Research Article
BibTex RIS Cite

Kantil Regresyon

Year 2017, Volume: 9 Issue: 2, 137 - 146, 15.06.2017
https://doi.org/10.29137/umagd.352530

Abstract

Regresyon analizi uygulama alanı en geniş olan
istatistiksel analiz yöntemlerinden biridir. Birçok alanda tekniğinde olduğu
gibi mühendislik alanında da yaygın olarak kullanılmaktadır. Regresyon
analizinde kullanılan En Küçük Kareler (EKK) tekniğinin çıkarsama amaçlı
kullanılabilmesi bazı varsayımların sağlanmasını zorunlu kılar. EKK tekniğinde
hata terimleri dağılımının normal dağılıma sahip olmaması ve modelin aykırı
değerler içermesi durumunda EKK tahmin edicileri etkinlik özelliklerini
kaybetmektedir. Bu durumda alternatif regresyon tekniklerine başvurulmaktadır.
Alternatif regresyon yöntemlerinden biri olan Kantil regresyon, klasik
regresyon yöntemlerinin bazı sınırlamalarının üstesinden gelmektedir. Bu
çalışmada Kantil regresyon yöntemi tanıtılmış ve bir mühendislik uygulaması
üzerinde EKK tahmin edicileri ile karşılaştırılmıştır. Beton kırma deneyi için
elde edilen sonuçlara göre, EKK yöntemi ile elde edilen modelin çıkarsama
amaçlı kullanılamayacağı tespit edilmiştir. Bu durumda τ =0.75’inci ve τ
=0.25’inci kantil değerine göre kurulan regresyon denklemi çıkarsama amaçlı
kullanılabilir.

