Research Article
BibTex RIS Cite

Binomial Transforms of the Third-Order Jacobsthal and Modified Third-Order Jacobsthal Polynomials

Year 2024, Volume: 7 Issue: 3, 144 - 151, 21.09.2024
https://doi.org/10.32323/ujma.1494373

Abstract

In this study, we define the binomial transforms of third-order Jacobsthal and modified third-order Jacobsthal polynomials. Further, the generating functions, Binet formulas and summation of these binomial transforms are found by recurrence relations. Also, we establish the relations between these transforms by deriving new formulas. Finally, the Vajda, d'Ocagne, Catalan and Cassini formulas for these transforms are obtained.

References

  • [1] C. K. Cook, M. R. Bacon, Some identities for Jacobsthal and Jacobsthal-Lucas numbers satisfying higher order recurrence relations, Ann. Math. Inform., 41 (2013), 27-39.
  • [2] G. Morales, A note on modified third-order Jacobsthal numbers, Proyecciones, 39(2) (2020), 409-420.
  • [3] Y. Soykan, E. Taşdemir, M. G¨ocen, Binomial transform of the generalized third-order Jacobsthal sequence, Asian-Eur. J. Math., 15(12) (2022), 1-12.
  • [4] G. Morales, Identities for third order Jacobsthal quaternions, Adv. Appl. Clifford Algebr., 27(2) (2017), 1043-1053.
  • [5] G. Morales, Some results on dual third-order Jacobsthal quaternions, Filomat, 33(7) (2019), 1865-1876.
  • [6] G. Morales, Third-order Jacobsthal generalized quaternions, J. Geom. Symmetry Phys., 50 (2018), 11–27.
  • [7] G. Morales, On third-order Jacobsthal polynomials and their properties, Miskolc Math. Notes, 22(1) (2021), 123-132.
  • [8] K. W. Chen, Identities from the binomial transform, J. Number Theory, 124 (2007), 142-150.
  • [9] S. Falcon, A. Plaza, Binomial transforms of the k-Fibonacci sequences, Int. J. Nonlinear Sci. Numer. Simul., 10 (2009), 1305-1316.
  • [10] H. Prodinger, Some information about the binomial transform, Fibonacci Q., 32(5) (1994), 412-415.
  • [11] S. K. Ghosal, J. K. Mandal, Binomial transform based fragile watermarking for image authentication, J. Inf. Secur. Appl., 19 (2014), 272-281.
  • [12] N. Yilmaz, Binomial transforms of the Balancing and Lucas-Balancing polynomials, Contrib. Discrete Math., 15(3) (2020), 133-144.
  • [13] A. Özkoç, E. Gündüz, Binomial transform for quadra Fibona-Pell sequence and quadra Fibona-Pell quaternion, Univers. J. Math. Appl., 5(4) (2022), 145-155.
  • [14] N. Yilmaz, I. Aktaş, Special transforms of the generalized bivariate Fibonacci and Lucas polynomials, Hacet. J. Math. Stat., 52(3) (2023), 640-651.
  • [15] C. Kızılateş, N. Tuglu, B. Çekim, Binomial transforms of quadrapell sequences and quadrapell matrix sequences, J. Sci. Arts, 1(38) (2017), 69-80.
  • [16] C. Kızılateş, On the quadra Lucas-Jacobsthal numbers, Karaelmas Fen ve M¨uh. Derg., 7(2) (2017), 619-621.
  • [17] K. N. Boyadzhiev, Notes on the Binomial Transform, World Scientific, Singapore, 2018. [18] Y. Soykan, Summing formulas for generalized Tribonacci numbers, Univers. J. Math. Appl., 3(1) (2020), 1-11.
Year 2024, Volume: 7 Issue: 3, 144 - 151, 21.09.2024
https://doi.org/10.32323/ujma.1494373

