Review Article
BibTex RIS Cite

Wheat: Biotrophic Fungi and Resistance Genes

Year 2021, Volume: 3 Issue: 1, 10 - 20, 27.02.2021

Abstract

Nowadays, biotrophic diseases such as fungi in wheat fear farmers since they cause serious losses of income. Wheat has been adapted to diverse climatic conditions, for instance, grown over a range of altitudes and latitudes under irrigated, dry, and wetter conditions. Expectedly wheat plant cultivation will reach sixty percent to cover human food necessity in coming decades. However, biotrophic fungi, for instance, Puccinia graminis f. sp. tritici, Puccinia striiformis f. sp. tritici, Puccinia triticina, and Blumeria graminis f. sp. which are obligate parasites weaken the plant structured plant framework and out coming in poor plant health and minimized grain fill. Therefore, this review has moved forward to answer the main three research questions as RQ1: How genetic resistance affects wheat crop? RQ2: What are the damages that cause via biotrophic fungal on the wheat? RQ3: What are the diversity and the area distribution of the “Ug99” pathotype. In addition, the result of this observational study will be expected to be beneficial for several areas such as in cultivation, production, education, and moreover in research.

Supporting Institution

bolu Abant izzet baysal university

Project Number

759870

Thanks

Thanks for the guidance prof. dr Nusert Zencirci

References

  • Abdullah, S.K and Atroshi, H.I.M 2016. Mycobiota associated with grains of soft wheat (Triticum aestivum L.) cultivars in Duhok province, Kurdistan Region, Iraq. Journal of Agricultural Technology 12(1):91-104.
  • Aktaş, H. and Zencirci, N. 2016. Stripe rust partial resistance increases spring bread wheat yield in South‐eastern Anatolia, Turkey. Journal of Phytopathology. 1085-1096.
  • Ali, S., Liu, Y., Ishaq, M., Shah, T., Ilyas, A., and Din, I. U., 2017. Climate change and its impact on the yield of major food crops: Evidence from Pakistan. Foods, 6(6), 39. ‏
  • Ali, S., Gladieux, P., Leconte, M., Gautier, A., Justesen, A. F., Hovmøller, M. S., and de Vallavieille Pope, C, 2014. Origin, migration routes and worldwide population genetic structure of the wheat yellow rust pathogen Puccinia striiformis f. sp. tritici. PLoS pathogens, 10(1). ‏
  • Anh, V. L., Anh, N. T., Tagle, A. G., Vy, T. T. P., Inoue, Y., Takumi, S., and Tosa, Y., 2015. Rmg8, a new gene for resistance to Triticum isolates of Pyricularia oryzae in hexaploid wheat. Phytopathology, 105(12), 1568-1572.‏
  • Aranyi, N. R., Varga, I., Poczai, P., Cernák, I., Vida, G., Molnár-Láng, M.,and Hoffmann, B. , 2014. What types of powdery mildew can infect wheat-barley introgression lines?. European journal of plant pathology, 139(1), 19-25.‏
  • Bhattacharya, S., 2017. Deadly new wheat disease threatens Europe's crops. Nature, 542 (7640).
  • Beddow, J. M., Pardey, P. G., Chai, Y., Hurley, T. M., Kriticos, D. J., Braun, H. J., and Yonow, T., 2015. Research investment implications of shifts in the global geography of wheat stripe rust. Nature Plants, 1(10), 1-5. ‏
  • Bolton, M. D., Kolmer, J. A., and Garvin, D. F., 2008. Wheat leaf rust caused by Puccinia triticina. Molecular plant pathology, 9(5), 563-575.‏
  • Brown, J. K., Chartrain, L., Lasserre-Zuber, P., and Saintenac, C., 2015. Genetics of resistance to Zymoseptoria tritici and applications to wheat breeding. Fungal Genetics and Biology, 79, 33-41.
  • Burdon, J. J., Barrett, L. G., Rebetzke, G., and Thrall, P. H., 2014. Guiding deployment of resistance in cereals using evolutionary principles. Evolutionary Applications, 7(6), 609-624.‏
  • Cerda, R., 2017. Assessment of yield and economic losses caused by pests and diseases in a range of management strategies and production situations in coffee agroecosystems (Doctoral dissertation).
