Research Article
BibTex RIS Cite

Çeşitli İyonlar Eklenmiş NanoHidroksiapatitler: Üretim Yöntemleri, İç Yapı, Mekanik ve Biyouyumluluk Özellikleri Yönlerinden İncelenmesi

Year 2011, Volume: 3 Issue: 1, 55 - 65, 15.01.2011

Abstract

Due to the resemblance of grain sizes of nano hydroxyapatite to that of apatite minerals in bone, the researches on nano hydroxyapatite have become to gain great importance. In this study, general information were presented about the synthesis methods, biocompatibility, microstructural and mechanical characteristics of nano-crystalline hydroxyapatite. The characteristics of hydroxyapatite doped with various ions were generally examined, how and which ions contributed to hydroxyapatite was studied.

References

  • [1] Kalita, S.J., Bhardwaj, A. ve Bhatt, H.A. (2007). Nanocrystalline calcium phosphate ceramics in biomedical engineering. Materials Science Engineering C 27, 441–449. [2] Fang, Y., Agrawal, D.K., Roy, D.M. ve Roy, R. (1995). Fabrication of transparent hydroxyapatite ceramics by ambient-pressure sintering. Materials Letters 23, 147-151. [3] Ioku, K., Yoshimura, M. ve Somiya, S. (1990). Microstructure and mechanical properties of hydroxyapatite ceramics with zirconia dispersion prepared by post-sintering. Biomaterials 11, 57-61. [4] Li, J., Fartash, B. ve Hermansson, L. (1998). Hydroxyapatite-alumina composites and bone-bonding. Biomaterials 16, 417-422. [5] Uematsu, K., Takagi, M., Honda, T., Uchida, N. ve Saito, K. (1989). Transparent hydroxyapatite prepared by hot isostatic pressing of filter cake. Journal of the American Ceramic Society 72, 1476-1478. [6] With, G.D., Dijk, H.J.A.V., Hattu, N. ve Prijs, K. (1981). Preparation, microstructure and mechanical properties of dense polycrystalline hydroxyapatite. Journal of Materials Science 16, 1592-1598. [7] Bhat, S.V. (2002). Biomaterials, Kluwer Academic Publisher, Norwell, MA, A.B.D., ss.174-195. [8] Marks, Jr. S.C. ve Hermey, D.C. (1996). The Structure and Development of Bone, Ed: J.P. Bilezikian, L.G. Raisz, G.A. Rodan, Principles of Bone Biology, Acedemic Press, San Diego, CA, A.B.D., s. 3. [9] Keaveny, T.M. ve Hayes, W.C. (1993). Mechanical properties of cortical and trabecular bone. Bone 7, 285-344. [10] Park, J.B. (1987). Biomaterials Science and Engineering, Plenum Press, New York, NY, A.B.D. [11] Handschin, R.G. ve Stern, W.B. (1995). X-ray diffraction studies on the lattice perfection of human bone apatite (crista iliaca), Bone 16, 355S-363S. [12] Holden, J.L., Clement, J.G. ve Phakey, P.P. (1995). Age and temperature related changes to the ultrastructure and composition of human bone mineral, Journal of Bone and Mineral Research 10, 1400-1409. [13] Wopenka, B., ve Pasteris, J.D. (2005). A mineralogical perspective on the apatite in bone, Materials Science and Engineering C 25, 131-143. [14] Clara, M. Magalhaes, F. ve Williams, P.A. (2007). Apatite Group Minerals: Solubility and Environmental Remediation, Thermodynamics, Solubility and Environmental Issues, Ed: T.M. Letcher, Elsevier B.V. [15] Panteix, P.J., Julien, I., Abelard, P. ve Bernache-Assollant, D. (2008). Influence of cationic vacancies on the ionic conductivity of oxyapatites, Journal of the European Ceramic Society 28, 821-828. [16] Rey, C., Combey, C., Drouet, C., Sfihi, H. ve Barroug, A. (2007). Physico-chemical properties of nanocrystalline apatites: Implications for biominerals and biomaterials, Materials Science and Engineering C 27, 198- 205. [17] Evis, Z. (2006). Al+3 doped nano hydroxyapatites and their sintering characteristics, Journal of the Ceramic Society of Japan 114, 1001-1004, [18] Evis, Z. (2007). Reactions in hydroxylapatite–zirconia composites, Ceramics International 33, 987-991. [19] Evis, Z. ve Doremus, R.H. (2007). Hot-pressed hydroxylapatite/monoclinic zirconia composites with improved mechanical properties, Journal of Materials Science 42, 2426-2431. [20] Luo, P. ve Nieh, T.G. (1995). Synthesis of ultrafine hydroxyapatite particles by a spray dry method, Materials Science and Engineering C 3, 75- 78. [21] Xu, J.L., Khor, K.A., Dong, Z.L., Gu, Y.W., Kumar, R. ve Cheang, P. (2004). Preparation and characterization of nano-sized hydroxyapatite powders produced in a radio frequency (rf) thermal plasma, Materials Science and Engineering A 374, 101-108. [22] Kuriakose, T.A., Kalkura, S.N., Palanichamy, M., Arivuoli, D., Dierks, K., Bocelli, G. ve Betzel, C. (2004). Synthesis of stoichiometric nano crystalline hydroxyapatite by ethanol-based sol–gel technique at low temperature, Journal of Crystal Growth 263, 