Research Article
BibTex RIS Cite

Monitoring Nitrogen Dioxide (NO2) Pollution with Sentinel-5p Satellite Images

Year 2022, Volume: 4 Issue: 1, 1 - 6, 15.06.2022
https://doi.org/10.51489/tuzal.1056261

Abstract

Air quality is critical for human health, plant and animal life. Due to the increase in the world population and the consequent supply of energy needs with fossil fuels, air quality continues to be an essential concern for the current and future quality of life. Nitrogen dioxide (NO2), is one of the critical polluting gases in the troposphere and the stratosphere of the atmosphere. It enters the atmosphere, especially with fossil fuels and biomass combustion. In this respect, the measurement of this pollutant is crucial. With the development of remote sensing, such measures worldwide have become more practical and accessible. In this study, a comparative analysis of the tropospheric NO2 values in the Marmara Region, based on Sentinel-5P satellite images, at the end of 2019, 2020 and 2021, which includes the COVID-19 pandemic emergency measures in Turkey, was made. As a result of comparing the study results with the data obtained from ground measurement stations, the negative effect of fossil fuel consumption on air quality was determined. In addition, it has been revealed that the satellite data is highly correlated with the ground measurement data (r=0.85) and Sentinel-5P satellite images can be used in monitoring air pollution effectively.

References

  • Butz, A., Galli, A., Hasekamp, O., Landgraf, J., Tol, P., & Aben, I. (2012). TROPOMI aboard Sentinel-5 Precursor: Prospective performance of CH4 retrievals for aerosol and cirrus loaded atmospheres. Remote sensing of environment, 120, 267-276.
  • Dutheil, F., Baker, J. S., & Navel, V. (2020). COVID-19 as a factor influencing air pollution?. Environmental pollution, 263, 114466.
  • Filippini, T., Rothman, K. J., Goffi, A., Ferrari, F., Maffeis, G., Orsini, N., & Vinceti, M. (2020). Satellite-detected tropospheric nitrogen dioxide and spread of SARS-CoV-2 infection in Northern Italy. Science of the Total Environment, 739, 140278.
  • Ghahremanloo, M., Lops, Y., Choi, Y. & Mousavinezhad, S. (2021). Impact of the COVID-19 outbreak on air pollution levels in East Asia. Science of the Total Environment, 754, 142226.
  • Ghasempour F., Sekertekin A. & Kutoglu S., (2021). Google Earth Engine Based Spatio-Temporal Analysis of Air Pollutants Before And During The First Wave Covid-19 Outbreak Over Turkey Via Remote Sensing. Journal of Cleaner Production, 319, 128599.
  • Kanniah, K. D., Zaman, N. A. F. K., Kaskaoutis, D. G., & Latif, M. T. (2020). COVID-19's impact on the atmospheric environment in the Southeast Asia region. Science of the Total Environment, 736, 139658.
  • Le, T., Wang, Y., Liu, L., Yang, J., Yung, Y. L., Li, G., & Seinfeld, J. H. (2020). Unexpected air pollution with marked emission reductions during the COVID-19 outbreak in China. Science, 369(6504), 702-706.
  • Mesas-Carrascosa, F. J., Pérez Porras, F., Triviño-Tarradas, P., García-Ferrer, A. & Meroño-Larriva, J. E. (2020). Effect of lockdown measures on atmospheric nitrogen dioxide during SARS-CoV-2 in Spain. Remote Sensing, 12(14), 2210.
  • Shehzad, K., Sarfraz, M., & Shah, S. G. M. (2020). The impact of COVID-19 as a necessary evil on air pollution in India during the lockdown. Environmental Pollution, 266, 115080.
  • Siciliano, B., Carvalho, G., da Silva, C. M., & Arbilla, G. (2020). The impact of COVID-19 partial lockdown on primary pollutant concentrations in the atmosphere of Rio de Janeiro and São Paulo Megacities (Brazil). Bulletin of Environmental Contamination and Toxicology, 105(1), 2-8.
  • Vîrghileanu M., Săvulescu I., Bogdan-Andrei Mihai B., A., Nistor C., Dobre R., (2020) Nitrogen Dioxide (NO2) Pollution Monitoring with Sentinel-5P Satellite Imagery over Europe during the Coronavirus Pandemic Outbreak. Remote Sensing, 12(21).
  • Zhang, G., Xu, H., Wang, H., Xue, L., He, J., Xu, W. & Meng, X. (2020). Exploring the inconsistent variations in atmospheric primary and secondary pollutants during the 2016 G20 summit in Hangzhou, China: implications from observations and models. Atmospheric Chemistry and Physics, 20(9), 5391-5403.
  • URL-1: https://www.mgm.gov.tr/genel/ozonveuv.aspx?s=2 [Erişim Tarihi: 04.02.2022]
  • URL-2:https://scied.ucar.edu/learning-zone/air-quality [Erişim Tarihi: 04.02.2022]
  • URL-3:http://www.tropomi.eu/data-products/nitrogen-dioxide [Erişim Tarihi: 04.02.2022] URL-4: https://en.wikipedia.org/wiki/Marmara_Region [Erişim Tarihi: 04.02.2022]
  • URL-5: https://www.havaizleme.gov.tr/ [Erişim Tarihi: 04.02.2022]

