Research Article
BibTex RIS Cite

Some Results on Composition of Analytic Functions in a Unit Polydisc

Year 2024, Volume: 7 Issue: 3, 121 - 128, 21.09.2024
https://doi.org/10.32323/ujma.1444221

Abstract

The manuscript is an attempt to consider all methods which are applicable to investigation a directional index for composition of an analytic function in some domain and an entire function. The approaches are applied to find sufficient conditions of the $L$-index boundedness in a direction $\mathbf{b}\in\mathbb{C}^n\setminus\{\mathbf{0}\}$, where the continuous function $L$ satisfies some growth condition and the condition of positivity in the unit polydisc. The investigation is based on a counterpart of the Hayman Theorem for the class of analytic functions in the polydisc and a counterpart of logarithmic criterion describing local conduct of logarithmic derivative modulus outside some neighborhoods of zeros. The established results are new advances for the functions analytic in the polydisc and in multidimensional value distribution theory.

References

  • [1] A. Bandura, T. Salo, Analytic in a unit polydisc functions of bounded L-index in direction, Mat. Stud., 60(1) (2023), 55–78.
  • [2] V. P. Baksa, A. I. Bandura, T. M. Salo, Skaskiv O.B., Note on boundedness of the L-index in the direction of the composition of slice entire functions, Mat. Stud., 58 (1) (2022), 58–68.
  • [3] A. I. Bandura, M. M. Sheremeta, Bounded l-index and l􀀀M-index and compositions of analytic functions, Mat. Stud., 48(2) (2017), 180-188.
  • [4] M. M. Sheremeta, On the l-index boundedness of some composition of functions, Mat. Stud., 47(2) (2017), 207–210.
  • [5] B. Lepson, Differential equations of infinite order, hyperdirichlet series and entire functions of bounded index, in: Entire Functions and Related Parts of Analysis, J. Korevaar (ed.), Proceedings of Symposia in Pure Math., 11, Am. Math. Soc., Providence (1968), 298–307.
  • [6] A. D. Kuzyk, M. M. Sheremeta, Entire functions of bounded l-distribution of values, Math. Notes, 39(1) (1986), 3–8.
  • [7] A. I. Bandura, Composition, product and sum of analytic functions of bounded L-index in direction in the unit ball, Mat. Stud., 50(2) (2018), 115–134.
  • [8] A. Bandura, Composition of entire functions and bounded L-index in direction, Mat. Stud., 47(2) (2017), 179–184.
  • [9] A. I. Bandura, O. B. Skaskiv, Entire functions of bounded L-index in direction, Mat. Stud., 27(1) (2007), 30–52. (in Ukrainian)
  • [10] W. K. Hayman, Differential inequalities and local valency, Pacific J. Math., 44 (1) (1973), 117-137.
  • [11] A. I. Bandura, O. B. Skaskiv, I. R. Tymkiv, Composition of entire and analytic functions in the unit ball, Carpathian Math. Publ., 14 (1) (2022), 95–103.
  • [12] M. M. Sheremeta, Y.S. Trukhan, Boundedness of the l-index of the Naftalevich-Tsuji product, Ukr. Math. J., 56(2) (2004), 305–317.
  • [13] A. Bandura, O. Skaskiv, L. Smolovyk, Slice holomorphic solutions of some directional differential equations with bounded L-index in the same direction, Demonstr. Math., 52(1) (2019), 482–489.
  • [14] A. A. Goldberg, M. N. Sheremeta, Existence of an entire transcendental function of bounded l-index, Math. Notes, 57(1) (1995), 88–90.
  • [15] I. M. Hural, About some problem for entire functions of unbounded index in any direction, Mat. Stud., 51(1) (2019), 107–110.
  • [16] M. M. Sheremeta, Y. S. Trukhan, Properties of analytic solutions of three similar differential equations of the second order, Carp. Math. Publ., 13(2) (2021), 413–425.
  • [17] M. M. Sheremeta, Y. S. Trukhan, Properties of analytic solutions of a differential equation, Mat. Stud., 52 (2) (2019), 138–143.
  • [18] A. Bandura, O. Skaskiv, Analog of Hayman’s Theorem and its Application to Some System of Linear Partial Differential Equations, J. Math. Phys., Anal., Geom., 15(2) (2019), 170–191.
  • [19] F. Nuray, R.F. Patterson, Vector-valued bivariate entire functions of bounded index satisfying a system of differential equations, Mat. Stud., 49(1) (2018), 67–74.
  • [20] A. I. Bandura, Some improvements of criteria of L-index boundedness in direction, Mat. Stud., 47(1) (2017), 27–32.
  • [21] A. I. Bandura, Analytic functions in the unit ball of bounded value L-distribution in a direction, Mat. Stud., 49 (1) (2018), 75–79.
  • [22] G. H. Fricke, A note on bounded index and bounded value distribution, Indian J. Pure Appl. Math. 11 (4) (1980), 428–432.
  • [23] S. Shah, Entire functions of bounded value distribution and gap power series, In: Studies in Pure Mathematics To the Memory of Paul Tur´an, (P. Erd˝os, L. Alp´ar, G. Hal´asz, A. S´ark¨ozy, eds.). Birkhauser Basel, Basel, 1983. pp. 629-634.
  • [24] R. Roy, S. M. Shah, The product of two functions of bounded value distribution, Indian J. Pure Appl. Math. 17(5) (1986), 690–693.
  • [25] R. Roy, S. M. Shah, Functions of bounded index, bounded value distribution and v-bounded index, Nonlinear Analysis 11 (1987), 1383–1390.
  • [26] M. M. Sheremeta, On the univalence of entire functions of bounded l-index, Mat. Stud., 43(2) (2015), 185–188.
  • [27] F. Nuray, R. F. Patterson, Multivalence of bivariate functions of bounded index, Le Matematiche, 70(2) (2015), 225–233.
  • [28] A. Bandura, T. Salo, O. Skaskiv, L-Index in Joint Variables: Sum and Composition of an Entire Function with a Function With a Vanished Gradient, Fractal and Fractional, 7(8) (2023), Article ID: 593.
  • [29] F. Nuray, R. F. Patterson, Entire bivariate functions of exponential type, Bull. Math. Sci. 2015, 5 () (2015), 171–177.
  • [30] F. Nuray, Bounded index and four dimensional summability methods, Novi Sad J. Math., 49(2) (2019), 73–85.
  • [31] R. F. Patterson, F. A. Nuray, A characterization of holomorphic bivariate functions of bounded index, Math. Slov., 67(3) (2017), 731–736.
Year 2024, Volume: 7 Issue: 3, 121 - 128, 21.09.2024
https://doi.org/10.32323/ujma.1444221