517-523. [23] Han, Y., Li, S., Wang, X. ve Chen, X. (2004). Synthesis and sintering of nanocrystalline hydroxyapatite powders by citric acid sol–gel combustion method, Materials Research Bulletin 39, 25-32. [24] Shih, W.J., Chen, Y.F., Wang, M.C. ve Hon, M.H. (2004). Crystal growth and morphology of the nano-sized hydroxyapatite powders synthesized from CaHPO4·2H2O and CaCO3 by hydrolysis method, Journal of Crystal Growth 270, 211-218. [25] Sarig, S. ve Kahana, F. (2002). Rapid formation of nanocrystalline apatite, Journal of Crystal Growth 237, 55–59. [26] Manuell, C.M., Ferraz, M.P. ve Monteiro, F.J., (2003). Synthesis of hydroxyapatite and tri calcium phosphate nanoparticles-preliminary studies, Bioceramics, 15, 240–242. [27] Evis, Z. ve Doremus, R.H. (2008). Effect of AlF3, CaF2 and MgF2 on hotpressed hydroxyapatite–nanophase alpha-alumina composites, Materials Research Bulletin 43, 2643-2651. [28] Jarcho, M., Bolen, C.H, Thomas, M.B., Bobick, J., Kay, J.F. ve Doremus, R.H. (1976). Hydroxylapatite synthesis and characterization in dense polycrystalline form, Journal of Materials Science 11, 2027-2035. [29] Akao, M., Aoki, H. ve Kato, K. (1981). Mechanical properties of sintered hydroxyapatite for prosthetic applications, Journal of Materials Science 16, 809-812. [30] Ruys, A.J., Wei, M., Sorrell, C.C., Dickson, M.R., Brandwood, A., ve Milthorpe, B.K. (1995). Sintering effects on the strength of hydroxyapatite, Biomaterials 16, 409-415. [31] Santos, J.D., Knowles, J.C., Reis, R.L., Monteiro, F.J. ve Hastings, G.W. (1994). Microstructural characterization of glass-reinforced hydroxyapatite composites, Biomaterials 15, 5-10. [32] Ahn, E.S., Gleason, N.J., Nakahira, A. ve Ying, J.Y. (2001). Nanostructure processing of hydroxyapatite-based bioceramics, Nano Letters 1, 149-153. [33] Atsala, R. ve Stott, M.J. (2005). First principles investigation of mineral component of bone: CO3 substitutions in hydroxyapatite, Chemistry of Materials 17, 4125-4133. [34] Posner, A.S., Perloff, A. ve Diorio, A.F. 1958. Refinement of the hydroxyapatite structure, Acta Crystallographica 11, 308-309. [35] Fleet, M.E. ve Liu, X. (2000). Site preference of rare earth elements in hydroxyapatite [Ca10(PO4)6(OH)2], Journal of Solid State Chemistry 149, 391- 398. [36] Ikoma, T., Yamazaki, A., Nakamura, S. ve Akao, M. (1999). Preparation and structure refinement of monoclinic hydroxyapatite, Journal of Solid State Chemistry 144, 272-276. [37] Webster, T.J., Siegel, R.W. ve Bizios, R. (1998). Bioceramics, Ed: R.Z. LeGeros ve J.P. LeGeros, World Scientific, New York, NY, A.B.D., 11, 273- 276. [38] Webster, T.J., Siegel, R.W. ve Bizios, R. (1999). Osteoblast adhesion on nanophase ceramics, Biomaterials 20, 1222-1227. [39] Webster, T.J., Ergun, C., Doremus, R.H., Siegel, R.W. ve Bizios, R. (2000). Enhanced functions of osteoblasts on nanophase ceramics, Biomaterials 21, 803-1810. [40] Kim, T.N., Feng, Q.L., Kim, J.O., Wu, J., Wang, H., Chen, G.C. ve Cui, F.Z. (1998). Antimicrobial effects of metal ions (Ag+, Cu2+, Zn2+) in hydroxyapatite, Journal of Materials Science: Materials in Medicine 9, 129- 134. [41] Yang, H., Zhang, L. ve Xu, K.-W. (2009). Effect of storing on the microstructure of Ag/Cu/HA powder, Ceramics International 35, 1595-1601. [42] Narasaraju, T.S.B. ve Phebe, D.E. (1996). Some physico-chemical aspects of hydroxylapatite, Journal of Materials Science 31, 1-21. [43] Ergun, C., Webster, T.J., Bizios, R. ve Doremus, R.H. (2002). Hydroxylapatite with substituted magnesium, zinc, cadmium, and yttrium. I. Structure and microstructure, Journal of Biomedical Materials Research 59, 305-311. [44] Kim, S.R., Lee, J.H., Kim, Y.T., Riu, D.H., Jung, S.J., Lee, Y.J., Chung, S.C. ve Kim, Y.H. (2003). Synthesis of Si, Mg substituted hydroxyapatites and their sintering behaviors, Biomaterials, 24, 389–1398. [45] Webster, T.J., Massa-Schlueter, E.A., Smith, J.L. ve Slamovich, E.B. (2004). Osteoblast response to hydroxyapatite doped with divalent and trivalent cations, Biomaterials 25, 2111-2121. [46] Kannan, S., Rebelo, A. ve Ferreira, J.M.F. (2006). Novel synthesis and structural characterization of fluorine and chlorine co-substituted hydroxyapatites, Journal of Inorganic Biochemistry 100, 1692-1697. [47] Kalita, S.J. ve Bhatt, H.A. (2007). Nanocrystalline hydroxyapatite doped with magnesium and zinc: synthesis and characterization, Materials Science and Engineering C 27, 837-848. [48] Chen, Y. ve Miao, X. (2004). Effect of fluorine addition on the corrosion resistance of hydroxyapatite ceramics, Ceramics International 30, 1961-1965.

