Review
BibTex RIS Cite

Mikroplastiklerin Atıksu Arıtma Tesislerindeki Etkileri ve Arıtma Yöntemleri

Year 2022, Volume: 5 Issue: 2, 84 - 91, 31.12.2022

Abstract

Mikroplastikler günlük hayatta sıklıklar kullandığımız ve çevreye yayılması kaçınılmaz olan kimyasallardır. Genel olarak 5 milimetreden küçük plastik parçaları mikroplastik olarak tanımlanır. Günümüzde mikroplastik kirliliği kaynaklarının çok fazla olması, kalıcı oluşu ve hem ekosistem hem de insan sağlığına toksik etkileri nedeniyle giderek daha fazla ilgili çekmektedir. Günlük hayat sırasında ve endüstriyel faaliyetler sonucunda ortaya çıkan mikroplastikler kolaylıkla atıksu arıtma tesislerine ulaşabilmektedir. Mikroplastikler, atıksu arıtma tesislerinin verimliliğini azaltır ve çamur hacmini arttırır. Mikrobiyal aktiviteyi olumsuz yönde etkileyebilir. Bu derleme mikroplastiklerin kentsel atıksu arıtma tesislerine etkileri, arıtma yöntemleri ve ileri arıtım yöntemleri ile giderilebilirliğini değerlendirmektedir.