Abstract

References

  • [1] A. Bandura, T. Salo, Analytic in a unit polydisc functions of bounded L-index in direction, Mat. Stud., 60(1) (2023), 55–78.
  • [2] V. P. Baksa, A. I. Bandura, T. M. Salo, Skaskiv O.B., Note on boundedness of the L-index in the direction of the composition of slice entire functions, Mat. Stud., 58 (1) (2022), 58–68.
  • [3] A. I. Bandura, M. M. Sheremeta, Bounded l-index and l􀀀M-index and compositions of analytic functions, Mat. Stud., 48(2) (2017), 180-188.
  • [4] M. M. Sheremeta, On the l-index boundedness of some composition of functions, Mat. Stud., 47(2) (2017), 207–210.
  • [5] B. Lepson, Differential equations of infinite order, hyperdirichlet series and entire functions of bounded index, in: Entire Functions and Related Parts of Analysis, J. Korevaar (ed.), Proceedings of Symposia in Pure Math., 11, Am. Math. Soc., Providence (1968), 298–307.
  • [6] A. D. Kuzyk, M. M. Sheremeta, Entire functions of bounded l-distribution of values, Math. Notes, 39(1) (1986), 3–8.
  • [7] A. I. Bandura, Composition, product and sum of analytic functions of bounded L-index in direction in the unit ball, Mat. Stud., 50(2) (2018), 115–134.
  • [8] A. Bandura, Composition of entire functions and bounded L-index in direction, Mat. Stud., 47(2) (2017), 179–184.
  • [9] A. I. Bandura, O. B. Skaskiv, Entire functions of bounded L-index in direction, Mat. Stud., 27(1) (2007), 30–52. (in Ukrainian)
  • [10] W. K. Hayman, Differential inequalities and local valency, Pacific J. Math., 44 (1) (1973), 117-137.
  • [11] A. I. Bandura, O. B. Skaskiv, I. R. Tymkiv, Composition of entire and analytic functions in the unit ball, Carpathian Math. Publ., 14 (1) (2022), 95–103.
  • [12] M. M. Sheremeta, Y.S. Trukhan, Boundedness of the l-index of the Naftalevich-Tsuji product, Ukr. Math. J., 56(2) (2004), 305–317.
  • [13] A. Bandura, O. Skaskiv, L. Smolovyk, Slice holomorphic solutions of some directional differential equations with bounded L-index in the same direction, Demonstr. Math., 52(1) (2019), 482–489.
  • [14] A. A. Goldberg, M. N. Sheremeta, Existence of an entire transcendental function of bounded l-index, Math. Notes, 57(1) (1995), 88–90.
  • [15] I. M. Hural, About some problem for entire functions of unbounded index in any direction, Mat. Stud., 51(1) (2019), 107–110.
  • [16] M. M. Sheremeta, Y. S. Trukhan, Properties of analytic solutions of three similar differential equations of the second order, Carp. Math. Publ., 13(2) (2021), 413–425.
  • [17] M. M. Sheremeta, Y. S. Trukhan, Properties of analytic solutions of a differential equation, Mat. Stud., 52 (2) (2019), 138–143.
  • [18] A. Bandura, O. Skaskiv, Analog of Hayman’s Theorem and its Application to Some System of Linear Partial Differential Equations, J. Math. Phys., Anal., Geom., 15(2) (2019), 170–191.
  • [19] F. Nuray, R.F. Patterson, Vector-valued bivariate entire functions of bounded index satisfying a system of differential equations, Mat. Stud., 49(1) (2018), 67–74.
  • [20] A. I. Bandura, Some improvements of criteria of L-index boundedness in direction, Mat. Stud., 47(1) (2017), 27–32.
  • [21] A. I. Bandura, Analytic functions in the unit ball of bounded value L-distribution in a direction, Mat. Stud., 49 (1) (2018), 75–79.
  • [22] G. H. Fricke, A note on bounded index and bounded value distribution, Indian J. Pure Appl. Math. 11 (4) (1980), 428–432.
  • [23] S. Shah, Entire functions of bounded value distribution and gap power series, In: Studies in Pure Mathematics To the Memory of Paul Tur´an, (P. Erd˝os, L. Alp´ar, G. Hal´asz, A. S´ark¨ozy, eds.). Birkhauser Basel, Basel, 1983. pp. 629-634.
  • [24] R. Roy, S. M. Shah, The product of two functions of bounded value distribution, Indian J. Pure Appl. Math. 17(5) (1986), 690–693.
  • [25] R. Roy, S. M. Shah, Functions of bounded index, bounded value distribution and v-bounded index, Nonlinear Analysis 11 (1987), 1383–1390.
  • [26] M. M. Sheremeta, On the univalence of entire functions of bounded l-index, Mat. Stud., 43(2) (2015), 185–188.
  • [27] F. Nuray, R. F. Patterson, Multivalence of bivariate functions of bounded index, Le Matematiche, 70(2) (2015), 225–233.
  • [28] A. Bandura, T. Salo, O. Skaskiv, L-Index in Joint Variables: Sum and Composition of an Entire Function with a Function With a Vanished Gradient, Fractal and Fractional, 7(8) (2023), Article ID: 593.
  • [29] F. Nuray, R. F. Patterson, Entire bivariate functions of exponential type, Bull. Math. Sci. 2015, 5 () (2015), 171–177.
  • [30] F. Nuray, Bounded index and four dimensional summability methods, Novi Sad J. Math., 49(2) (2019), 73–85.
  • [31] R. F. Patterson, F. A. Nuray, A characterization of holomorphic bivariate functions of bounded index, Math. Slov., 67(3) (2017), 731–736.
There are 31 citations in total.