  • Chen, W., Wellings, C., Chen, X., Kang, Z., and Liu, T., 2014. Wheat stripe (yellow) rust caused by P uccinia striiformis f. sp. tritici. Molecular plant pathology, 15(5), 433-446.‏
  • Cowger, C., Miranda, L., Griffey, C., Hall, M., Murphy, J. P., and Maxwell, J., 2012. Wheat powdery mildew. Disease resistance in wheat. CABI, Oxfordshire, 84-119.
  • Dakouri, A., McCallum, B. D., Radovanovic, N., and Cloutier, S., 2013. Molecular and phenotypic characterization of seedling and adult plant leaf rust resistance in a world wheat collection. Molecular Breeding, 32(3), 663-677
  • Dixon, J., Braun, H. J., and Crouch, J., 2009. Overview: transitioning wheat research to serve the future needs of the developing world. Wheat facts and futures, 23, 1-25. Dodds, P. N., and Lagudah, E. S., 2016. Starving the enemy. Science, 354(6318), 1377-1378.‏
  • Ellis, J. G., Lagudah, E. S., Spielmeyer, W., and Dodds, P. N., 2014. The past, present and future of breeding rust resistant wheat. Frontiers in plant science, 5, 641
  • Figueroa, M., Hammond‐Kosack, K. E. and Solomon, P. S., 2018. A review of wheat diseases—a field perspective. Molecular plant pathology, 19(6), 1523-153 6.
  • Figueroa, M., Upadhyaya, N. M., Sperschneider, J., Park, R. F., Szabo, L. J., Steffenson, B., and Dodds, P. N., 2016. Changing the game: using integrative genomics to probe virulence mechanisms of the stem rust pathogen Puccinia graminis f. sp. tritici. Frontiers in plant.
  • Gargouri-Kammoun, L., Bensassi, F., Mnari-Hattab, M., Rhouma, A., Bacha, H., and Hajlaoui, M. R., 2014. Identification of Alternaria species recovered from stored durum wheat kernels in Tunisia. Tunisian Journal of Plant Protection, 9(2), 119-129.
  • Golzar, H., Shankar, M., and D’Antuono, M., 2016. Responses of commercial wheat varieties and differential lines to western Australian powdery mildew (Blumeria graminis f. sp. triticipopulations. Australasian Plant Pathology, 45(4), 347-355.
  • Guo, J., Zhang, X., Hou, Y., Cai, J., Shen, X., Zhou, T., and Han, F., 2015. High-density mapping of the major FHB resistance gene Fhb7 derived from Thinopyrum ponticum and its pyramiding with Fhb1 by marker-assisted selection. Theoretical and applied genetics, 128(11), 2301-2316.
  • He, H., Zhu, S., Zhao, R., Jiang, Z., Ji, Y., Ji, J., and Bie, T., 2018. Pm21, encoding a typical CC- NBS-LRR protein, confers broad-spectrum resistance to wheat powdery mildew disease. Molecular plant, 11(6), 879-882. ‏
  • Hovmøller, M. S., Sørensen, C. K., Walter, S., and Justesen, A. F., 2011. Diversity of Puccinia striiformis on cereals and grasses. Annual review of phytopathology, 49, 197-217.‏
  • Hovmøller, M. S., Walter, S., Bayles, R. A., Hubbard, A., Flath, K., Sommerfeldt, N., and. Hansen, J. G., 2016. Replacement of the European wheat yellow rust population by new races from the center of diversity in the near‐Himalayan region. Plant Pathology, 65(3), 402-411.
  • Hubbard, A., Lewis, C. M., Yoshida, K., Ramirez- Gonzalez, R. H., de Vallavieille-Pope, C., Thomas, J., and Saunders, D. G., 2015. Field pathogenomics reveals the emergence of a diverse wheat yellow rust population. Genome biology, 16(1), 23.
  • Huerta-Espino, J., Singh, R. P., German, S., McCallum, B. D., Park, R. F., Chen, W. Q., and Goyeau, H., 2011. Global status of wheat leaf rust caused by Puccinia triticina. Euphytica, 179(1), 143-160.
  • Johnson, J. W., Baenziger, P. S., Yamazaki, W. T., and.............. Smith, R. T., 1979. Effects of Powdery Mildew on Yield and Quality of Isogenic Lines of ‘Chancellor’Wheat 1. Crop Science, 19(3), 349-352. Kang, Y., Zhou, M., Merry, A., and Barry, K., 2020. Mechanisms of powdery mildew resistance of wheat – a review of molecular breeding Plant Pathology.doi:10.1111/ppa.13166.
  • Khanfri, S., Boulif, M., and Lahlali, R., 2018. Yellow rust (Puccinia striiformis): a serious threat to wheat production worldwide. Notulae Scientia Biologicae, 10(3), 410-423. ‏