References

  • [1] Zhang, Z., & Chen, Y., 2020, Effects of microplastics on wastewater and sewage sludge treatment and their removal: A review, Chemical Engineering Journal, 382, 122955.
  • [2] Yurtsever, M., 2018, Küresel Plastik Kirliliği, Nano-Mikroplastik Tehlikesi Ve Sürdürülebilirlik, Çevre, Bilim ve Teknoloji, S171-197.
  • [3] Ahmed, R., Hamid, A. K., Krebsbach, S. A., He, J., & Wang, D., 2022, Critical review of microplastics removal from the environment, Chemosphere, 293, 133557.
  • [4] Cole, M., Lindeque, P., Halsband, C., Galloway T.S., 2011, Microplastics as contaminants in the marine environment: a review, Mar. Pollut. Bull., C 62, S 2588-2597.
  • [5] Carr, S.A., Liu, J., Tesoro A.G., 2016, Transport and fate of microplastic particles in wastewater treatment plants, Water Res., 91, S 174-182.
  • [6] Dris, R., Gasperi, J., Rocher, V., Saad, M., Renault, N., Tassin B., 2015, Microplastic contamination in an urban area: a case study in Greater Paris, Environ. Chem., C 12, S 592.
  • [7] Bakir, A., Rowland, S.J., Thompson, R.C., 2014, Transport of persistent organic pollutants by microplastics in estuarine conditions, Estuarine Coastal Shelf Sci., C 140, S 14-21.
  • [8] Zhu, B., Fang, Y., Zhu, D., Christie, P., Ke, X., Zhu Y., 2018, Exposure to nanoplastics disturbs the gut microbiome in the soil oligochaete Enchytraeus crypticus, Environ. Pollut., C 239, S 408-415.
  • [9] Sun, X., Chen, B., Li, Q., Liu, N., Xia, B., Zhu, L., & Qu, K., 2018, Toxicities of polystyrene nano- and microplastics toward marine bacterium Halomonas alkaliphile, Science of The Total Environment, C 642, S 1378-1385.
  • [10] Cluzard, M., Kazmiruk, T.N., Kazmiruk, V.D., Bendell, L.I., 2015, Intertidal concentrations of microplastics and their influence on ammonium cycling as related to the shellfish industry, Arch. Environ. Con. Tox., C 69, S 310-319.
  • [11] Liu, H., Yang, X., Liu, G., Liang, C., Xue, S., Chen, H., Ritsema, C.J., Geissen V., 2017, Response of soil dissolved organic matter to microplastic addition in Chinese loess soil, Chemosphere, C 185, S 907-917.
  • [12] Kataoka, T., Nihei, Y., Kudou, K., Hinata H., 2019, Assessment of the sources and inflow processes of microplastics in the river environments of Japan, Environ. Pollut., C 244, S 958-965.
  • [13] Kalčíková G., Alič, B., Skalar, T., Bundschuh, M., Gotvajn A.Ž., 2017, Wastewater treatment plant effluents as source of cosmetic polyethylene microbeads to freshwater, Chemosphere, C 188, S 25-31.
  • [14] Perren, W., Wojtasik, A., Cai Q., 2018, Removal of microbeads from wastewater using electrocoagulation, ACS Omega, C 3, S 3357-3364.
  • [15] Ma, B., Xue, W., Ding, Y., Hu, C., Liu, H., & Qu, J., 2019, Removal characteristics of microplastics by Fe-based coagulants during drinking water treatment, Journal of Environmental Sciences, C 78, S 267-275.
  • [16] Lai, C.Y. Groth, A., Gray, S., Duke M., 2014, Enhanced abrasion resistant PVDF/nanoclay hollow fibre composite membranes for water treatment, J. Membr. Sci., C 449 , S 146-157.
  • [17] Abdelrasoul, A., Doan, H., Lohi, A., 2013, A mechanistic model for ultrafiltration membrane fouling by latex, J. Membr. Sci., C 433, S 88-99.
  • [18] Zhang, X., Zhou, Y., Xu, T., Zheng, K., Zhang, R., Peng, Z., Zhang H., 2018, Toxic effects of CuO, ZnO and TiO2 nanoparticles in environmental concentration on the nitrogen removal, microbial activity and community of anammox process, Chem. Eng. J., C 332, S 42-48.
  • [19] Long, Z., Pan, Z., Wang, W., Ren, J., Yu, X., Lin, L., Lin, H., Chen, H., Jin X., 2019, Microplastic abundance, characteristics, and removal in wastewater treatment plants in a coastal city of China, Water Res., C 155, S 255-265.
  • [20] Murphy, F., Ewins, C., Carbonnier, F., Quinn B., 2016, Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment, Environ. Sci. Technol., C 50, S 5800-5808.
  • [21] Mason, S.A., Garneau, D., Sutton, R., Chu, Y., Ehmann, K., Barnes, J., Fink, P., Papazissimos, D., Rogers D.L., 2016, Microplastic pollution is widely detected in US municipal wastewater treatment plant effluent, Environ. Pollut., C 218, S 1045-1054.
  • [22] Gies, E. A., LeNoble, J. L., Noël, M., Etemadifar, A., Bishay, F., Hall, E. R., & Ross, P. S., 2018, Retention of microplastics in a major secondary wastewater treatment plant in Vancouver, Canada, Marine Pollution Bulletin, C 133, S 553-561.
