Research Article
BibTex RIS Cite
Year 2018, Volume: 1 Issue: 1, 54 - 60, 11.03.2018
https://doi.org/10.32323/ujma.382008

Abstract

References

  • [1] A. Connes, Compact metric spaces, Fredholm modules and hyperfiniteness, Ergo. Th. Dyn. Sys. 9 (1989), 207–220.
  • [2] A. Connes, Noncommutative Geometry, Academic Press, 1994.
  • [3] G. Kuperberg, N. Weaver, A von Neumann algebra approach to quantum metrics/quantum relations, Vol. 215, no. 1010. American Mathematical Society, 2012.
  • [4] S. T. Rachev, Probability Metrics and the Stability of Stochastic Models, John Wiley and Sons, 1991.
  • [5] M. A. Rieffel, Metrics on states from actions of compact groups, Doc. Math. 3 (1998), 215–229.
  • [6] M. A. Rieffel, Metrics on state spaces, Doc. Math. 4 (1999), 559–600.
  • [7] M. A. Rieffel, Gromov-Hausdorff distance for quantum metric spaces, Mem. Amer. Math. Soc. 168 (2004), 1–65.
  • [8] M. A. Rieffel, Compact quantum metric spaces, Contemp. Math. 365 (2004), 315–330.
  • [9] M. A. Rieffel, Leibniz seminorms for Matrix algebras converge to the sphere, Quanta of maths, Clay Math. Proc., vol. 11, Amer. Math. Soc., Providence, RI, 2010, 543–578.
  • [10] M. M. Sadr, Quantum functor Mor, Math. Pannonica 21 no. 1 (2010), 77–88.
  • [11] M. M. Sadr, A kind of compact quantum semigroups, Int. J. Math. Math. Sci. 2012 (2012), Article ID 725270, 10 pages.
  • [12] M. M. Sadr, On the quantum groups and semigroups of maps between noncommutative spaces, Czechoslovak Math. J. 67 no. 1 (2017), 97–121.
  • [13] M. M. Sadr, Quantum metrics on noncommutative spaces, available at https://arxiv.org/pdf/1606.00661.pdf
  • [14] M. M. Sadr, Metric operator fields, available at https://arxiv.org/pdf/1705.03378.pdf
  • [15] P. M. Sołtan, Quantum families of maps and quantum semigroups on finite quantum spaces, J. Geom. Phys. 59 (2009), 354–368.
  • [16] S. L. Woronowicz, Pseudogroups, pseudospaces and Pontryagin duality, Proceedings of the International Conference on Mathematical Physics, Lausanne 1979 , Lecture Notes in Physics 116, 407–412.

Quantum metric spaces of quantum maps

Year 2018, Volume: 1 Issue: 1, 54 - 60, 11.03.2018
https://doi.org/10.32323/ujma.382008

Abstract

We show that any quantum family of quantum maps from a noncommutative space to a compact quantum metric space has a canonical quantum pseudo-metric structure. Here by a 'compact quantum metric space' we mean a unital C*-algebra together with a Lipschitz seminorm, in the sense of Rieffel, which induces the weak* topology on the state space of the C*-algebra. Our main result generalizes a classical result to noncommutative world.