Çeşitli İyonlar Eklenmiş NanoHidroksiapatitler: Üretim Yöntemleri, İç Yapı, Mekanik ve Biyouyumluluk Özellikleri Yönlerinden İncelenmesi

Year 2011, Volume: 3 Issue: 1, 55 - 65, 15.01.2011

Abstract

Nano hidroksiapatit’in tane boyutlarının kemikte bulunan apatit minerallerine olan yakınlığından dolayı, nano hidroksiapatit üzerinde yapılan araştırmalar giderek büyük önem kazanmaktadır. Bu çalışmada, hidroksiapatit’in sentezlenme yöntemleri, biyolojik uyumlulukları, iç yapı ve mekanik özellikleri hakkında genel bilgiler verilmiştir. Çeşitli iyonlar eklenerek elde edilen hidroksiapatitlerin özelliklerine bakılarak hangi iyonların nasıl katkılar sağladığı genel olarak incelenmiştir.

References

  • [1] Kalita, S.J., Bhardwaj, A. ve Bhatt, H.A. (2007). Nanocrystalline calcium phosphate ceramics in biomedical engineering. Materials Science Engineering C 27, 441–449. [2] Fang, Y., Agrawal, D.K., Roy, D.M. ve Roy, R. (1995). Fabrication of transparent hydroxyapatite ceramics by ambient-pressure sintering. Materials Letters 23, 147-151. [3] Ioku, K., Yoshimura, M. ve Somiya, S. (1990). Microstructure and mechanical properties of hydroxyapatite ceramics with zirconia dispersion prepared by post-sintering. Biomaterials 11, 57-61. [4] Li, J., Fartash, B. ve Hermansson, L. (1998). Hydroxyapatite-alumina composites and bone-bonding. Biomaterials 16, 417-422. [5] Uematsu, K., Takagi, M., Honda, T., Uchida, N. ve Saito, K. (1989). Transparent hydroxyapatite prepared by hot isostatic pressing of filter cake. Journal of the American Ceramic Society 72, 1476-1478. [6] With, G.D., Dijk, H.J.A.V., Hattu, N. ve Prijs, K. (1981). Preparation, microstructure and mechanical properties of dense polycrystalline hydroxyapatite. Journal of Materials Science 16, 1592-1598. [7] Bhat, S.V. (2002). Biomaterials, Kluwer Academic Publisher, Norwell, MA, A.B.D., ss.174-195. [8] Marks, Jr. S.C. ve Hermey, D.C. (1996). The Structure and Development of Bone, Ed: J.P. Bilezikian, L.G. Raisz, G.A. Rodan, Principles of Bone Biology, Acedemic Press, San Diego, CA, A.B.D., s. 3. [9] Keaveny, T.M. ve Hayes, W.C. (1993). Mechanical properties of cortical and trabecular bone. Bone 7, 285-344. [10] Park, J.B. (1987). Biomaterials Science and Engineering, Plenum Press, New York, NY, A.B.D. [11] Handschin, R.G. ve Stern, W.B. (1995). X-ray diffraction studies on the lattice perfection of human bone apatite (crista iliaca), Bone 16, 355S-363S. [12] Holden, J.L., Clement, J.G. ve Phakey, P.P. (1995). Age and temperature related changes to the ultrastructure and composition of human bone mineral, Journal of Bone and Mineral Research 10, 1400-1409. [13] Wopenka, B., ve Pasteris, J.D. (2005). A mineralogical perspective on the apatite in bone, Materials Science and Engineering C 25, 131-143. [14] Clara, M. Magalhaes, F. ve Williams, P.A. (2007). Apatite Group Minerals: Solubility and Environmental Remediation, Thermodynamics, Solubility and Environmental Issues, Ed: T.M. Letcher, Elsevier B.V. [15] Panteix, P.J., Julien, I., Abelard, P. ve Bernache-Assollant, D. (2008). Influence of cationic vacancies on the ionic conductivity of oxyapatites, Journal of the European Ceramic Society 28, 