Research Article
BibTex RIS Cite
Year 2018, Volume: 1 Issue: 1, 39 - 45, 11.03.2018
https://doi.org/10.32323/ujma.396363

Abstract

References

  • [1] A. A. Kilbas, H. M. Srivastava, J. J. Trijullo, Theory and applications of fractional differential equations, Elsevier Science b. V, Amsterdam, (2006). 1.
  • [2] A. Cabada, G. Wang, positive solutions of nonlinear fractional differential equations with integral boundary conditions. J. Math. Anal. Appl. 389(1), (2012), 403-411.
  • [3] C. F. Li, X. N. Luo and Y. Zhou, Existence of positive solutions of the boundary value problem for nonlinear fractional differential equations. Comput. Math. Appl. 59 (2010), 1363-1375.
  • [4] F. Liu, K. Burrage, Novel techniques in parameter estimation for fractional dynamycal models arising from biological systems Comput. Math. Appl. 62(3), (2011), 822-833.
  • [5] J. R. Graef, L. Kong, Q. Kong and M. Wang, Uniqueness of positive solutions of fractional boundary value problems with non-homogeneous integral boundary conditions, Fract. Calc. Appl. Anal. 15 (2012), 509-528.
  • [6] J. R. Graef, L. Kong, Q. Kong, Positive solution for a class of higher-order boundary value problems with fractional q-derivatives. Appl. Math. Comput. 218 (2012), 9682-9689.
  • [7] J. R. Graef, L. Kong, Q. Kong, and M. Wang, Existence and uniqueness of solutions for a fractional boundary value problem with Dirichlet boundary condition, Electron. J. Qual. Theory Differ. Equ. 2013 No.55,11 pp.
  • [8] M. Al-Refai, M. Hadjji, Monotone iterative sequences for nonlinear boundary value problems of fractional order. Nonlinear Anal, 74 (2011), 3531-3539.
  • [9] J. Tan and C. Cheng, Fractional boundary value problems with Riemann-Liouville fractional derivatives. Bound. Value Probl. Doi: 13662-015-0413-y, (2015), 14 pages.
  • [10] N. Bouteraa and S. Benaicha, Existence of solutions for three-point boundary value problem for nonlinear fractional differential equations, An. Univ. Oradea, fasc. Math. Volume 25 (2018), nr. 1. to appear.
  • [11] S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, John Wiley and Sons, Inc.; New York, (1993). 1, 1.3, 1
  • [12] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications. Gordon & Breach, Yverdon (1993).
  • [13] S. liu, H. Li and Q. Dai, Nonlinear fractional differential equations with nonlocal integral boundary conditions, Bound.Value. Prob. (2015), 11 pages.
  • [14] V. Lakshmikantham and A. S. Vatsala, General uniqueness and monotone iterative technique for fractional differential equations. Appl. Math. Lett. 21 (8) (2008), 828-834.
  • [15] X. L. Han, H. L. Gao, Existence of positive solutions for eigenvalue problem of nonlinear fractional differential equations. Adv. Differ. Equ. 2012 66 (2012).
  • [16] Y. Sun, M. Zhao, Positive solutions for a class of fractional differential equations with integral boundary conditions. Appl. Math. Lett, 34 (2014), 17-21.
  • [17] Y. F. Xu, Fractional boundary value problems with integral and anti-periodic boundary conditions. Bull. Malays. Math. Sci. Soc. 39, (2016), 571-587.
  • [18] Y. Qiao and Z. zhou, Existence of solutions for a class of fractional differential equations with integral and anti-periodic boundary conditions, Bound. Value Probl. Doi: 13661-016-0547-x, (2017), 9 pages.
  • [19] Z. B. Bai, W. C. Sun and W. Zhang, Positive solutions for boundary value problems of singular fractional differential equations. Abstr. Appl. Anal. 2013, Article ID 129640 (2013).

Positive solutions for nonlinear fractional differential equation with nonlocal boundary conditions

Year 2018, Volume: 1 Issue: 1, 39 - 45, 11.03.2018
https://doi.org/10.32323/ujma.396363

Abstract

In this paper, we study the boundary value problem of a class of fractional differential equations involving the Riemann-Liouville fractional derivative with nonlocal integral boundary conditions. To establish the existence results for the given problems, we use the properties of the Green’s function and the monotone iteration technique, one shows the existence of positive solutions and constructs two successively iterative sequences to approximate the solutions. The results are illustrated with an example.