  • Kolmer, J. A., 2005. Tracking wheat rust on a continental scale. Current opinion in plant biology, 8(4), 441-449. ‏
  • Li, G., Xu, X., Bai, G., Carver, B. F., Hunger, R., and Bonman, J. M., 2016. Identification of novel powdery mildew resistance sources in wheat. Crop Science, 56(4), 1817-1830.
  • Li, Y., Shi, X., Hu, J., Wu, P., Qiu, D., Qu, Y., and Liu, H., 2020. Identification of a recessive gene PmQ conferring resistance to powdery mildew in wheat landrace Qingxinmai using BSR-Seqanalysis. Plant Disease, 104(3), 743-751. ‏
  • Li, Z., Lan, C., He, Z., Singh, R. P., Rosewarne, G. M., Chen, X., and Xia, X., 2014. Overview and application of QTL for adult plant resistance to leaf rust and powdery mildew in wheat. Crop Science, 54(5), 1907-1925. ‏
  • Marchal, C., Zhang, J., Zhang, P., Fenwick, P., Steuernagel, B., Adamski, N. M., and Lagudah, E., 2018. BED-domain-containing immune receptors confer diverse resistance spectra to yellow rust. Nature plants, 4(9), 662-668.‏
  • Martinez,A., Youmans, J., and Buck, J., 2012. Stripe rust (Yellow Rust) of wheat. College of Agricurtular and Environmental Sciences, College of family and Consumer Sciences. Martínez-Espinoza, A. D., Youmans, J. D.,and Buck, J. W., 2009. Stripe rust (yellow rust) of wheat.‏
  • McCallum, B. D., Hiebert, C. W., Cloutier, S., Bakkeren, G., Rosa, S. B., Humphreys, D. G., and Saville, B. J., 2016. A review of wheat leaf rust research and the development of resistant cultivars in Canada. Canadian Journal of Plant Pathology, 38(1), 1-18.
  • McCallum, B., Hiebert, C., Huerta-Espino, J., and Cloutier, S., 2012. Wheat leaf rust. Disease resistance in wheat. CABI plant protection series, 1, 33-62.‏
  • McIntosh R.A., Yamazak, Y., Dubcovsky, J., Rogers, WJ., Morris, C., Appels, R., Xia, XC., 2014. Catalogue of gene symbolsfor wheat. (www.shigen.nig.ac.jp/wheat/komugi/genes/macgene/2012/GeneSymbol). (Accessed on 23 May 2014)
  • McIntosh, R. A., Dubcovsky, J., Rogers, W. J., Morris, C., and Xia, X. C., 2017. Catalog of gene Symbols for wheat: 2017 ‏supplement. (www.shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2017.pdf). (Accessed 2017).
  • McIntosh, R. A., Wellings, C. R. and Park, R. F., 1995. Wheat rusts: an atlas of resistance genes. Csiro Publishing. ‏ Mehta, Y.R., 2014. Wheat Diseases and their Management. New York: Springer. 256 pp.
  • Mobasser, S., Jazayeri, M. R., Khazaei, F., & Sadeghi, L., (2012). Wheat seed contamination with seedborne diseases in cold climatic zone of Iran. ‏
  • Moore, J. W., Herrera-Foessel, S., Lan, C., Schnippenkoetter, W., Ayliffe, M., Huerta-Espino, J., and Kong, X., 2015. A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nature genetics, 47(12), 1494-1498.
  • Murray, G. M., and Brennan, J. P., 2009. Estimating disease losses to the Australian wheat industry. Australasian Plant Pathology, 38(6), 558-570.‏
  • Olivera Firpo, P. Newcomb, M., Szabo, L. J., Rouse, M., Johnson, J., Gale, S., ... & Jin, Y. (2015). Phenotypic and genotypic characterization of race TKTTF of Puccinia graminis f. sp. tritici that caused a wheat stem rust epidemic in southern Ethiopia in 2013–14. Phytopathology, 105(7), 917-928.‏
  • Park, R. F., 2016. Wheat: Biotrophic Pathogen Resistance. Encyclopedia of Food Grains, 264–272. doi:10.1016/b978-0-12-394437-5.00207-2
  • Park, R. Cuddy, W. Hollaway, G. (2015). Green bridge to rusty cropsGRDC. Project Code US00067.
  • Periyannan, S., Milne, R. J., Figueroa, M., Lagudah, E. S., and Dodds, P. N., 2017. An overview of genetic rust resistance: from broad to specific mechanisms. PLoS pathogens, 13(7).‏ Randhawa, M. S., 2015. Molecular mapping of rust resistance in wheat: discovery to deployment. ‏(PhD Thesis). Cobbitty The University of Sydney Faculty of Agriculture and Environment Plant Breeding Institute. Sydney.