821-828. [16] Rey, C., Combey, C., Drouet, C., Sfihi, H. ve Barroug, A. (2007). Physico-chemical properties of nanocrystalline apatites: Implications for biominerals and biomaterials, Materials Science and Engineering C 27, 198- 205. [17] Evis, Z. (2006). Al+3 doped nano hydroxyapatites and their sintering characteristics, Journal of the Ceramic Society of Japan 114, 1001-1004, [18] Evis, Z. (2007). Reactions in hydroxylapatite–zirconia composites, Ceramics International 33, 987-991. [19] Evis, Z. ve Doremus, R.H. (2007). Hot-pressed hydroxylapatite/monoclinic zirconia composites with improved mechanical properties, Journal of Materials Science 42, 2426-2431. [20] Luo, P. ve Nieh, T.G. (1995). Synthesis of ultrafine hydroxyapatite particles by a spray dry method, Materials Science and Engineering C 3, 75- 78. [21] Xu, J.L., Khor, K.A., Dong, Z.L., Gu, Y.W., Kumar, R. ve Cheang, P. (2004). Preparation and characterization of nano-sized hydroxyapatite powders produced in a radio frequency (rf) thermal plasma, Materials Science and Engineering A 374, 101-108. [22] Kuriakose, T.A., Kalkura, S.N., Palanichamy, M., Arivuoli, D., Dierks, K., Bocelli, G. ve Betzel, C. (2004). Synthesis of stoichiometric nano crystalline hydroxyapatite by ethanol-based sol–gel technique at low temperature, Journal of Crystal Growth 263, 517-523. [23] Han, Y., Li, S., Wang, X. ve Chen, X. (2004). Synthesis and sintering of nanocrystalline hydroxyapatite powders by citric acid sol–gel combustion method, Materials Research Bulletin 39, 25-32. [24] Shih, W.J., Chen, Y.F., Wang, M.C. ve Hon, M.H. (2004). Crystal growth and morphology of the nano-sized hydroxyapatite powders synthesized from CaHPO4·2H2O and CaCO3 by hydrolysis method, Journal of Crystal Growth 270, 211-218. [25] Sarig, S. ve Kahana, F. (2002). Rapid formation of nanocrystalline apatite, Journal of Crystal Growth 237, 55–59. [26] Manuell, C.M., Ferraz, M.P. ve Monteiro, F.J., (2003). Synthesis of hydroxyapatite and tri calcium phosphate nanoparticles-preliminary studies, Bioceramics, 15, 240–242. [27] Evis, Z. ve Doremus, R.H. (2008). Effect of AlF3, CaF2 and MgF2 on hotpressed hydroxyapatite–nanophase alpha-alumina composites, Materials Research Bulletin 43, 2643-2651. [28] Jarcho, M., Bolen, C.H, Thomas, M.B., Bobick, J., Kay, J.F. ve Doremus, R.H. (1976). Hydroxylapatite synthesis and characterization in dense polycrystalline form, Journal of Materials Science 11, 2027-2035. [29] Akao, M., Aoki, H. ve Kato, K. (1981). Mechanical properties of sintered hydroxyapatite for prosthetic applications, Journal of Materials Science 16, 809-812. [30] Ruys, A.J., Wei, M., Sorrell, C.C., Dickson, M.R., Brandwood, A., ve Milthorpe, B.K. (1995). Sintering effects on the strength of hydroxyapatite, Biomaterials 16, 409-415. [31] Santos, J.D., Knowles, J.C., Reis, R.L., Monteiro, F.J. ve Hastings, G.W. (1994). Microstructural characterization of glass-reinforced hydroxyapatite composites, Biomaterials 15, 5-10. [32] Ahn, E.S., Gleason, N.J., Nakahira, A. ve Ying, J.Y. (2001). Nanostructure processing of hydroxyapatite-based bioceramics, Nano Letters 1, 149-153. [33] Atsala, R. ve Stott, M.J. (2005). First principles investigation