 2021): 42-48. https://doi.org/10.19159/tutad.793990.
EndNote Doğru A (February 1, 2021) Hıyar (Cucumis sativus L.) Bitkisinin Yüksek Sıcaklık Stresine Verdiği Antioksidant Cevaplar. Türkiye Tarımsal Araştırmalar Dergisi 8 1 42–48.
IEEE A. Doğru, “Hıyar (Cucumis sativus L.) Bitkisinin Yüksek Sıcaklık Stresine Verdiği Antioksidant Cevaplar”, TÜTAD, vol. 8, no. 1, pp. 42–48, 2021, doi: 10.19159/tutad.793990.
ISNAD Doğru, Ali. “Hıyar (Cucumis Sativus L.) Bitkisinin Yüksek Sıcaklık Stresine Verdiği Antioksidant Cevaplar”. Türkiye Tarımsal Araştırmalar Dergisi 8/1 (February 2021), 42-48. https://doi.org/10.19159/tutad.793990.
JAMA Doğru A. Hıyar (Cucumis sativus L.) Bitkisinin Yüksek Sıcaklık Stresine Verdiği Antioksidant Cevaplar. TÜTAD. 2021;8:42–48.
MLA Doğru, Ali. “Hıyar (Cucumis Sativus L.) Bitkisinin Yüksek Sıcaklık Stresine Verdiği Antioksidant Cevaplar”. Türkiye Tarımsal Araştırmalar Dergisi, vol. 8, no. 1, 2021, pp. 42-48, doi:10.19159/tutad.793990.
Vancouver Doğru A. Hıyar (Cucumis sativus L.) Bitkisinin Yüksek Sıcaklık Stresine Verdiği Antioksidant Cevaplar. TÜTAD. 2021;8(1):42-8.

TARANILAN DİZİNLER

14658    14659     14660   14661  14662  14663  14664        

14665      14667