  • Randhawa, M. S., Bhavani, S., Singh, P. K., Huerta-Espino, J.,and Singh, R. P., 2019. Disease Resistance in Wheat: Present Status and Future Prospects. In Disease Resistance in Crop Plants (pp. 61-81). Springer, Cham
  • Rodriguez-Algaba, J., Walter, S., Sørensen, C. K., Hovmøller, M. S., and Justesen, A. F., 2014. Sexual structures and recombination of the wheat rust fungus Puccinia striiformis on Berberis vulgaris. Fungal Genetics and Biology, 70, 77-85.‏
  • Roelfs, A.P., Singh, R.P. and Saari, E.E., 1992. Rust Diseases of Wheat: Concepts and Methods of Disease Management. Mexico, DF: CIMMYT.
  • Saari, E. E., and Wilcoxson, R. D., 1974. Plant disease situation of high-yielding dwarf wheats in Asia and Africa. Annual Review of Phytopathology, 12(1), 49-68.
  • Savary, S., Willocquet, L., Pethybridge, S. J., Esker, P., McRoberts, N., and Nelson, A., 2019. The global burden of pathogens and pests on major food crops. Nature ecology and evolution, 3(3), 430-439. ‏
  • Schachermayr, G., Feuillet, C., and Keller, B., 1997. Molecular markers for the detection of the wheat leaf rust resistance gene Lr10 in diverse genetic backgrounds. Molecular Breeding, 3(1), 65-74.
  • Schachermayr, G., Siedler, H., Gale, M. D., Winzeler, H., Winzeler, M., and Keller, B., 1994. Identification and localization of molecular markers linked to the Lr9 leaf rust resistance gene of wheat. Theoretical and applied genetics, 88(1), 110-115.‏
  • Sharma, R. C., Nazari, K., Amanov, A., Ziyaev, Z.,and Jalilov, A. U., 2016. Reduction of winter wheat yield losses caused by stripe rust through fungicide management. Journal of Phytopathology, 164(9), 671-677.‏
  • Singh, R. P., Hodson, D. P., Jin, Y., Lagudah, E. S., Ayliffe, M. A., Bhavani, S., and Basnet, B. R., 2015. Emergence and spread of new races of wheat stem rust fungus: continued threat to food security and prospects of genetic control. Phytopathology, 105(7), 872-884
  • Singh, R. P., Hodson, D. P., Jin, Y., Lagudah, E. S., Ayliffe, M. A., Bhavani, S., and Basnet, B. R., 2015. Emergence and spread of new races of wheat stem rust fungus: continued threat to food security and prospects of genetic control. Phytopathology, 105(7), 872-884.‏
  • Singh, R. P., Singh, P. K., Rutkoski, J., Hodson, D. P., He, X., Jørgensen, L. N.and Huerta-Espino, J., 2016. Disease impact on wheat yield potential and prospects of genetic control. Annual review of phytopathology, 54, 303-322.
  • Singh, S., Singh, R.P., Huerta-Espino, J., 2012. Stem rust. See Ref. 85, pp. 18–32.
  • Steuernagel, B., Periyannan, S. K., Hernández-Pinzón, I., Witek, K., Rouse, M. N., Yu, G., and Lagudah, E. S., 2016. Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nature Biotechnology, 34(6), 652.‏
  • Thind, A.K., Wicker, T., Simkova, H., Fossati, D., Moullet, O., Brabant, C., Vrana, J., Dolezel, J. and Krattinger, S.G., 2017. Rapid cloning of genes in hexaploid wheat using cultivar-specific long-range chromosome assembly. Nat. Biotechnol. 35, 793–796. doi:10.1038/nbt.3877.
  • Vos, R., and Bellù, L. G., 2019. Global trends and challenges to food and agriculture into the 21st century. In Sustainable food and agriculture (pp. 11-30). Academic Press. ‏
  • Wicker, T., Oberhaensli, S., Parlange, F., Buchmann, J. P., Shatalina, M., Roffler, S., ... & Spanu, P. D., (2013). The wheat powdery mildew genome shows the unique evolution of an obligate biotroph. Nature Genetics, 45(9), 1092-1096.‏
  • Yadav, M. K., Aravindan, S., Ngangkham, U., Shubudhi, H. N., Bag, M. K., Adak, T., ... & Jena, M., 2017. Use of molecular markers in identification and characterization of resistance to rice blast in India. PloS one, 12(4).‏
  • Yu, L. X., Barbier, H., Rouse, M. N., Singh, S., Singh, R. P., Bhavani, S., and Sorrells, M. E. ,2014. consensus map for Ug99 stem rust resistance loci in wheat. Theoretical and Applied Genetics, 127(7), 1561-1581.‏
Year 2021, Volume: 3 Issue: 1, 10 - 20, 27.02.2021