of mineral component of bone: CO3 substitutions in hydroxyapatite, Chemistry of Materials 17, 4125-4133. [34] Posner, A.S., Perloff, A. ve Diorio, A.F. 1958. Refinement of the hydroxyapatite structure, Acta Crystallographica 11, 308-309. [35] Fleet, M.E. ve Liu, X. (2000). Site preference of rare earth elements in hydroxyapatite [Ca10(PO4)6(OH)2], Journal of Solid State Chemistry 149, 391- 398. [36] Ikoma, T., Yamazaki, A., Nakamura, S. ve Akao, M. (1999). Preparation and structure refinement of monoclinic hydroxyapatite, Journal of Solid State Chemistry 144, 272-276. [37] Webster, T.J., Siegel, R.W. ve Bizios, R. (1998). Bioceramics, Ed: R.Z. LeGeros ve J.P. LeGeros, World Scientific, New York, NY, A.B.D., 11, 273- 276. [38] Webster, T.J., Siegel, R.W. ve Bizios, R. (1999). Osteoblast adhesion on nanophase ceramics, Biomaterials 20, 1222-1227. [39] Webster, T.J., Ergun, C., Doremus, R.H., Siegel, R.W. ve Bizios, R. (2000). Enhanced functions of osteoblasts on nanophase ceramics, Biomaterials 21, 803-1810. [40] Kim, T.N., Feng, Q.L., Kim, J.O., Wu, J., Wang, H., Chen, G.C. ve Cui, F.Z. (1998). Antimicrobial effects of metal ions (Ag+, Cu2+, Zn2+) in hydroxyapatite, Journal of Materials Science: Materials in Medicine 9, 129- 134. [41] Yang, H., Zhang, L. ve Xu, K.-W. (2009). Effect of storing on the microstructure of Ag/Cu/HA powder, Ceramics International 35, 1595-1601. [42] Narasaraju, T.S.B. ve Phebe, D.E. (1996). Some physico-chemical aspects of hydroxylapatite, Journal of Materials Science 31, 1-21. [43] Ergun, C., Webster, T.J., Bizios, R. ve Doremus, R.H. (2002). Hydroxylapatite with substituted magnesium, zinc, cadmium, and yttrium. I. Structure and microstructure, Journal of Biomedical Materials Research 59, 305-311. [44] Kim, S.R., Lee, J.H., Kim, Y.T., Riu, D.H., Jung, S.J., Lee, Y.J., Chung, S.C. ve Kim, Y.H. (2003). Synthesis of Si, Mg substituted hydroxyapatites and their sintering behaviors, Biomaterials, 24, 389–1398. [45] Webster, T.J., Massa-Schlueter, E.A., Smith, J.L. ve Slamovich, E.B. (2004). Osteoblast response to hydroxyapatite doped with divalent and trivalent cations, Biomaterials 25, 2111-2121. [46] Kannan, S., Rebelo, A. ve Ferreira, J.M.F. (2006). Novel synthesis and structural characterization of fluorine and chlorine co-substituted hydroxyapatites, Journal of Inorganic Biochemistry 100, 1692-1697. [47] Kalita, S.J. ve Bhatt, H.A. (2007). Nanocrystalline hydroxyapatite doped with magnesium and zinc: synthesis and characterization, Materials Science and Engineering C 27, 837-848. [48] Chen, Y. ve Miao, X. (2004). Effect of fluorine addition on the corrosion resistance of hydroxyapatite ceramics, Ceramics International 30, 1961-1965.
There are 1 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Zafer Evis

Publication Date January 15, 2011
Submission Date October 23, 2017
Published in Issue Year 2011 Volume: 3 Issue: 1

Cite

APA Evis, Z. (2011). Çeşitli İyonlar Eklenmiş NanoHidroksiapatitler: Üretim Yöntemleri, İç Yapı, Mekanik ve Biyouyumluluk Özellikleri Yönlerinden İncelenmesi. International Journal of Engineering Research and Development, 3(1), 55-65.

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.