References

  • [1] A. A. Kilbas, H. M. Srivastava, J. J. Trijullo, Theory and applications of fractional differential equations, Elsevier Science b. V, Amsterdam, (2006). 1.
  • [2] A. Cabada, G. Wang, positive solutions of nonlinear fractional differential equations with integral boundary conditions. J. Math. Anal. Appl. 389(1), (2012), 403-411.
  • [3] C. F. Li, X. N. Luo and Y. Zhou, Existence of positive solutions of the boundary value problem for nonlinear fractional differential equations. Comput. Math. Appl. 59 (2010), 1363-1375.
  • [4] F. Liu, K. Burrage, Novel techniques in parameter estimation for fractional dynamycal models arising from biological systems Comput. Math. Appl. 62(3), (2011), 822-833.
  • [5] J. R. Graef, L. Kong, Q. Kong and M. Wang, Uniqueness of positive solutions of fractional boundary value problems with non-homogeneous integral boundary conditions, Fract. Calc. Appl. Anal. 15 (2012), 509-528.
  • [6] J. R. Graef, L. Kong, Q. Kong, Positive solution for a class of higher-order boundary value problems with fractional q-derivatives. Appl. Math. Comput. 218 (2012), 9682-9689.
  • [7] J. R. Graef, L. Kong, Q. Kong, and M. Wang, Existence and uniqueness of solutions for a fractional boundary value problem with Dirichlet boundary condition, Electron. J. Qual. Theory Differ. Equ. 2013 No.55,11 pp.
  • [8] M. Al-Refai, M. Hadjji, Monotone iterative sequences for nonlinear boundary value problems of fractional order. Nonlinear Anal, 74 (2011), 3531-3539.
  • [9] J. Tan and C. Cheng, Fractional boundary value problems with Riemann-Liouville fractional derivatives. Bound. Value Probl. Doi: 13662-015-0413-y, (2015), 14 pages.
  • [10] N. Bouteraa and S. Benaicha, Existence of solutions for three-point boundary value problem for nonlinear fractional differential equations, An. Univ. Oradea, fasc. Math. Volume 25 (2018), nr. 1. to appear.
  • [11] S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, John Wiley and Sons, Inc.; New York, (1993). 1, 1.3, 1
  • [12] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications. Gordon & Breach, Yverdon (1993).
  • [13] S. liu, H. Li and Q. Dai, Nonlinear fractional differential equations with nonlocal integral boundary conditions, Bound.Value. Prob. (2015), 11 pages.
  • [14] V. Lakshmikantham and A. S. Vatsala, General uniqueness and monotone iterative technique for fractional differential equations. Appl. Math. Lett. 21 (8) (2008), 828-834.
  • [15] X. L. Han, H. L. Gao, Existence of positive solutions for eigenvalue problem of nonlinear fractional differential equations. Adv. Differ. Equ. 2012 66 (2012).
  • [16] Y. Sun, M. Zhao, Positive solutions for a class of fractional differential equations with integral boundary conditions. Appl. Math. Lett, 34 (2014), 17-21.
  • [17] Y. F. Xu, Fractional boundary value problems with integral and anti-periodic boundary conditions. Bull. Malays. Math. Sci. Soc. 39, (2016), 571-587.
  • [18] Y. Qiao and Z. zhou, Existence of solutions for a class of fractional differential equations with integral and anti-periodic boundary conditions, Bound. Value Probl. Doi: 13661-016-0547-x, (2017), 9 pages.
  • [19] Z. B. Bai, W. C. Sun and W. Zhang, Positive solutions for boundary value problems of singular fractional differential equations. Abstr. Appl. Anal. 2013, Article ID 129640 (2013).
There are 19 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Bouteraa Noureddine

Slimane Benaicha This is me

Habib Djourdem

Publication Date March 11, 2018
Submission Date February 18, 2018
Acceptance Date March 6, 2018
Published in Issue Year 2018 Volume: 1 Issue: 1

Cite

APA Noureddine, B., Benaicha, S., & Djourdem, H. (2018). Positive solutions for nonlinear fractional differential equation with nonlocal boundary conditions. Universal Journal of Mathematics and Applications, 1(1), 39-45. https://doi.org/10.32323/ujma.396363
AMA Noureddine B, Benaicha S, Djourdem H. Positive solutions for nonlinear fractional differential equation with nonlocal boundary conditions. Univ. J. Math. Appl. March 2018;1(1):39-45. doi:10.32323/ujma.396363
Chicago Noureddine, Bouteraa, Slimane Benaicha, and Habib Djourdem. “Positive Solutions for Nonlinear Fractional Differential Equation With Nonlocal Boundary Conditions”. Universal Journal of Mathematics and Applications 1, no. 1 (March 2018): 39-45. https://doi.org/10.32323/ujma.396363.
EndNote Noureddine B, Benaicha S, Djourdem H (March 1, 2018) Positive solutions for nonlinear fractional differential equation with nonlocal boundary conditions. Universal Journal of Mathematics and Applications 1 1 39–45.
IEEE B. Noureddine, S. Benaicha, and H. Djourdem, “Positive solutions for nonlinear fractional differential equation with nonlocal boundary conditions”, Univ. J. Math. Appl., vol. 1, no. 1, pp. 39–45, 2018, doi: 10.32323/ujma.396363.
ISNAD Noureddine, Bouteraa et al. “Positive Solutions for Nonlinear Fractional Differential Equation With Nonlocal Boundary Conditions”. Universal Journal of Mathematics and Applications 1/1 (March 2018), 39-45. https://doi.org/10.32323/ujma.396363.
JAMA Noureddine B, Benaicha S, Djourdem H. Positive solutions for nonlinear fractional differential equation with nonlocal boundary conditions. Univ. J. Math. Appl. 2018;1:39–45.
MLA Noureddine, Bouteraa et al. “Positive Solutions for Nonlinear Fractional Differential Equation With Nonlocal Boundary Conditions”. Universal Journal of Mathematics and Applications, vol. 1, no. 1, 2018, pp. 39-45, doi:10.32323/ujma.396363.
Vancouver Noureddine B, Benaicha S, Djourdem H. Positive solutions for nonlinear fractional differential equation with nonlocal boundary conditions. Univ. J. Math. Appl. 2018;1(1):39-45.

 23181

Universal Journal of Mathematics and Applications 

29207              

Creative Commons License  The published articles in UJMA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.