Abstract

Project Number

759870

References

  • Abdullah, S.K and Atroshi, H.I.M 2016. Mycobiota associated with grains of soft wheat (Triticum aestivum L.) cultivars in Duhok province, Kurdistan Region, Iraq. Journal of Agricultural Technology 12(1):91-104.
  • Aktaş, H. and Zencirci, N. 2016. Stripe rust partial resistance increases spring bread wheat yield in South‐eastern Anatolia, Turkey. Journal of Phytopathology. 1085-1096.
  • Ali, S., Liu, Y., Ishaq, M., Shah, T., Ilyas, A., and Din, I. U., 2017. Climate change and its impact on the yield of major food crops: Evidence from Pakistan. Foods, 6(6), 39. ‏
  • Ali, S., Gladieux, P., Leconte, M., Gautier, A., Justesen, A. F., Hovmøller, M. S., and de Vallavieille Pope, C, 2014. Origin, migration routes and worldwide population genetic structure of the wheat yellow rust pathogen Puccinia striiformis f. sp. tritici. PLoS pathogens, 10(1). ‏
  • Anh, V. L., Anh, N. T., Tagle, A. G., Vy, T. T. P., Inoue, Y., Takumi, S., and Tosa, Y., 2015. Rmg8, a new gene for resistance to Triticum isolates of Pyricularia oryzae in hexaploid wheat. Phytopathology, 105(12), 1568-1572.‏
  • Aranyi, N. R., Varga, I., Poczai, P., Cernák, I., Vida, G., Molnár-Láng, M.,and Hoffmann, B. , 2014. What types of powdery mildew can infect wheat-barley introgression lines?. European journal of plant pathology, 139(1), 19-25.‏
  • Bhattacharya, S., 2017. Deadly new wheat disease threatens Europe's crops. Nature, 542 (7640).
  • Beddow, J. M., Pardey, P. G., Chai, Y., Hurley, T. M., Kriticos, D. J., Braun, H. J., and Yonow, T., 2015. Research investment implications of shifts in the global geography of wheat stripe rust. Nature Plants, 1(10), 1-5. ‏
  • Bolton, M. D., Kolmer, J. A., and Garvin, D. F., 2008. Wheat leaf rust caused by Puccinia triticina. Molecular plant pathology, 9(5), 563-575.‏
  • Brown, J. K., Chartrain, L., Lasserre-Zuber, P., and Saintenac, C., 2015. Genetics of resistance to Zymoseptoria tritici and applications to wheat breeding. Fungal Genetics and Biology, 79, 33-41.
  • Burdon, J. J., Barrett, L. G., Rebetzke, G., and Thrall, P. H., 2014. Guiding deployment of resistance in cereals using evolutionary principles. Evolutionary Applications, 7(6), 609-624.‏
  • Cerda, R., 2017. Assessment of yield and economic losses caused by pests and diseases in a range of management strategies and production situations in coffee agroecosystems (Doctoral dissertation).
  • Chen, W., Wellings, C., Chen, X., Kang, Z., and Liu, T., 2014. Wheat stripe (yellow) rust caused by P uccinia striiformis f. sp. tritici. Molecular plant pathology, 15(5), 433-446.‏
  • Cowger, C., Miranda, L., Griffey, C., Hall, M., Murphy, J. P., and Maxwell, J., 2012. Wheat powdery mildew. Disease resistance in wheat. CABI, Oxfordshire, 84-119.
  • Dakouri, A., McCallum, B. D., Radovanovic, N., and Cloutier, S., 2013. Molecular and phenotypic characterization of seedling and adult plant leaf rust resistance in a world wheat collection. Molecular Breeding, 32(3), 663-677
  • Dixon, J., Braun, H. J., and Crouch, J., 2009. Overview: transitioning wheat research to serve the future needs of the developing world. Wheat facts and futures, 23, 1-25. Dodds, P. N., and Lagudah, E. S., 2016. Starving the enemy. Science, 354(6318), 1377-1378.‏
  • Ellis, J. G., Lagudah, E. S., Spielmeyer, W., and Dodds, P. N., 2014. The past, present and future of breeding rust resistant wheat. Frontiers in plant science, 5, 641
  • Figueroa, M., Hammond‐Kosack, K. E. and Solomon, P. S., 2018. A review of wheat diseases—a field perspective. Molecular plant pathology, 19(6), 1523-153 6.