Abstract

References

  • [1] C. K. Cook, M. R. Bacon, Some identities for Jacobsthal and Jacobsthal-Lucas numbers satisfying higher order recurrence relations, Ann. Math. Inform., 41 (2013), 27-39.
  • [2] G. Morales, A note on modified third-order Jacobsthal numbers, Proyecciones, 39(2) (2020), 409-420.
  • [3] Y. Soykan, E. Taşdemir, M. G¨ocen, Binomial transform of the generalized third-order Jacobsthal sequence, Asian-Eur. J. Math., 15(12) (2022), 1-12.
  • [4] G. Morales, Identities for third order Jacobsthal quaternions, Adv. Appl. Clifford Algebr., 27(2) (2017), 1043-1053.
  • [5] G. Morales, Some results on dual third-order Jacobsthal quaternions, Filomat, 33(7) (2019), 1865-1876.
  • [6] G. Morales, Third-order Jacobsthal generalized quaternions, J. Geom. Symmetry Phys., 50 (2018), 11–27.
  • [7] G. Morales, On third-order Jacobsthal polynomials and their properties, Miskolc Math. Notes, 22(1) (2021), 123-132.
  • [8] K. W. Chen, Identities from the binomial transform, J. Number Theory, 124 (2007), 142-150.
  • [9] S. Falcon, A. Plaza, Binomial transforms of the k-Fibonacci sequences, Int. J. Nonlinear Sci. Numer. Simul., 10 (2009), 1305-1316.
  • [10] H. Prodinger, Some information about the binomial transform, Fibonacci Q., 32(5) (1994), 412-415.
  • [11] S. K. Ghosal, J. K. Mandal, Binomial transform based fragile watermarking for image authentication, J. Inf. Secur. Appl., 19 (2014), 272-281.
  • [12] N. Yilmaz, Binomial transforms of the Balancing and Lucas-Balancing polynomials, Contrib. Discrete Math., 15(3) (2020), 133-144.
  • [13] A. Özkoç, E. Gündüz, Binomial transform for quadra Fibona-Pell sequence and quadra Fibona-Pell quaternion, Univers. J. Math. Appl., 5(4) (2022), 145-155.
  • [14] N. Yilmaz, I. Aktaş, Special transforms of the generalized bivariate Fibonacci and Lucas polynomials, Hacet. J. Math. Stat., 52(3) (2023), 640-651.
  • [15] C. Kızılateş, N. Tuglu, B. Çekim, Binomial transforms of quadrapell sequences and quadrapell matrix sequences, J. Sci. Arts, 1(38) (2017), 69-80.
  • [16] C. Kızılateş, On the quadra Lucas-Jacobsthal numbers, Karaelmas Fen ve M¨uh. Derg., 7(2) (2017), 619-621.
  • [17] K. N. Boyadzhiev, Notes on the Binomial Transform, World Scientific, Singapore, 2018. [18] Y. Soykan, Summing formulas for generalized Tribonacci numbers, Univers. J. Math. Appl., 3(1) (2020), 1-11.
There are 17 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Articles
Authors

Gamaliel Morales 0000-0003-3164-4434

Early Pub Date September 19, 2024
Publication Date September 21, 2024
Submission Date June 2, 2024
Acceptance Date August 30, 2024
Published in Issue Year 2024 Volume: 7 Issue: 3

Cite

APA Morales, G. (2024). Binomial Transforms of the Third-Order Jacobsthal and Modified Third-Order Jacobsthal Polynomials. Universal Journal of Mathematics and Applications, 7(3), 144-151. https://doi.org/10.32323/ujma.1494373
AMA Morales G. Binomial Transforms of the Third-Order Jacobsthal and Modified Third-Order Jacobsthal Polynomials. Univ. J. Math. Appl. September 2024;7(3):144-151. doi:10.32323/ujma.1494373
Chicago Morales, Gamaliel. “Binomial Transforms of the Third-Order Jacobsthal and Modified Third-Order Jacobsthal Polynomials”. Universal Journal of Mathematics and Applications 7, no. 3 (September 2024): 144-51. https://doi.org/10.32323/ujma.1494373.
EndNote Morales G (September 1, 2024) Binomial Transforms of the Third-Order Jacobsthal and Modified Third-Order Jacobsthal Polynomials. Universal Journal of Mathematics and Applications 7 3 144–151.
IEEE G. Morales, “Binomial Transforms of the Third-Order Jacobsthal and Modified Third-Order Jacobsthal Polynomials”, Univ. J. Math. Appl., vol. 7, no. 3, pp. 144–151, 2024, doi: 10.32323/ujma.1494373.
ISNAD Morales, Gamaliel. “Binomial Transforms of the Third-Order Jacobsthal and Modified Third-Order Jacobsthal Polynomials”. Universal Journal of Mathematics and Applications 7/3 (September 2024), 144-151. https://doi.org/10.32323/ujma.1494373.
JAMA Morales G. Binomial Transforms of the Third-Order Jacobsthal and Modified Third-Order Jacobsthal Polynomials. Univ. J. Math. Appl. 2024;7:144–151.
MLA Morales, Gamaliel. “Binomial Transforms of the Third-Order Jacobsthal and Modified Third-Order Jacobsthal Polynomials”. Universal Journal of Mathematics and Applications, vol. 7, no. 3, 2024, pp. 144-51, doi:10.32323/ujma.1494373.
Vancouver Morales G. Binomial Transforms of the Third-Order Jacobsthal and Modified Third-Order Jacobsthal Polynomials. Univ. J. Math. Appl. 2024;7(3):144-51.

 23181

Universal Journal of Mathematics and Applications 

29207              

Creative Commons License  The published articles in UJMA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.