References

  • [1] A. Connes, Compact metric spaces, Fredholm modules and hyperfiniteness, Ergo. Th. Dyn. Sys. 9 (1989), 207–220.
  • [2] A. Connes, Noncommutative Geometry, Academic Press, 1994.
  • [3] G. Kuperberg, N. Weaver, A von Neumann algebra approach to quantum metrics/quantum relations, Vol. 215, no. 1010. American Mathematical Society, 2012.
  • [4] S. T. Rachev, Probability Metrics and the Stability of Stochastic Models, John Wiley and Sons, 1991.
  • [5] M. A. Rieffel, Metrics on states from actions of compact groups, Doc. Math. 3 (1998), 215–229.
  • [6] M. A. Rieffel, Metrics on state spaces, Doc. Math. 4 (1999), 559–600.
  • [7] M. A. Rieffel, Gromov-Hausdorff distance for quantum metric spaces, Mem. Amer. Math. Soc. 168 (2004), 1–65.
  • [8] M. A. Rieffel, Compact quantum metric spaces, Contemp. Math. 365 (2004), 315–330.
  • [9] M. A. Rieffel, Leibniz seminorms for Matrix algebras converge to the sphere, Quanta of maths, Clay Math. Proc., vol. 11, Amer. Math. Soc., Providence, RI, 2010, 543–578.
  • [10] M. M. Sadr, Quantum functor Mor, Math. Pannonica 21 no. 1 (2010), 77–88.
  • [11] M. M. Sadr, A kind of compact quantum semigroups, Int. J. Math. Math. Sci. 2012 (2012), Article ID 725270, 10 pages.
  • [12] M. M. Sadr, On the quantum groups and semigroups of maps between noncommutative spaces, Czechoslovak Math. J. 67 no. 1 (2017), 97–121.
  • [13] M. M. Sadr, Quantum metrics on noncommutative spaces, available at https://arxiv.org/pdf/1606.00661.pdf
  • [14] M. M. Sadr, Metric operator fields, available at https://arxiv.org/pdf/1705.03378.pdf
  • [15] P. M. Sołtan, Quantum families of maps and quantum semigroups on finite quantum spaces, J. Geom. Phys. 59 (2009), 354–368.
  • [16] S. L. Woronowicz, Pseudogroups, pseudospaces and Pontryagin duality, Proceedings of the International Conference on Mathematical Physics, Lausanne 1979 , Lecture Notes in Physics 116, 407–412.
There are 16 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Maysam Maysami Sadr 0000-0003-0747-4180

Publication Date March 11, 2018
Submission Date January 21, 2018
Acceptance Date February 28, 2018
Published in Issue Year 2018 Volume: 1 Issue: 1

Cite

APA Maysami Sadr, M. (2018). Quantum metric spaces of quantum maps. Universal Journal of Mathematics and Applications, 1(1), 54-60. https://doi.org/10.32323/ujma.382008
AMA Maysami Sadr M. Quantum metric spaces of quantum maps. Univ. J. Math. Appl. March 2018;1(1):54-60. doi:10.32323/ujma.382008
Chicago Maysami Sadr, Maysam. “Quantum Metric Spaces of Quantum Maps”. Universal Journal of Mathematics and Applications 1, no. 1 (March 2018): 54-60. https://doi.org/10.32323/ujma.382008.
EndNote Maysami Sadr M (March 1, 2018) Quantum metric spaces of quantum maps. Universal Journal of Mathematics and Applications 1 1 54–60.
IEEE M. Maysami Sadr, “Quantum metric spaces of quantum maps”, Univ. J. Math. Appl., vol. 1, no. 1, pp. 54–60, 2018, doi: 10.32323/ujma.382008.
ISNAD Maysami Sadr, Maysam. “Quantum Metric Spaces of Quantum Maps”. Universal Journal of Mathematics and Applications 1/1 (March 2018), 54-60. https://doi.org/10.32323/ujma.382008.
JAMA Maysami Sadr M. Quantum metric spaces of quantum maps. Univ. J. Math. Appl. 2018;1:54–60.
MLA Maysami Sadr, Maysam. “Quantum Metric Spaces of Quantum Maps”. Universal Journal of Mathematics and Applications, vol. 1, no. 1, 2018, pp. 54-60, doi:10.32323/ujma.382008.
Vancouver Maysami Sadr M. Quantum metric spaces of quantum maps. Univ. J. Math. Appl. 2018;1(1):54-60.

Cited By

Banach Algebras Associated to Metric Operator Fields
Iranian Journal of Science and Technology, Transactions A: Science
https://doi.org/10.1007/s40995-019-00696-3

Quantum metrics on noncommutative spaces
Fundamental Journal of Mathematics and Applications
Maysam Maysami Sadr
https://doi.org/10.33401/fujma.401097

 23181

Universal Journal of Mathematics and Applications 

29207              

Creative Commons License  The published articles in UJMA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.