  • [23] Wei, W., Zhang, Y., Huang, Q., Ni, B., 2019, Polyethylene terephthalate microplastics affect hydrogen production from alkaline anaerobic fermentation of waste activated sludge through altering viability and activity of anaerobic microorganisms, Water Res., C 163 , Article 114881.
  • [24] Zhao, Y., Chen, Y., Zhang, D., Zhu X., 2010, Waste activated sludge fermentation for hydrogen production enhanced by anaerobic process improvement and acetobacteria inhibition: the role of fermentation pH, Environ. Sci. Technol., C 44, S 3317-3323.
  • [25] Lares, M., Ncibi, M.C., Sillanpää, M., Sillanpää M., 2018, Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology, Water Res., C 133, S 236-246.
  • [26] Kurt, Z., Özdemir, I., & James R., A. M., 2022, Effectiveness of microplastics removal in wastewater treatment plants: A critical analysis of wastewater treatment processes. Journal of Environmental Chemical Engineering, C 10(3), 107831.
  • [27] Simon, M., Vianello, A., & Vollertsen, J., 2019, Removal of >10 µm Microplastic Particles from Treated Wastewater by a Disc Filter. Water, C 11(9), 1935.
  • [28] Talvitie, J., Mikola, A., Koistinen, A., & Setälä, O., 2017, Solutions to microplastic pollution – Removal of microplastics from wastewater effluent with advanced wastewater treatment technologies, Water Research, C 123, S 401-407.
  • [29] Rajala, K., Grönfors, O., Hesampour, M., & Mikola, A., 2020, Removal of microplastics from secondary wastewater treatment plant effluent by coagulation/flocculation with iron, aluminum and polyamine-based chemicals, Water Research, C 183, S 116045.
  • [31] Misra, A., Zambrzycki, C., Kloker, G., Kotyrba, A., Anjass, M. H., Franco Castillo, I., Mitchell, S. G., Güttel, R., & Streb, C., 2020, Water Purification and Microplastics Removal Using Magnetic Polyoxometalate-Supported Ionic Liquid Phases (magPOM-SILPs), Angewandte Chemie International Edition, C 59(4), S 1601-1605.
  • [32] Tang, Y., Zhang, S., Su, Y., Wu, D., Zhao, Y., & Xie, B., 2021, Removal of microplastics from aqueous solutions by magnetic carbon nanotubes, Chemical Engineering Journal, C 406, 126804.
  • [33] Nabi, I., Bacha, A.-U.-R., Li, K., Cheng, H., Wang, T., Liu, Y., Ajmal, S., Yang, Y., Feng, Y., & Zhang, L., 2020, Complete Photocatalytic Mineralization of Microplastic on TiO2 Nanoparticle Film, IScience, C 23(7), 101326.
  • [34] Jiao, X., Zheng, K., Chen, Q., Li, X., Li, Y., Shao, W., Xu, J., Zhu, J., Pan, Y., Sun, Y., & Xie, Y., 2020, Photocatalytic Conversion of Waste Plastics into C 2 Fuels under Simulated Natural Environment Conditions, Angewandte Chemie International Edition, C 59(36), S 15497-15501.
  • [35] Shen, M., Zhang, Y., Almatrafi, E., Hu, T., Zhou, C., Song, B., Zeng, Z., & Zeng, G., 2022, Efficient removal of microplastics from wastewater by an electrocoagulation process, Chemical Engineering Journal, C 428, 131161.
  • [36] Lapointe, M., Farner, J. M., Hernandez, L. M., & Tufenkji, N., 2020, Understanding and Improving Microplastic Removal during Water Treatment: Impact of Coagulation and Flocculation. Environmental Science & Technology, C 54(14), S 8719-8727.
  • [37] Feng, Y., Feng, L., Liu, S.,Duan, J., Zhang, Y., Li, S., Sun, X., Wang, S.,Yuan X., 2018, Emerging investigator series: inhibition and recovery of anaerobic granular sludge performance in response to short-term polystyrene nanoparticle exposure, Environ. Sci.: Water Res. Technol., C 4, S 1902-1911.
  • [38] Talvitie, J., Heinonen, M., Pääkkönen, J., Vahtera, E., Mikola, A., Setälä, O., Vahala R., 2015, Do wastewater treatment plants act as a potential point source of microplastics? Preliminary study in the coastal Gulf of Finland, Baltic Sea, Water Sci. Technol., C 72, S 1495-1504.
  • [39] Mahon, A.M., Connell, B.O., Healy, M.G., Connor, I.O., Officer, R., Nash, R., Morrison L., 2016, Microplastics in sewage sludge: effects of treatment, Environ. Sci. Technol., C 51, S 810-818.
  • [40] Mishra, S., Singh, R. P., Rout, P. K., & Das, A. P., 2022, Chapter 3—Membrane bioreactor (MBR) as an advanced wastewater treatment technology for removal of synthetic microplastics, Development in Wastewater Treatment Research and Processes S 45-60.
  • [41] Pittura, L., Foglia, A., Akyol, Ç., Cipolletta, G., Benedetti, M., Regoli, F., Eusebi, A. L., Sabbatini, S., Tseng, L. Y., Katsou, E., Gorbi, S., & Fatone, F., 2021, Microplastics in real wastewater treatment schemes: Comparative assessment and relevant inhibition effects on anaerobic processes, Chemosphere, C 262, 128415.