  • Figueroa, M., Upadhyaya, N. M., Sperschneider, J., Park, R. F., Szabo, L. J., Steffenson, B., and Dodds, P. N., 2016. Changing the game: using integrative genomics to probe virulence mechanisms of the stem rust pathogen Puccinia graminis f. sp. tritici. Frontiers in plant.
  • Gargouri-Kammoun, L., Bensassi, F., Mnari-Hattab, M., Rhouma, A., Bacha, H., and Hajlaoui, M. R., 2014. Identification of Alternaria species recovered from stored durum wheat kernels in Tunisia. Tunisian Journal of Plant Protection, 9(2), 119-129.
  • Golzar, H., Shankar, M., and D’Antuono, M., 2016. Responses of commercial wheat varieties and differential lines to western Australian powdery mildew (Blumeria graminis f. sp. triticipopulations. Australasian Plant Pathology, 45(4), 347-355.
  • Guo, J., Zhang, X., Hou, Y., Cai, J., Shen, X., Zhou, T., and Han, F., 2015. High-density mapping of the major FHB resistance gene Fhb7 derived from Thinopyrum ponticum and its pyramiding with Fhb1 by marker-assisted selection. Theoretical and applied genetics, 128(11), 2301-2316.
  • He, H., Zhu, S., Zhao, R., Jiang, Z., Ji, Y., Ji, J., and Bie, T., 2018. Pm21, encoding a typical CC- NBS-LRR protein, confers broad-spectrum resistance to wheat powdery mildew disease. Molecular plant, 11(6), 879-882. ‏
  • Hovmøller, M. S., Sørensen, C. K., Walter, S., and Justesen, A. F., 2011. Diversity of Puccinia striiformis on cereals and grasses. Annual review of phytopathology, 49, 197-217.‏
  • Hovmøller, M. S., Walter, S., Bayles, R. A., Hubbard, A., Flath, K., Sommerfeldt, N., and. Hansen, J. G., 2016. Replacement of the European wheat yellow rust population by new races from the center of diversity in the near‐Himalayan region. Plant Pathology, 65(3), 402-411.
  • Hubbard, A., Lewis, C. M., Yoshida, K., Ramirez- Gonzalez, R. H., de Vallavieille-Pope, C., Thomas, J., and Saunders, D. G., 2015. Field pathogenomics reveals the emergence of a diverse wheat yellow rust population. Genome biology, 16(1), 23.
  • Huerta-Espino, J., Singh, R. P., German, S., McCallum, B. D., Park, R. F., Chen, W. Q., and Goyeau, H., 2011. Global status of wheat leaf rust caused by Puccinia triticina. Euphytica, 179(1), 143-160.
  • Johnson, J. W., Baenziger, P. S., Yamazaki, W. T., and.............. Smith, R. T., 1979. Effects of Powdery Mildew on Yield and Quality of Isogenic Lines of ‘Chancellor’Wheat 1. Crop Science, 19(3), 349-352. Kang, Y., Zhou, M., Merry, A., and Barry, K., 2020. Mechanisms of powdery mildew resistance of wheat – a review of molecular breeding Plant Pathology.doi:10.1111/ppa.13166.
  • Khanfri, S., Boulif, M., and Lahlali, R., 2018. Yellow rust (Puccinia striiformis): a serious threat to wheat production worldwide. Notulae Scientia Biologicae, 10(3), 410-423. ‏
  • Kolmer, J. A., 2005. Tracking wheat rust on a continental scale. Current opinion in plant biology, 8(4), 441-449. ‏
  • Li, G., Xu, X., Bai, G., Carver, B. F., Hunger, R., and Bonman, J. M., 2016. Identification of novel powdery mildew resistance sources in wheat. Crop Science, 56(4), 1817-1830.
  • Li, Y., Shi, X., Hu, J., Wu, P., Qiu, D., Qu, Y., and Liu, H., 2020. Identification of a recessive gene PmQ conferring resistance to powdery mildew in wheat landrace Qingxinmai using BSR-Seqanalysis. Plant Disease, 104(3), 743-751. ‏
  • Li, Z., Lan, C., He, Z., Singh, R. P., Rosewarne, G. M., Chen, X., and Xia, X., 2014. Overview and application of QTL for adult plant resistance to leaf rust and powdery mildew in wheat. Crop Science, 54(5), 1907-1925. ‏
  • Marchal, C., Zhang, J., Zhang, P., Fenwick, P., Steuernagel, B., Adamski, N. M., and Lagudah, E., 2018. BED-domain-containing immune receptors confer diverse resistance spectra to yellow rust. Nature plants, 4(9), 662-668.‏
