In the present paper, we study the notions of an almost generalized weakly symmetric $\alpha$-cosymplectic manifolds and an almost generalized weakly Ricci-symmetrik $\alpha$-cosymplectic manifolds.
[1] N. Aktan, M. Yıldırım, C. Murathan,Almost f -cosymplectic manifolds, Mediterr. J. Math., 11(2014), 775-787.
[2] G. Ayar, S.K. Chaubey, M-Projective curvature tensor over cosymplectic manifolds, Differ. Geom. Dyn. Syst., 21(2019), 23-33.
[3] K.K. Baishya, P.R. Chowdhury, J. Mikes, P. Peska, On almost generalized weakly symmetric Kenmotsu manifolds, Acta Univ. Palacki. Olomuc., Fac.
rer. nat., Mathematica, 55(2016), 2, 5-15.
[4] S. Beyendi, G. Ayar, N. Aktan, On a type of a-cosymplectic manifolds, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 68(1)(2019), 852-861.
[5] M.C. Chaki, T. Kawaguchi, On almast pseudo Ricci symmetric manifolds, Tensor, 68(1)(2017), 10-14.
[6] M. C. Chaki, On pseudo Ricci symmetric manifolds, , Bulg. J. Physics, 15(1998), 526-531.
[7] D.E. Blair, Contact manifolds in Riemannian geometry, , Lecture Notes in Math. 509, (1976), Springer-Verlag, Berlin.
[8] R.S.D. Dubey, Generalized recurrent spaces, Indian J. Pure Appl. Math., 10(1979), 1508-1513.
[9] H. Ozturk, C. Murathan, N. Aktan, A.T. Vanli, Almost a-cosymplectic f -manifolds, (2014), An. Stiint. Univ. Al. I. Cuza Iasi Inform. (N.S.) Matematica,
Tomul LX, f.1.
[10] L.Tamassy, T.Q. Binh, On weakly symmetric and weakly projective symmetric Riemannian manifolds, Coll. Math. Soc., J. Bolyai, 56(1989), 663-670.
[11] M. Tarafdar, M.A.A. Jawarneh, Semi-pseudo Ricci symmetric manifold, J. Indian. Inst. of Science., 73(1993), 591-596.
[12] T.W. Kim, H.K. Pak, Canonical foliations of certain classes of almost contact metric structures, , Acta Math, Sinica, Eng. Ser. Aug., 21(4)(2005),
841-846.
[13] A.G. Walker, On Ruse’s space of recurrent curvature, Proc. of London Math. Soc. 52(1950), 36-54.
Year 2020,
Volume: 3 Issue: 4, 156 - 159, 23.12.2020
[1] N. Aktan, M. Yıldırım, C. Murathan,Almost f -cosymplectic manifolds, Mediterr. J. Math., 11(2014), 775-787.
[2] G. Ayar, S.K. Chaubey, M-Projective curvature tensor over cosymplectic manifolds, Differ. Geom. Dyn. Syst., 21(2019), 23-33.
[3] K.K. Baishya, P.R. Chowdhury, J. Mikes, P. Peska, On almost generalized weakly symmetric Kenmotsu manifolds, Acta Univ. Palacki. Olomuc., Fac.
rer. nat., Mathematica, 55(2016), 2, 5-15.
[4] S. Beyendi, G. Ayar, N. Aktan, On a type of a-cosymplectic manifolds, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 68(1)(2019), 852-861.
[5] M.C. Chaki, T. Kawaguchi, On almast pseudo Ricci symmetric manifolds, Tensor, 68(1)(2017), 10-14.
[6] M. C. Chaki, On pseudo Ricci symmetric manifolds, , Bulg. J. Physics, 15(1998), 526-531.
[7] D.E. Blair, Contact manifolds in Riemannian geometry, , Lecture Notes in Math. 509, (1976), Springer-Verlag, Berlin.
[8] R.S.D. Dubey, Generalized recurrent spaces, Indian J. Pure Appl. Math., 10(1979), 1508-1513.
[9] H. Ozturk, C. Murathan, N. Aktan, A.T. Vanli, Almost a-cosymplectic f -manifolds, (2014), An. Stiint. Univ. Al. I. Cuza Iasi Inform. (N.S.) Matematica,
Tomul LX, f.1.
[10] L.Tamassy, T.Q. Binh, On weakly symmetric and weakly projective symmetric Riemannian manifolds, Coll. Math. Soc., J. Bolyai, 56(1989), 663-670.
[11] M. Tarafdar, M.A.A. Jawarneh, Semi-pseudo Ricci symmetric manifold, J. Indian. Inst. of Science., 73(1993), 591-596.
[12] T.W. Kim, H.K. Pak, Canonical foliations of certain classes of almost contact metric structures, , Acta Math, Sinica, Eng. Ser. Aug., 21(4)(2005),
841-846.
[13] A.G. Walker, On Ruse’s space of recurrent curvature, Proc. of London Math. Soc. 52(1950), 36-54.
Yıldırım, M., & Beyendi, S. (2020). On Almost Generalized Weakly Symmetric $\alpha$-Cosymplectic Manifolds. Universal Journal of Mathematics and Applications, 3(4), 156-159. https://doi.org/10.32323/ujma.730960
AMA
Yıldırım M, Beyendi S. On Almost Generalized Weakly Symmetric $\alpha$-Cosymplectic Manifolds. Univ. J. Math. Appl. December 2020;3(4):156-159. doi:10.32323/ujma.730960
Chicago
Yıldırım, Mustafa, and Selahattin Beyendi. “On Almost Generalized Weakly Symmetric $\alpha$-Cosymplectic Manifolds”. Universal Journal of Mathematics and Applications 3, no. 4 (December 2020): 156-59. https://doi.org/10.32323/ujma.730960.
EndNote
Yıldırım M, Beyendi S (December 1, 2020) On Almost Generalized Weakly Symmetric $\alpha$-Cosymplectic Manifolds. Universal Journal of Mathematics and Applications 3 4 156–159.
IEEE
M. Yıldırım and S. Beyendi, “On Almost Generalized Weakly Symmetric $\alpha$-Cosymplectic Manifolds”, Univ. J. Math. Appl., vol. 3, no. 4, pp. 156–159, 2020, doi: 10.32323/ujma.730960.
ISNAD
Yıldırım, Mustafa - Beyendi, Selahattin. “On Almost Generalized Weakly Symmetric $\alpha$-Cosymplectic Manifolds”. Universal Journal of Mathematics and Applications 3/4 (December 2020), 156-159. https://doi.org/10.32323/ujma.730960.
JAMA
Yıldırım M, Beyendi S. On Almost Generalized Weakly Symmetric $\alpha$-Cosymplectic Manifolds. Univ. J. Math. Appl. 2020;3:156–159.
MLA
Yıldırım, Mustafa and Selahattin Beyendi. “On Almost Generalized Weakly Symmetric $\alpha$-Cosymplectic Manifolds”. Universal Journal of Mathematics and Applications, vol. 3, no. 4, 2020, pp. 156-9, doi:10.32323/ujma.730960.
Vancouver
Yıldırım M, Beyendi S. On Almost Generalized Weakly Symmetric $\alpha$-Cosymplectic Manifolds. Univ. J. Math. Appl. 2020;3(4):156-9.