Sentinel-5p Uydu Görüntüleri İle Azot Dioksit (NO2) Kirliliğinin İzlenmesi

Year 2022, Volume: 4 Issue: 1, 1 - 6, 15.06.2022
https://doi.org/10.51489/tuzal.1056261

Abstract

Hava kalitesi insan sağlığı, bitki ve hayvan yaşamı için kritik bir öneme sahiptir. Dünya nüfusunun artması ve buna bağlı olarak enerji ihtiyacının fosil yakıt kullanımı ile temin edilmesi dolayısıyla hava kalitesi, şimdiki ve gelecekteki yaşam kalitesi için önemli endişe kaynağı olmaya devam etmektedir. Havadaki kirletici gazlardan biri olan Azot dioksit (NO2), Atmosferin hem troposfer, hem de stratosfer tabakasında bulunan önemli kirletici gazlardandır. Atmosfere özellikle fosil yakıtların ve biyokütlenin yanması ile girer. Bu bakımdan özellikle bu kirleticinin ölçümü önem arzetmektedir. Uzaktan algılama teknolojisinin gelişmesi ile dünya üzerindeki bu tarz ölçümler daha pratik ve kolay bir hale gelmiştir. Bu çalışmada COVID-19 pandemisi acil önlemlerinin Türkiye’deki sürecini içeren 2019 sonu, 2020 ve 2021 yıllarında Marmara Bölgesindeki troposferik NO2 değerlerinin Sentinel-5P uydu görüntülerine dayalı karşılaştırmalı analizi yapılmıştır. Çalışmanın sonuçlarının yer ölçüm istasyonlarından elde edilen verilerle kıyaslanması sonucunda fosil yakıt tüketiminin hava kalitesine olan olumsuz etkisi belirlenmiştir. Ayrıca, uydu verilerinin yersel veriler ile yüksek bir oranda korelasyonun sağlandığı (r=0.85) ve bu yolla hava kirliliğinin izlenmesinde Sentinel-5P uydu görüntülerinin etkin bir şekilde kullanılabilir olduğu ortaya konmuştur.

References

  • Butz, A., Galli, A., Hasekamp, O., Landgraf, J., Tol, P., & Aben, I. (2012). TROPOMI aboard Sentinel-5 Precursor: Prospective performance of CH4 retrievals for aerosol and cirrus loaded atmospheres. Remote sensing of environment, 120, 267-276.
  • Dutheil, F., Baker, J. S., & Navel, V. (2020). COVID-19 as a factor influencing air pollution?. Environmental pollution, 263, 114466.
  • Filippini, T., Rothman, K. J., Goffi, A., Ferrari, F., Maffeis, G., Orsini, N., & Vinceti, M. (2020). Satellite-detected tropospheric nitrogen dioxide and spread of SARS-CoV-2 infection in Northern Italy. Science of the Total Environment, 739, 140278.
  • Ghahremanloo, M., Lops, Y., Choi, Y. & Mousavinezhad, S. (2021). Impact of the COVID-19 outbreak on air pollution levels in East Asia. Science of the Total Environment, 754, 142226.
  • Ghasempour F., Sekertekin A. & Kutoglu S., (2021). Google Earth Engine Based Spatio-Temporal Analysis of Air Pollutants Before And During The First Wave Covid-19 Outbreak Over Turkey Via Remote Sensing. Journal of Cleaner Production, 319, 128599.
  • Kanniah, K. D., Zaman, N. A. F. K., Kaskaoutis, D. G., & Latif, M. T. (2020). COVID-19's impact on the atmospheric environment in the Southeast Asia region. Science of the Total Environment, 736, 139658.
  • Le, T., Wang, Y., Liu, L., Yang, J., Yung, Y. L., Li, G., & Seinfeld, J. H. (2020). Unexpected air pollution with marked emission reductions during the COVID-19 outbreak in China. Science, 369(6504), 702-706.
  • Mesas-Carrascosa, F. J., Pérez Porras, F., Triviño-Tarradas, P., García-Ferrer, A. & Meroño-Larriva, J. E. (2020). Effect of lockdown measures on atmospheric nitrogen dioxide during SARS-CoV-2 in Spain. Remote Sensing, 12(14), 2210.
  • Shehzad, K., Sarfraz, M., & Shah, S. G. M. (2020). The impact of COVID-19 as a necessary evil on air pollution in India during the lockdown. Environmental Pollution, 266, 115080.
  • Siciliano, B., Carvalho, G., da Silva, C. M., & Arbilla, G. (2020). The impact of COVID-19 partial lockdown on primary pollutant concentrations in the atmosphere of Rio de Janeiro and São Paulo Megacities (Brazil). Bulletin of Environmental Contamination and Toxicology, 105(1), 2-8.
  • Vîrghileanu M., Săvulescu I., Bogdan-Andrei Mihai B., A., Nistor C., Dobre R., (2020) Nitrogen Dioxide (NO2) Pollution Monitoring with Sentinel-5P Satellite Imagery over Europe during the Coronavirus Pandemic Outbreak. Remote Sensing, 12(21).
  • Zhang, G., Xu, H., Wang, H., Xue, L., He, J., Xu, W. & Meng, X. (2020). Exploring the inconsistent variations in atmospheric primary and secondary pollutants during the 2016 G20 summit in Hangzhou, China: implications from observations and models. Atmospheric Chemistry and Physics, 20(9), 5391-5403.
  • URL-1: https://www.mgm.gov.tr/genel/ozonveuv.aspx?s=2 [Erişim Tarihi: 04.02.2022]
  • URL-2:https://scied.ucar.edu/learning-zone/air-quality [Erişim Tarihi: 04.02.2022]
  • URL-3:http://www.tropomi.eu/data-products/nitrogen-dioxide [Erişim Tarihi: 04.02.2022] URL-4: https://en.wikipedia.org/wiki/Marmara_Region [Erişim Tarihi: 04.02.2022]
  • URL-5: https://www.havaizleme.gov.tr/ [Erişim Tarihi: 04.02.2022]
There are 16 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Articles
Authors