  • Martinez,A., Youmans, J., and Buck, J., 2012. Stripe rust (Yellow Rust) of wheat. College of Agricurtular and Environmental Sciences, College of family and Consumer Sciences. Martínez-Espinoza, A. D., Youmans, J. D.,and Buck, J. W., 2009. Stripe rust (yellow rust) of wheat.‏
  • McCallum, B. D., Hiebert, C. W., Cloutier, S., Bakkeren, G., Rosa, S. B., Humphreys, D. G., and Saville, B. J., 2016. A review of wheat leaf rust research and the development of resistant cultivars in Canada. Canadian Journal of Plant Pathology, 38(1), 1-18.
  • McCallum, B., Hiebert, C., Huerta-Espino, J., and Cloutier, S., 2012. Wheat leaf rust. Disease resistance in wheat. CABI plant protection series, 1, 33-62.‏
  • McIntosh R.A., Yamazak, Y., Dubcovsky, J., Rogers, WJ., Morris, C., Appels, R., Xia, XC., 2014. Catalogue of gene symbolsfor wheat. (www.shigen.nig.ac.jp/wheat/komugi/genes/macgene/2012/GeneSymbol). (Accessed on 23 May 2014)
  • McIntosh, R. A., Dubcovsky, J., Rogers, W. J., Morris, C., and Xia, X. C., 2017. Catalog of gene Symbols for wheat: 2017 ‏supplement. (www.shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2017.pdf). (Accessed 2017).
  • McIntosh, R. A., Wellings, C. R. and Park, R. F., 1995. Wheat rusts: an atlas of resistance genes. Csiro Publishing. ‏ Mehta, Y.R., 2014. Wheat Diseases and their Management. New York: Springer. 256 pp.
  • Mobasser, S., Jazayeri, M. R., Khazaei, F., & Sadeghi, L., (2012). Wheat seed contamination with seedborne diseases in cold climatic zone of Iran. ‏
  • Moore, J. W., Herrera-Foessel, S., Lan, C., Schnippenkoetter, W., Ayliffe, M., Huerta-Espino, J., and Kong, X., 2015. A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nature genetics, 47(12), 1494-1498.
  • Murray, G. M., and Brennan, J. P., 2009. Estimating disease losses to the Australian wheat industry. Australasian Plant Pathology, 38(6), 558-570.‏
  • Olivera Firpo, P. Newcomb, M., Szabo, L. J., Rouse, M., Johnson, J., Gale, S., ... & Jin, Y. (2015). Phenotypic and genotypic characterization of race TKTTF of Puccinia graminis f. sp. tritici that caused a wheat stem rust epidemic in southern Ethiopia in 2013–14. Phytopathology, 105(7), 917-928.‏
  • Park, R. F., 2016. Wheat: Biotrophic Pathogen Resistance. Encyclopedia of Food Grains, 264–272. doi:10.1016/b978-0-12-394437-5.00207-2
  • Park, R. Cuddy, W. Hollaway, G. (2015). Green bridge to rusty cropsGRDC. Project Code US00067.
  • Periyannan, S., Milne, R. J., Figueroa, M., Lagudah, E. S., and Dodds, P. N., 2017. An overview of genetic rust resistance: from broad to specific mechanisms. PLoS pathogens, 13(7).‏ Randhawa, M. S., 2015. Molecular mapping of rust resistance in wheat: discovery to deployment. ‏(PhD Thesis). Cobbitty The University of Sydney Faculty of Agriculture and Environment Plant Breeding Institute. Sydney.
  • Randhawa, M. S., Bhavani, S., Singh, P. K., Huerta-Espino, J.,and Singh, R. P., 2019. Disease Resistance in Wheat: Present Status and Future Prospects. In Disease Resistance in Crop Plants (pp. 61-81). Springer, Cham
  • Rodriguez-Algaba, J., Walter, S., Sørensen, C. K., Hovmøller, M. S., and Justesen, A. F., 2014. Sexual structures and recombination of the wheat rust fungus Puccinia striiformis on Berberis vulgaris. Fungal Genetics and Biology, 70, 77-85.‏
  • Roelfs, A.P., Singh, R.P. and Saari, E.E., 1992. Rust Diseases of Wheat: Concepts and Methods of Disease Management. Mexico, DF: CIMMYT.
  • Saari, E. E., and Wilcoxson, R. D., 1974. Plant disease situation of high-yielding dwarf wheats in Asia and Africa. Annual Review of Phytopathology, 12(1), 49-68.
