Research Article
BibTex RIS Cite

On Multi-G-Metric Spaces

Year 2023, Volume: 6 Issue: 3, 91 - 99, 30.09.2023
https://doi.org/10.32323/ujma.1297362

Abstract

Multisets have many applications in a variety of fields today, including computer science, medicine, banking, engineering, information storage, and information analysis. In this paper, we present a new generalized multi-G-metric space, a multi-G-metric space. We investigate some of its fundamental details, connections, and topological characteristics.

Supporting Institution

Ege University Scientific Research Projects Coordination Unit

Project Number

FM-YLT-2022-23913

Thanks

We would like to thank Ege University for its support within the scope of Ege University Scientific Research Project (FM-YLT-2022-23913) in order to carry out these studies.

References

  • [1] W. D. Blizard, Mset theory, Notre Dame J. Form. Log., 30(1) (1989), 36-66.
  • [2] W. D. Blizard, Real-valued multisets and fuzzy sets, Fuzzy Sets Syst., 33(1), (1989), 77-97.
  • [3] G. F. Clements, On mset k-families, Discrete Math., 69(2) (1988), 153-164.
  • [4] M. Conder, S. Marshall, A. M. Slinko, Orders on multisets and discrete cones, Order-A Journal on The Theory of Ordered Sets and Its Applications, 24 (2007), 277-296.
  • [5] D. Singh, A. M. Ibrahim, T. Yohana, J. N. Singh, Some combinatorics of multisets, Int. J. Math. Educ. Sci. Technol., 34(4) (2003), 489–499.
  • [6] D. Singh, A. M. Ibrahim, T. Yohana, J. N. Singh, An overview of the applications of multisets, Novi Sad J. Math., 37(2) (2007), 73–92.
  • [7] D. Singh, A. M. Ibrahim, T. Yohana, J. N. Singh, Complementation in mset theory, Int. Math. Forum, 6(38) (2011), 1877–1884.
  • [8] Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7(2) (2006), 289-297.
  • [9] A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets Syst., 64 (1994), 395-399.
  • [10] L. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332 (2007), 1468-1476.
  • [11] S. Das, R. Roy, An introduction to multi metric spaces, Adv. Dyn. Syst. Appl., 16(2) (2021), 605-618.
  • [12] S. Das, R. Roy, Some topological properties of multi metric spaces, J. Math. Comput. Sci., 11 (2021), 7253-7268.
  • [13] K. P. Girish, S. J. John, Mset topologies induced by mset relations, Inf. Sci., 188 (2012), 298-313.
Year 2023, Volume: 6 Issue: 3, 91 - 99, 30.09.2023
https://doi.org/10.32323/ujma.1297362

Abstract

Project Number

FM-YLT-2022-23913

References

  • [1] W. D. Blizard, Mset theory, Notre Dame J. Form. Log., 30(1) (1989), 36-66.
  • [2] W. D. Blizard, Real-valued multisets and fuzzy sets, Fuzzy Sets Syst., 33(1), (1989), 77-97.
  • [3] G. F. Clements, On mset k-families, Discrete Math., 69(2) (1988), 153-164.
  • [4] M. Conder, S. Marshall, A. M. Slinko, Orders on multisets and discrete cones, Order-A Journal on The Theory of Ordered Sets and Its Applications, 24 (2007), 277-296.
  • [5] D. Singh, A. M. Ibrahim, T. Yohana, J. N. Singh, Some combinatorics of multisets, Int. J. Math. Educ. Sci. Technol., 34(4) (2003), 489–499.
  • [6] D. Singh, A. M. Ibrahim, T. Yohana, J. N. Singh, An overview of the applications of multisets, Novi Sad J. Math., 37(2) (2007), 73–92.
  • [7] D. Singh, A. M. Ibrahim, T. Yohana, J. N. Singh, Complementation in mset theory, Int. Math. Forum, 6(38) (2011), 1877–1884.
  • [8] Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7(2) (2006), 289-297.
  • [9] A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets Syst., 64 (1994), 395-399.
  • [10] L. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332 (2007), 1468-1476.
  • [11] S. Das, R. Roy, An introduction to multi metric spaces, Adv. Dyn. Syst. Appl., 16(2) (2021), 605-618.
  • [12] S. Das, R. Roy, Some topological properties of multi metric spaces, J. Math. Comput. Sci., 11 (2021), 7253-7268.
  • [13] K. P. Girish, S. J. John, Mset topologies induced by mset relations, Inf. Sci., 188 (2012), 298-313.
There are 13 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Ecemnur Mutlu 0000-0002-8788-8000

Ayşegül Çaksu Güler 0000-0002-6811-9919

Project Number FM-YLT-2022-23913
Early Pub Date September 18, 2023
Publication Date September 30, 2023
Submission Date May 15, 2023
Acceptance Date July 29, 2023
Published in Issue Year 2023 Volume: 6 Issue: 3

Cite

APA Mutlu, E., & Çaksu Güler, A. (2023). On Multi-G-Metric Spaces. Universal Journal of Mathematics and Applications, 6(3), 91-99. https://doi.org/10.32323/ujma.1297362
AMA Mutlu E, Çaksu Güler A. On Multi-G-Metric Spaces. Univ. J. Math. Appl. September 2023;6(3):91-99. doi:10.32323/ujma.1297362
Chicago Mutlu, Ecemnur, and Ayşegül Çaksu Güler. “On Multi-G-Metric Spaces”. Universal Journal of Mathematics and Applications 6, no. 3 (September 2023): 91-99. https://doi.org/10.32323/ujma.1297362.
EndNote Mutlu E, Çaksu Güler A (September 1, 2023) On Multi-G-Metric Spaces. Universal Journal of Mathematics and Applications 6 3 91–99.
IEEE E. Mutlu and A. Çaksu Güler, “On Multi-G-Metric Spaces”, Univ. J. Math. Appl., vol. 6, no. 3, pp. 91–99, 2023, doi: 10.32323/ujma.1297362.
ISNAD Mutlu, Ecemnur - Çaksu Güler, Ayşegül. “On Multi-G-Metric Spaces”. Universal Journal of Mathematics and Applications 6/3 (September 2023), 91-99. https://doi.org/10.32323/ujma.1297362.
JAMA Mutlu E, Çaksu Güler A. On Multi-G-Metric Spaces. Univ. J. Math. Appl. 2023;6:91–99.
MLA Mutlu, Ecemnur and Ayşegül Çaksu Güler. “On Multi-G-Metric Spaces”. Universal Journal of Mathematics and Applications, vol. 6, no. 3, 2023, pp. 91-99, doi:10.32323/ujma.1297362.
Vancouver Mutlu E, Çaksu Güler A. On Multi-G-Metric Spaces. Univ. J. Math. Appl. 2023;6(3):91-9.

 23181

Universal Journal of Mathematics and Applications 

29207              

Creative Commons License  The published articles in UJMA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.