Mete Sünsüli This is me 0000-0002-3748-1851

Kaan Kalkan 0000-0002-2732-5425

Publication Date June 15, 2022
Acceptance Date February 14, 2022
Published in Issue Year 2022 Volume: 4 Issue: 1

Cite

APA Sünsüli, M., & Kalkan, K. (2022). Sentinel-5p Uydu Görüntüleri İle Azot Dioksit (NO2) Kirliliğinin İzlenmesi. Türkiye Uzaktan Algılama Dergisi, 4(1), 1-6. https://doi.org/10.51489/tuzal.1056261
AMA Sünsüli M, Kalkan K. Sentinel-5p Uydu Görüntüleri İle Azot Dioksit (NO2) Kirliliğinin İzlenmesi. TJRS. June 2022;4(1):1-6. doi:10.51489/tuzal.1056261
Chicago Sünsüli, Mete, and Kaan Kalkan. “Sentinel-5p Uydu Görüntüleri İle Azot Dioksit (NO2) Kirliliğinin İzlenmesi”. Türkiye Uzaktan Algılama Dergisi 4, no. 1 (June 2022): 1-6. https://doi.org/10.51489/tuzal.1056261.
EndNote Sünsüli M, Kalkan K (June 1, 2022) Sentinel-5p Uydu Görüntüleri İle Azot Dioksit (NO2) Kirliliğinin İzlenmesi. Türkiye Uzaktan Algılama Dergisi 4 1 1–6.
IEEE M. Sünsüli and K. Kalkan, “Sentinel-5p Uydu Görüntüleri İle Azot Dioksit (NO2) Kirliliğinin İzlenmesi”, TJRS, vol. 4, no. 1, pp. 1–6, 2022, doi: 10.51489/tuzal.1056261.
ISNAD Sünsüli, Mete - Kalkan, Kaan. “Sentinel-5p Uydu Görüntüleri İle Azot Dioksit (NO2) Kirliliğinin İzlenmesi”. Türkiye Uzaktan Algılama Dergisi 4/1 (June 2022), 1-6. https://doi.org/10.51489/tuzal.1056261.
JAMA Sünsüli M, Kalkan K. Sentinel-5p Uydu Görüntüleri İle Azot Dioksit (NO2) Kirliliğinin İzlenmesi. TJRS. 2022;4:1–6.
MLA Sünsüli, Mete and Kaan Kalkan. “Sentinel-5p Uydu Görüntüleri İle Azot Dioksit (NO2) Kirliliğinin İzlenmesi”. Türkiye Uzaktan Algılama Dergisi, vol. 4, no. 1, 2022, pp. 1-6, doi:10.51489/tuzal.1056261.
Vancouver Sünsüli M, Kalkan K. Sentinel-5p Uydu Görüntüleri İle Azot Dioksit (NO2) Kirliliğinin İzlenmesi. TJRS. 2022;4(1):1-6.

Flag Counter