  • Savary, S., Willocquet, L., Pethybridge, S. J., Esker, P., McRoberts, N., and Nelson, A., 2019. The global burden of pathogens and pests on major food crops. Nature ecology and evolution, 3(3), 430-439. ‏
  • Schachermayr, G., Feuillet, C., and Keller, B., 1997. Molecular markers for the detection of the wheat leaf rust resistance gene Lr10 in diverse genetic backgrounds. Molecular Breeding, 3(1), 65-74.
  • Schachermayr, G., Siedler, H., Gale, M. D., Winzeler, H., Winzeler, M., and Keller, B., 1994. Identification and localization of molecular markers linked to the Lr9 leaf rust resistance gene of wheat. Theoretical and applied genetics, 88(1), 110-115.‏
  • Sharma, R. C., Nazari, K., Amanov, A., Ziyaev, Z.,and Jalilov, A. U., 2016. Reduction of winter wheat yield losses caused by stripe rust through fungicide management. Journal of Phytopathology, 164(9), 671-677.‏
  • Singh, R. P., Hodson, D. P., Jin, Y., Lagudah, E. S., Ayliffe, M. A., Bhavani, S., and Basnet, B. R., 2015. Emergence and spread of new races of wheat stem rust fungus: continued threat to food security and prospects of genetic control. Phytopathology, 105(7), 872-884
  • Singh, R. P., Hodson, D. P., Jin, Y., Lagudah, E. S., Ayliffe, M. A., Bhavani, S., and Basnet, B. R., 2015. Emergence and spread of new races of wheat stem rust fungus: continued threat to food security and prospects of genetic control. Phytopathology, 105(7), 872-884.‏
  • Singh, R. P., Singh, P. K., Rutkoski, J., Hodson, D. P., He, X., Jørgensen, L. N.and Huerta-Espino, J., 2016. Disease impact on wheat yield potential and prospects of genetic control. Annual review of phytopathology, 54, 303-322.
  • Singh, S., Singh, R.P., Huerta-Espino, J., 2012. Stem rust. See Ref. 85, pp. 18–32.
  • Steuernagel, B., Periyannan, S. K., Hernández-Pinzón, I., Witek, K., Rouse, M. N., Yu, G., and Lagudah, E. S., 2016. Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nature Biotechnology, 34(6), 652.‏
  • Thind, A.K., Wicker, T., Simkova, H., Fossati, D., Moullet, O., Brabant, C., Vrana, J., Dolezel, J. and Krattinger, S.G., 2017. Rapid cloning of genes in hexaploid wheat using cultivar-specific long-range chromosome assembly. Nat. Biotechnol. 35, 793–796. doi:10.1038/nbt.3877.
  • Vos, R., and Bellù, L. G., 2019. Global trends and challenges to food and agriculture into the 21st century. In Sustainable food and agriculture (pp. 11-30). Academic Press. ‏
  • Wicker, T., Oberhaensli, S., Parlange, F., Buchmann, J. P., Shatalina, M., Roffler, S., ... & Spanu, P. D., (2013). The wheat powdery mildew genome shows the unique evolution of an obligate biotroph. Nature Genetics, 45(9), 1092-1096.‏
  • Yadav, M. K., Aravindan, S., Ngangkham, U., Shubudhi, H. N., Bag, M. K., Adak, T., ... & Jena, M., 2017. Use of molecular markers in identification and characterization of resistance to rice blast in India. PloS one, 12(4).‏
  • Yu, L. X., Barbier, H., Rouse, M. N., Singh, S., Singh, R. P., Bhavani, S., and Sorrells, M. E. ,2014. consensus map for Ug99 stem rust resistance loci in wheat. Theoretical and Applied Genetics, 127(7), 1561-1581.‏
There are 65 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering
Journal Section Articles
Authors

Awatef Shlıbak

Nusret Zencirci 0000-0003-3460-7575

Project Number 759870
Publication Date February 27, 2021
Submission Date December 23, 2020
Published in Issue Year 2021 Volume: 3 Issue: 1

Cite

APA Shlıbak, A., & Zencirci, N. (2021). Wheat: Biotrophic Fungi and Resistance Genes. Uluslararası Anadolu Ziraat Mühendisliği Bilimleri Dergisi, 3(1), 10-20.