Effects And Treatment Methods of Microplastics in Wastewater Treatment Plants

Year 2022, Volume: 5 Issue: 2, 84 - 91, 31.12.2022

Abstract

Microplastics are chemicals that we use frequently in daily life and that are inevitable to spread to the environment. In general, plastic parts smaller than 5 millimeters are defined as microplastics and the toxic effects of microplastics are attracting more and more attention today. Microplastics, which are produced during daily life and because of industrial activities, can easily reach wastewater treatment plants. Microplastics reduce the efficiency of wastewater and sludge treatment processes and increase sludge volume. It can negatively affect microbial activity. In this review, the effects of microplastics on wastewater treatment plants, treatment methods and removal of microplastics with advanced treatment methods.

References

  • [1] Zhang, Z., & Chen, Y., 2020, Effects of microplastics on wastewater and sewage sludge treatment and their removal: A review, Chemical Engineering Journal, 382, 122955.
  • [2] Yurtsever, M., 2018, Küresel Plastik Kirliliği, Nano-Mikroplastik Tehlikesi Ve Sürdürülebilirlik, Çevre, Bilim ve Teknoloji, S171-197.
  • [3] Ahmed, R., Hamid, A. K., Krebsbach, S. A., He, J., & Wang, D., 2022, Critical review of microplastics removal from the environment, Chemosphere, 293, 133557.
  • [4] Cole, M., Lindeque, P., Halsband, C., Galloway T.S., 2011, Microplastics as contaminants in the marine environment: a review, Mar. Pollut. Bull., C 62, S 2588-2597.
  • [5] Carr, S.A., Liu, J., Tesoro A.G., 2016, Transport and fate of microplastic particles in wastewater treatment plants, Water Res., 91, S 174-182.
  • [6] Dris, R., Gasperi, J., Rocher, V., Saad, M., Renault, N., Tassin B., 2015, Microplastic contamination in an urban area: a case study in Greater Paris, Environ. Chem., C 12, S 592.
  • [7] Bakir, A., Rowland, S.J., Thompson, R.C., 2014, Transport of persistent organic pollutants by microplastics in estuarine conditions, Estuarine Coastal Shelf Sci., C 140, S 14-21.
  • [8] Zhu, B., Fang, Y., Zhu, D., Christie, P., Ke, X., Zhu Y., 2018, Exposure to nanoplastics disturbs the gut microbiome in the soil oligochaete Enchytraeus crypticus, Environ. Pollut., C 239, S 408-415.
  • [9] Sun, X., Chen, B., Li, Q., Liu, N., Xia, B., Zhu, L., & Qu, K., 2018, Toxicities of polystyrene nano- and microplastics toward marine bacterium Halomonas alkaliphile, Science of The Total Environment, C 642, S 1378-1385.
  • [10] Cluzard, M., Kazmiruk, T.N., Kazmiruk, V.D., Bendell, L.I., 2015, Intertidal concentrations of microplastics and their influence on ammonium cycling as related to the shellfish industry, Arch. Environ. Con. Tox., C 69, S 310-319.
  • [11] Liu, H., Yang, X., Liu, G., Liang, C., Xue, S., Chen, H., Ritsema, C.J., Geissen V., 2017, Response of soil dissolved organic matter to microplastic addition in Chinese loess soil, Chemosphere, C 185, S 907-917.
  • [12] Kataoka, T., Nihei, Y., Kudou, K., Hinata H., 2019, Assessment of the sources and inflow processes of microplastics in the river environments of Japan, Environ. Pollut., C 244, S 958-965.
  • [13] Kalčíková G., Alič, B., Skalar, T., Bundschuh, M., Gotvajn A.Ž., 2017, Wastewater treatment plant effluents as source of cosmetic polyethylene microbeads to freshwater, Chemosphere, C 188, S 25-31.
  • [14] Perren, W., Wojtasik, A., Cai Q., 2018, Removal of microbeads from wastewater using electrocoagulation, ACS Omega, C 3, S 3357-3364.
  • [15] Ma, B., Xue, W., Ding, Y., Hu, C., Liu, H., & Qu, J., 2019, Removal characteristics of microplastics by Fe-based coagulants during drinking water treatment, Journal of Environmental Sciences, C 78, S 267-275.
  • [16] Lai, C.Y. Groth, A., Gray, S., Duke M., 2014, Enhanced abrasion resistant PVDF/nanoclay hollow fibre composite membranes for water treatment, J. Membr. Sci., C 449 , S 146-157.
  • [17] Abdelrasoul, A., Doan, H., Lohi, A., 2013, A mechanistic model for ultrafiltration membrane fouling by latex, J. Membr. Sci., C 433, S 88-99.
  • [18] Zhang, X., Zhou, Y., Xu, T., Zheng, K., Zhang, R., Peng, Z., Zhang H., 2018, Toxic effects of CuO, ZnO and TiO2 nanoparticles in environmental concentration on the nitrogen removal, microbial activity and community of anammox process, Chem. Eng. J., C 332, S 42-48.
  • [19] Long, Z., Pan, Z., Wang, W., Ren, J., Yu, X., Lin, L., Lin, H., Chen, H., Jin X., 2019, Microplastic abundance, characteristics, and removal in wastewater treatment plants in a coastal city of China, Water Res., C 155, S 255-265.
  • [20] Murphy, F., Ewins, C., Carbonnier, F., Quinn B., 2016, Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment, Environ. Sci. Technol., C 50, S 5800-5808.
  • [21] Mason, S.A., Garneau, D., Sutton, R., Chu, Y., Ehmann, K., Barnes, J., Fink, P., Papazissimos, D., Rogers D.L., 2016, Microplastic pollution is widely detected in US municipal wastewater treatment plant effluent, Environ. Pollut., C 218, S 1045-1054.