References

  • Alpar, R. (2013). Uygulamalı çok değişkenli istatistiksel yöntemler. Ankara, Detay Yayıncılık.
  • Altındağ, R. (2003). Correlation of specific energy with rock brittleness concepts on cutting, The Journal of the South African Institute of Mining and Metallurgy, 15, 163-171.
  • Bassett, G.W. & Chen, H-L. (2001). Quantile style: return-based attribution using regression quantiles, Physica- Verlag HD, Chicago, 293-305.
  • Buchinsky, M. (1994). Changes in the u.s. wage structure 1963-1987: application of quantile regression, The Econometric Society, 62(2), 405-458. doi: 10.2307/2951618.
  • Cai, Y. & Reeve, D.E. (2013). Extreme value prediction via a quantile function model. Coastal Engineering, 77, 91–98. doi:10.1016/j.coastaleng.2013.02.003.
  • Chen, C. & Wei, Y. (2005). Computational ıssues for quantile regression. special ıssue on quantile regression and related methods, The Indian Journal of Statistics, 67(2), 399-417. doi: 10.2307/i25053424 Crowley, J.& Hu, M. (1977). Covariance analysis of heart transplant survival data. Journal of the American Statistical Association, 72, 27-36. doi: 10.1080/01621459.1977.10479903
  • Çağlayan E. & Arikan E. (2011). Determinants of house prices in ıstanbul: a quantile regression approach. Qual, Quant, 45, 305-317. doi:10. 1007/s11135-009-9296-x.
  • Dehghani, H., Vahidi, B., & Hosseinian, S.H. (2017). Wind farms participation in electricity markets considering uncertainties. Renewable Energy, 101, 907-918. doi:10.1016/j.renene.2016.09.049.
  • Ergül, B. (2003). Robust regresyon ve uygulamaları. Yüksek Lisans Tezi. Eskişehir Osmangazi Üniversitesi, Eskişehir.
  • He, Y., Liu, R., Li, H., Wang, S., & Lu, X. (2016). Short-term power load probability density forecasting method using kernel-based support vector quantile regression and Copula theory. Applied Energy, 185, 254–266. doi:10.1016/j.apenergy.2016.10.079.
  • Hendricks, W. & Koenker, R. (1992). Hierarchical spline models for conditional quantiles and the demand for electricity, Journal of the American Statistical Association, 87, 58-68. doi: 10.1080/01621459.1992.10475175.
  • Huang, Y. F., Mirzaei, M., & Amin, M.Z.M. (2016). Uncertainty Quantification in Rainfall Intensity Duration Frequency Curves based on Historical Extreme Precipitation Quantiles. Procedia Engineering, 154, 426–432. doi:10.1016/j.proeng.2016.07.425.
  • Hüdaverdi, T. (2015), Farklı regresyon modelleri ile patlatma kaynaklı yer sarsıntısının tahmin edilmesi, Çukurova Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 30(1), 141-150. doi: 22746/242810.
  • Koenker R. (2005). Quantile regression, Cambridge University Press, NY 10011-4211, New York, USA. Koenker, R. & Basset, G. (1978). Regression quantiles, Econometrica, 46(1), 33-50. doı: 10.2307/1913643. Koenker, R. & Geling, O. (2001). A quantile regression survival analysis, Journal of the American Statistical Association, 96, 458-468. doi: 10.1198/016214501753168172.
  • Koenker, R., & Hallock K., F. (2001). Quantile regression an ıntroduction. Journal of Economic Perspectives, 15(4):143–156. doi:10.2307/i346045.
  • Koenker, R., & Schorfheide, F. (1994). Quantile spline models for global temperature change. Climatic Change, 28, 395-404. doi:10.1007/BF01104081.
  • Lv, Z., Zhao, J., Lia, Y., & Vang, W. (2016). Use of a quantile regression based echo state network ensemble for construction of prediction Intervals of gas flow in a blast furnace. Control Engineering Practice, 46, 94–104. doi:10.1016/j.conengprac.2015.10.003.
  • Machado, A.F. & J, Mata. (2005). Counterfactual decomposition of changes in wage distributions using quantile regression, Journal of Applied Econometrics, 20(4), 445-465. doi: 10.1002/jae.788.
  • Martins, P.S. & Pereira, P.T. (2004). Does education reduce wage inequality? Quantile regression evidence from 16 countries, Labour Economics, 11(3), 355-371. doi: 10.1016/j.labeco.2003.05.003.
  • Montgomery, D.C. & Peck, E.A. & Vınıng, G.G., (2013), Doğrusal regresyon analizine giriş, Ankara, Nobel Akademik Yayıncılık.
  • Muraleedharan, G., Lucas, C., & Guedes Soares, C. (2016). Regression quantile models for estimating trends in extreme significant wave heights. Ocean Engineering, 118, 204–215. doi:10.1016/j.oceaneng.2016.04.009.
  • Muthusamy, M., Godiksen, P.N., & Madsen, H. (2016). Comparison of different configurations of quantile regression in estimating predictive hydrological uncertainty. Procedia Engineering, 154, 513–520. doi: 10.1016/j.proeng.2016.07.546. Ovla, H.D. & Taşdelen, B. (2012), Aykırı değer yöntemi, Mersin Üniversitesi Sağlık Bilimleri Dergisi, 5(3), 1-8.
  • Pandey, G.R.& Nguyen, V.T.V. (1999). A comparative study of regression based methods in regional flood frequency analysis, Journal of Hydrology, 225, 92–101. doi:10.1016/S0022-1694(99)00135-3.
  • Seo, J.H., Perry, V.G., Tomczyk, D. & Solomon G.T. (2014). Who benefits most? The effects of managerial assistance on high- versus low-performing small businesses, Journal of Business Research, 67, 2845-2852. doi: 10.1016/j.jbusres.2012.07.003.
  • Tan, X-P., & Wang, X-Y. (2016). Dependence changes between the carbon price and its fundamentals: A quantile regression approach. Applied Energy, 190, 306–325. doi:10.1016/j.apenergy.2016.12.116. Tareghian R. & Rasmussen, P. (2013). statistical downscaling of precipitation using quatile regression. Journal of Hydrology, 487, 122-135. doi:10.1016/j.jhydrol.2013.02.029.
  • Tukey, J.W. (1977). Exploratory data analysis, Addison-Wesley Publishing Campany,
  • Walfish, S. (2006). A review of statistical outlier methods. Pharmaceutical Technology, 30(11), 82-88.
  • Wang, D. H. -M., Yu, T. H. -K., & Liu, H. -Q. (2013). Heterogeneous effect of high-tech industrial R&D spending on economic growth. Journal of Business Research, 66(10), 1990–1993. doi:10.1016/j.jbusres.2013.02.023
  • Yu, K., Lu, Z. & Stander, J. (2003). Quantile regression: applications and current research areas, Journal of the Royal Statistical Society: Series D (The Statistician). 52,331-350. doi: 10.1111/1467-9884.00363. Yu, T.H-K. (2011). Heterogeneous effects of different factors on global ICT adoption, Journal of Business Research, 64, 1169-1173. doi: 10.1016/j.jbusres.2011.06.017.
  • Yu, T. H. -K., Wang, D. H. -M., & Chang, L. -Y. (2011). Examining the heterogeneous effectof healthcare expenditure determinants. International Journal of Behavioural and Healthcare Research, 2(3), 205–213. doi: 10.1504/IJBHR.2011.041044