Details

Primary Language English
Subjects Pure Mathematics (Other)
Journal Section Articles
Authors

Andriy Bandura 0000-0003-0598-2237

Petro Kurliak 0000-0001-8113-5211

Oleh Skaskiv 0000-0001-5217-8394

Early Pub Date August 25, 2024
Publication Date September 21, 2024
Submission Date February 28, 2024
Acceptance Date July 31, 2024
Published in Issue Year 2024 Volume: 7 Issue: 3

Cite

APA Bandura, A., Kurliak, P., & Skaskiv, O. (2024). Some Results on Composition of Analytic Functions in a Unit Polydisc. Universal Journal of Mathematics and Applications, 7(3), 121-128. https://doi.org/10.32323/ujma.1444221
AMA Bandura A, Kurliak P, Skaskiv O. Some Results on Composition of Analytic Functions in a Unit Polydisc. Univ. J. Math. Appl. September 2024;7(3):121-128. doi:10.32323/ujma.1444221
Chicago Bandura, Andriy, Petro Kurliak, and Oleh Skaskiv. “Some Results on Composition of Analytic Functions in a Unit Polydisc”. Universal Journal of Mathematics and Applications 7, no. 3 (September 2024): 121-28. https://doi.org/10.32323/ujma.1444221.
EndNote Bandura A, Kurliak P, Skaskiv O (September 1, 2024) Some Results on Composition of Analytic Functions in a Unit Polydisc. Universal Journal of Mathematics and Applications 7 3 121–128.
IEEE A. Bandura, P. Kurliak, and O. Skaskiv, “Some Results on Composition of Analytic Functions in a Unit Polydisc”, Univ. J. Math. Appl., vol. 7, no. 3, pp. 121–128, 2024, doi: 10.32323/ujma.1444221.
ISNAD Bandura, Andriy et al. “Some Results on Composition of Analytic Functions in a Unit Polydisc”. Universal Journal of Mathematics and Applications 7/3 (September 2024), 121-128. https://doi.org/10.32323/ujma.1444221.
JAMA Bandura A, Kurliak P, Skaskiv O. Some Results on Composition of Analytic Functions in a Unit Polydisc. Univ. J. Math. Appl. 2024;7:121–128.
MLA Bandura, Andriy et al. “Some Results on Composition of Analytic Functions in a Unit Polydisc”. Universal Journal of Mathematics and Applications, vol. 7, no. 3, 2024, pp. 121-8, doi:10.32323/ujma.1444221.
Vancouver Bandura A, Kurliak P, Skaskiv O. Some Results on Composition of Analytic Functions in a Unit Polydisc. Univ. J. Math. Appl. 2024;7(3):121-8.

 23181

Universal Journal of Mathematics and Applications 

29207              

Creative Commons License  The published articles in UJMA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.