  • [22] Gies, E. A., LeNoble, J. L., Noël, M., Etemadifar, A., Bishay, F., Hall, E. R., & Ross, P. S., 2018, Retention of microplastics in a major secondary wastewater treatment plant in Vancouver, Canada, Marine Pollution Bulletin, C 133, S 553-561.
  • [23] Wei, W., Zhang, Y., Huang, Q., Ni, B., 2019, Polyethylene terephthalate microplastics affect hydrogen production from alkaline anaerobic fermentation of waste activated sludge through altering viability and activity of anaerobic microorganisms, Water Res., C 163 , Article 114881.
  • [24] Zhao, Y., Chen, Y., Zhang, D., Zhu X., 2010, Waste activated sludge fermentation for hydrogen production enhanced by anaerobic process improvement and acetobacteria inhibition: the role of fermentation pH, Environ. Sci. Technol., C 44, S 3317-3323.
  • [25] Lares, M., Ncibi, M.C., Sillanpää, M., Sillanpää M., 2018, Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology, Water Res., C 133, S 236-246.
  • [26] Kurt, Z., Özdemir, I., & James R., A. M., 2022, Effectiveness of microplastics removal in wastewater treatment plants: A critical analysis of wastewater treatment processes. Journal of Environmental Chemical Engineering, C 10(3), 107831.
  • [27] Simon, M., Vianello, A., & Vollertsen, J., 2019, Removal of >10 µm Microplastic Particles from Treated Wastewater by a Disc Filter. Water, C 11(9), 1935.
  • [28] Talvitie, J., Mikola, A., Koistinen, A., & Setälä, O., 2017, Solutions to microplastic pollution – Removal of microplastics from wastewater effluent with advanced wastewater treatment technologies, Water Research, C 123, S 401-407.
  • [29] Rajala, K., Grönfors, O., Hesampour, M., & Mikola, A., 2020, Removal of microplastics from secondary wastewater treatment plant effluent by coagulation/flocculation with iron, aluminum and polyamine-based chemicals, Water Research, C 183, S 116045.
  • [31] Misra, A., Zambrzycki, C., Kloker, G., Kotyrba, A., Anjass, M. H., Franco Castillo, I., Mitchell, S. G., Güttel, R., & Streb, C., 2020, Water Purification and Microplastics Removal Using Magnetic Polyoxometalate-Supported Ionic Liquid Phases (magPOM-SILPs), Angewandte Chemie International Edition, C 59(4), S 1601-1605.
  • [32] Tang, Y., Zhang, S., Su, Y., Wu, D., Zhao, Y., & Xie, B., 2021, Removal of microplastics from aqueous solutions by magnetic carbon nanotubes, Chemical Engineering Journal, C 406, 126804.
  • [33] Nabi, I., Bacha, A.-U.-R., Li, K., Cheng, H., Wang, T., Liu, Y., Ajmal, S., Yang, Y., Feng, Y., & Zhang, L., 2020, Complete Photocatalytic Mineralization of Microplastic on TiO2 Nanoparticle Film, IScience, C 23(7), 101326.
  • [34] Jiao, X., Zheng, K., Chen, Q., Li, X., Li, Y., Shao, W., Xu, J., Zhu, J., Pan, Y., Sun, Y., & Xie, Y., 2020, Photocatalytic Conversion of Waste Plastics into C 2 Fuels under Simulated Natural Environment Conditions, Angewandte Chemie International Edition, C 59(36), S 15497-15501.
  • [35] Shen, M., Zhang, Y., Almatrafi, E., Hu, T., Zhou, C., Song, B., Zeng, Z., & Zeng, G., 2022, Efficient removal of microplastics from wastewater by an electrocoagulation process, Chemical Engineering Journal, C 428, 131161.
  • [36] Lapointe, M., Farner, J. M., Hernandez, L. M., & Tufenkji, N., 2020, Understanding and Improving Microplastic Removal during Water Treatment: Impact of Coagulation and Flocculation. Environmental Science & Technology, C 54(14), S 8719-8727.
  • [37] Feng, Y., Feng, L., Liu, S.,Duan, J., Zhang, Y., Li, S., Sun, X., Wang, S.,Yuan X., 2018, Emerging investigator series: inhibition and recovery of anaerobic granular sludge performance in response to short-term polystyrene nanoparticle exposure, Environ. Sci.: Water Res. Technol., C 4, S 1902-1911.
  • [38] Talvitie, J., Heinonen, M., Pääkkönen, J., Vahtera, E., Mikola, A., Setälä, O., Vahala R., 2015, Do wastewater treatment plants act as a potential point source of microplastics? Preliminary study in the coastal Gulf of Finland, Baltic Sea, Water Sci. Technol., C 72, S 1495-1504.
  • [39] Mahon, A.M., Connell, B.O., Healy, M.G., Connor, I.O., Officer, R., Nash, R., Morrison L., 2016, Microplastics in sewage sludge: effects of treatment, Environ. Sci. Technol., C 51, S 810-818.
  • [40] Mishra, S., Singh, R. P., Rout, P. K., & Das, A. P., 2022, Chapter 3—Membrane bioreactor (MBR) as an advanced wastewater treatment technology for removal of synthetic microplastics, Development in Wastewater Treatment Research and Processes S 45-60.
  • [41] Pittura, L., Foglia, A., Akyol, Ç., Cipolletta, G., Benedetti, M., Regoli, F., Eusebi, A. L., Sabbatini, S., Tseng, L. Y., Katsou, E., Gorbi, S., & Fatone, F., 2021, Microplastics in real wastewater treatment schemes: Comparative assessment and relevant inhibition effects on anaerobic processes, Chemosphere, C 262, 128415.
There are 40 citations in total.