Quantile Regression

Year 2017, Volume: 9 Issue: 2, 137 - 146, 15.06.2017
https://doi.org/10.29137/umagd.352530

Abstract

Regression analysis is one of the most widely
used statistical analysis methods. It is widely used in the engineering field
as it is in many areas. The fact that the Least Squares (LS) technique used in
regression analysis can be used for inference makes it necessary to provide
some assumptions. In the LS, if the distribution of error terms does not have
normal distribution and if the model contains outliers, the least squares
estimators lose their efficiency properties. In this case, alternative
regression techniques are applied. Quantile regression, one of the alternative
regression methods, comes from overcoming some of the limitations of classical
regression methods. In this study, the method of quantile regression is
introduced and on an engineering application is compared with the estimators of
the LS. According to the results obtained for the concrete breaking test, it
has been determined that the model obtained by the method of LS can not be used
for inference. İn this case, it can be used for inference the regression
equation established for τ = 0.75th and τ = 0.25th quantile value.

References

  • Alpar, R. (2013). Uygulamalı çok değişkenli istatistiksel yöntemler. Ankara, Detay Yayıncılık.
  • Altındağ, R. (2003). Correlation of specific energy with rock brittleness concepts on cutting, The Journal of the South African Institute of Mining and Metallurgy, 15, 163-171.
  • Bassett, G.W. & Chen, H-L. (2001). Quantile style: return-based attribution using regression quantiles, Physica- Verlag HD, Chicago, 293-305.
  • Buchinsky, M. (1994). Changes in the u.s. wage structure 1963-1987: application of quantile regression, The Econometric Society, 62(2), 405-458. doi: 10.2307/2951618.
  • Cai, Y. & Reeve, D.E. (2013). Extreme value prediction via a quantile function model. Coastal Engineering, 77, 91–98. doi:10.1016/j.coastaleng.2013.02.003.
  • Chen, C. & Wei, Y. (2005). Computational ıssues for quantile regression. special ıssue on quantile regression and related methods, The Indian Journal of Statistics, 67(2), 399-417. doi: 10.2307/i25053424 Crowley, J.& Hu, M. (1977). Covariance analysis of heart transplant survival data. Journal of the American Statistical Association, 72, 27-36. doi: 10.1080/01621459.1977.10479903
  • Çağlayan E. & Arikan E. (2011). Determinants of house prices in ıstanbul: a quantile regression approach. Qual, Quant, 45, 305-317. doi:10. 1007/s11135-009-9296-x.
  • Dehghani, H., Vahidi, B., & Hosseinian, S.H. (2017). Wind farms participation in electricity markets considering uncertainties. Renewable Energy, 101, 907-918. doi:10.1016/j.renene.2016.09.049.
  • Ergül, B. (2003). Robust regresyon ve uygulamaları. Yüksek Lisans Tezi. Eskişehir Osmangazi Üniversitesi, Eskişehir.
  • He, Y., Liu, R., Li, H., Wang, S., & Lu, X. (2016). Short-term power load probability density forecasting method using kernel-based support vector quantile regression and Copula theory. Applied Energy, 185, 254–266. doi:10.1016/j.apenergy.2016.10.079.
  • Hendricks, W. & Koenker, R. (1992). Hierarchical spline models for conditional quantiles and the demand for electricity, Journal of the American Statistical Association, 87, 58-68. doi: 10.1080/01621459.1992.10475175.
  • Huang, Y. F., Mirzaei, M., & Amin, M.Z.M. (2016). Uncertainty Quantification in Rainfall Intensity Duration Frequency Curves based on Historical Extreme Precipitation Quantiles. Procedia Engineering, 154, 426–432. doi:10.1016/j.proeng.2016.07.425.
  • Hüdaverdi, T. (2015), Farklı regresyon modelleri ile patlatma kaynaklı yer sarsıntısının tahmin edilmesi, Çukurova Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 30(1), 141-150. doi: 22746/242810.
  • Koenker R. (2005). Quantile regression, Cambridge University Press, NY 10011-4211, New York, USA. Koenker, R. & Basset, G. (1978). Regression quantiles, Econometrica, 46(1), 33-50. doı: 10.2307/1913643. Koenker, R. & Geling, O. (2001). A quantile regression survival analysis, Journal of the American Statistical Association, 96, 458-468. doi: 10.1198/016214501753168172.