Details

Primary Language Turkish
Subjects Environmental Engineering
Journal Section Articles
Authors

Berk Köker 0000-0002-0332-7434

Meltem Cebeci 0000-0002-3636-0388

Zinnur Yılmaz 0000-0002-2029-3854

Sefa Furkan Selçuk 0000-0002-3700-4377

Early Pub Date December 26, 2022
Publication Date December 31, 2022
Submission Date July 27, 2022
Published in Issue Year 2022 Volume: 5 Issue: 2

Cite

APA Köker, B., Cebeci, M., Yılmaz, Z., Selçuk, S. F. (2022). Mikroplastiklerin Atıksu Arıtma Tesislerindeki Etkileri ve Arıtma Yöntemleri. Ulusal Çevre Bilimleri Araştırma Dergisi, 5(2), 84-91.
AMA Köker B, Cebeci M, Yılmaz Z, Selçuk SF. Mikroplastiklerin Atıksu Arıtma Tesislerindeki Etkileri ve Arıtma Yöntemleri. UCBAD. December 2022;5(2):84-91.
Chicago Köker, Berk, Meltem Cebeci, Zinnur Yılmaz, and Sefa Furkan Selçuk. “Mikroplastiklerin Atıksu Arıtma Tesislerindeki Etkileri Ve Arıtma Yöntemleri”. Ulusal Çevre Bilimleri Araştırma Dergisi 5, no. 2 (December 2022): 84-91.
EndNote Köker B, Cebeci M, Yılmaz Z, Selçuk SF (December 1, 2022) Mikroplastiklerin Atıksu Arıtma Tesislerindeki Etkileri ve Arıtma Yöntemleri. Ulusal Çevre Bilimleri Araştırma Dergisi 5 2 84–91.
IEEE B. Köker, M. Cebeci, Z. Yılmaz, and S. F. Selçuk, “Mikroplastiklerin Atıksu Arıtma Tesislerindeki Etkileri ve Arıtma Yöntemleri”, UCBAD, vol. 5, no. 2, pp. 84–91, 2022.
ISNAD Köker, Berk et al. “Mikroplastiklerin Atıksu Arıtma Tesislerindeki Etkileri Ve Arıtma Yöntemleri”. Ulusal Çevre Bilimleri Araştırma Dergisi 5/2 (December 2022), 84-91.
JAMA Köker B, Cebeci M, Yılmaz Z, Selçuk SF. Mikroplastiklerin Atıksu Arıtma Tesislerindeki Etkileri ve Arıtma Yöntemleri. UCBAD. 2022;5:84–91.
MLA Köker, Berk et al. “Mikroplastiklerin Atıksu Arıtma Tesislerindeki Etkileri Ve Arıtma Yöntemleri”. Ulusal Çevre Bilimleri Araştırma Dergisi, vol. 5, no. 2, 2022, pp. 84-91.
Vancouver Köker B, Cebeci M, Yılmaz Z, Selçuk SF. Mikroplastiklerin Atıksu Arıtma Tesislerindeki Etkileri ve Arıtma Yöntemleri. UCBAD. 2022;5(2):84-91.

 ❤ UCBAD