  • Koenker, R., & Hallock K., F. (2001). Quantile regression an ıntroduction. Journal of Economic Perspectives, 15(4):143–156. doi:10.2307/i346045.
  • Koenker, R., & Schorfheide, F. (1994). Quantile spline models for global temperature change. Climatic Change, 28, 395-404. doi:10.1007/BF01104081.
  • Lv, Z., Zhao, J., Lia, Y., & Vang, W. (2016). Use of a quantile regression based echo state network ensemble for construction of prediction Intervals of gas flow in a blast furnace. Control Engineering Practice, 46, 94–104. doi:10.1016/j.conengprac.2015.10.003.
  • Machado, A.F. & J, Mata. (2005). Counterfactual decomposition of changes in wage distributions using quantile regression, Journal of Applied Econometrics, 20(4), 445-465. doi: 10.1002/jae.788.
  • Martins, P.S. & Pereira, P.T. (2004). Does education reduce wage inequality? Quantile regression evidence from 16 countries, Labour Economics, 11(3), 355-371. doi: 10.1016/j.labeco.2003.05.003.
  • Montgomery, D.C. & Peck, E.A. & Vınıng, G.G., (2013), Doğrusal regresyon analizine giriş, Ankara, Nobel Akademik Yayıncılık.
  • Muraleedharan, G., Lucas, C., & Guedes Soares, C. (2016). Regression quantile models for estimating trends in extreme significant wave heights. Ocean Engineering, 118, 204–215. doi:10.1016/j.oceaneng.2016.04.009.
  • Muthusamy, M., Godiksen, P.N., & Madsen, H. (2016). Comparison of different configurations of quantile regression in estimating predictive hydrological uncertainty. Procedia Engineering, 154, 513–520. doi: 10.1016/j.proeng.2016.07.546. Ovla, H.D. & Taşdelen, B. (2012), Aykırı değer yöntemi, Mersin Üniversitesi Sağlık Bilimleri Dergisi, 5(3), 1-8.
  • Pandey, G.R.& Nguyen, V.T.V. (1999). A comparative study of regression based methods in regional flood frequency analysis, Journal of Hydrology, 225, 92–101. doi:10.1016/S0022-1694(99)00135-3.
  • Seo, J.H., Perry, V.G., Tomczyk, D. & Solomon G.T. (2014). Who benefits most? The effects of managerial assistance on high- versus low-performing small businesses, Journal of Business Research, 67, 2845-2852. doi: 10.1016/j.jbusres.2012.07.003.
  • Tan, X-P., & Wang, X-Y. (2016). Dependence changes between the carbon price and its fundamentals: A quantile regression approach. Applied Energy, 190, 306–325. doi:10.1016/j.apenergy.2016.12.116. Tareghian R. & Rasmussen, P. (2013). statistical downscaling of precipitation using quatile regression. Journal of Hydrology, 487, 122-135. doi:10.1016/j.jhydrol.2013.02.029.
  • Tukey, J.W. (1977). Exploratory data analysis, Addison-Wesley Publishing Campany,
  • Walfish, S. (2006). A review of statistical outlier methods. Pharmaceutical Technology, 30(11), 82-88.
  • Wang, D. H. -M., Yu, T. H. -K., & Liu, H. -Q. (2013). Heterogeneous effect of high-tech industrial R&D spending on economic growth. Journal of Business Research, 66(10), 1990–1993. doi:10.1016/j.jbusres.2013.02.023
  • Yu, K., Lu, Z. & Stander, J. (2003). Quantile regression: applications and current research areas, Journal of the Royal Statistical Society: Series D (The Statistician). 52,331-350. doi: 10.1111/1467-9884.00363. Yu, T.H-K. (2011). Heterogeneous effects of different factors on global ICT adoption, Journal of Business Research, 64, 1169-1173. doi: 10.1016/j.jbusres.2011.06.017.
  • Yu, T. H. -K., Wang, D. H. -M., & Chang, L. -Y. (2011). Examining the heterogeneous effectof healthcare expenditure determinants. International Journal of Behavioural and Healthcare Research, 2(3), 205–213. doi: 10.1504/IJBHR.2011.041044
There are 30 citations in total.

Details

Journal Section Articles
Authors

Arzu Altın Yavuz This is me

Ebru Gündoğan Aşık

Publication Date June 15, 2017
Submission Date November 14, 2017
Published in Issue Year 2017 Volume: 9 Issue: 2

Cite

APA Altın Yavuz, A., & Gündoğan Aşık, E. (2017). Quantile Regression. International Journal of Engineering Research and Development, 9(2), 137-146. https://doi.org/10.29137/umagd.352530

Cited By













All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.