Research Article
BibTex RIS Cite

Akıllı Yol Durum Sensörü Tasarımı

Year 2019, Volume: 11 Issue: 1, 396 - 401, 31.01.2019
https://doi.org/10.29137/umagd.510777

Abstract

Bu çalışmada, yol yüzeyinin durumunu tespit eden akıllı yol durum sensörü tasarlanmıştır. Sürücülerin ve yolcuların güvenliğini en çok tehlikeye sokan buzlu yol durumunun tespiti üzerine çalışılmıştır. Yol yüzeyi tahmini için toprak sıcaklığı, hava sıcaklığı, hissedilen nem, hava basıncı ve yol yüzeyindeki iletkenlik değerleri sınıflandırma algoritmalarında öznitelik olarak seçilmiştir. Yol yüzeyi buzlu, kuru, ıslak ve tuzlu-ıslak olarak sınıflandırılmıştır. Sınıflandırma algoritmaları olarak K en yakın komşu ve Destek Vektör Makinası tercih edilmiştir. K en yakın komşu algoritmasının, Destek Vektör Makinası algoritmasına göre daha iyi sonuç verdiği görülmüştür. Sınıflandırıcı tek kartlı bilgisayar olarak bilinen Raspberry Pi3 üzerinde gerçek zamanlı olarak çalıştırılmaktadır. Tasarlanan yol durum sensörü mevcut sensörlere göre kurulumu kolay ve yüksek başarıma sahiptir.

References

  • Alonso, J., Lopez, J., Pavón, I., Recuero, M., Asensio, C., Arcas, G., & Bravo, A. (2014). On-board wet road surface identification using tyre/road noise and Support Vector Machines. Applied acoustics, 76, 407-415.
  • Andersson, A. K., & Chapman, L. (2011). The impact of climate change on winter road maintenance and traffic accidents in West Midlands, UK. Accident Analysis & Prevention, 43(1), 284-289.
  • Batista, G., & Silva, D. F. (2009). How k-nearest neighbor parameters affect its performance. Paper presented at the Argentine symposium on artificial intelligence.
  • Bhatia, N. (2010). Survey of nearest neighbor techniques. arXiv preprint arXiv:1007.0085.
  • Casselgren, J., Kutila, M., & Jokela, M. (2012). Slippery road detection by using different methods of polarised light. Advanced Microsystems for Automotive Applications 2012, 207-220.
  • Casselgren, J., Rosendahl, S., Sjödahl, M., & Jonsson, P. (2016). Road condition analysis using NIR illumination and compensating for surrounding light. Optics and lasers in engineering, 77, 175-182.
  • Civelek, Z., Gorel, G., Luy, M., Barısci, N., & Cam, E. Effects on Load-Frequency Control of a Solar Power System with a Two-Area Interconnected Thermal Power Plant and its Control with a New BFA Algorithm. Elektronika ir Elektrotechnika, 24(6), 3-10.
  • Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE transactions on information theory, 13(1), 21-27.
  • Crevier, L.-P., & Delage, Y. (2001). METRo: A new model for road-condition forecasting in Canada. Journal of Applied Meteorology, 40(11), 2026-2037.
  • Gagnon, R., Groves, J., & Pearson, W. (2012). Remote ice detection equipment—RIDE. Cold Regions Science and Technology, 72, 7-16.
  • Gresham, I., Jain, N., Budka, T., Alexanian, A., Kinayman, N., Ziegner, B., . . . Staecker, P. (2001). A compact manufacturable 76-77-GHz radar module for commercial ACC applications. IEEE Transactions on Microwave Theory and Techniques, 49(1), 44-58.
  • Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). Gene selection for cancer classification using support vector machines. Machine learning, 46(1-3), 389-422.
  • Harvey, A. H., McLinden, M. O., & Tew, W. L. (2013). Thermodynamic analysis and experimental study of the effect of atmospheric pressure on the ice point. Paper presented at the AIP Conference Proceedings.
  • Jonsson, P. (2011). Remote sensor for winter road surface status detection. Paper presented at the Sensors, 2011 IEEE.
  • Jonsson, P., Casselgren, J., & Thörnberg, B. (2015). Road surface status classification using spectral analysis of NIR camera images. IEEE Sensors Journal, 15(3), 1641-1656.
  • Jovanovic, B. D. (1991). Subset selection in regression. AJ Miller, Chapman and Hall, London, 1990. No. of pages: x+ 229. Price:£ 25. Statistics in Medicine, 10(7), 1164-1165.
  • Kresse, W., & Danko, D. M. (2012). Springer handbook of geographic information: Springer Science & Business Media.
  • Kuehnle, A., & Burghout, W. (1998). Winter road condition recognition using video image classification. Transportation Research Record: Journal of the Transportation Research Board(1627), 29-33.
  • Lazarev, Y., Medres, C., Raty, J., & Bondarenko, A. (2017). Method of Assessment and Prediction of Temperature Conditions of Roadway Surfacing as a Factor of the Road Safety. Transportation Research Procedia, 20, 393-400.
  • Liu, H., & Zhang, S. (2012). Noisy data elimination using mutual k-nearest neighbor for classification mining. Journal of Systems and Software, 85(5), 1067-1074.
  • Marsland, S. (2011). Machine learning: an algorithmic perspective: Chapman and Hall/CRC.
  • Omer, R., & Fu, L. (2010). An automatic image recognition system for winter road surface condition classification. Paper presented at the Intelligent transportation systems (itsc), 2010 13th international ieee conference on.
  • Sass, B. H. (1997). A numerical forecasting system for the prediction of slippery roads. Journal of Applied Meteorology, 36(6), 801-817.
  • Vapnik, V.N., 1995, The Nature of Statistical Learning Theory, Springer-Verlag, New York.
  • Viikari, V. V., Varpula, T., & Kantanen, M. (2009). Road-condition recognition using 24-GHz automotive radar. IEEE transactions on intelligent transportation systems, 10(4), 639-648.
  • Werthof, A., Siweris, H., Tischer, H., Liebl, W., Jaeger, G., & Grave, T. (2002). A 38/76 GHz automotive radar chip set fabricated by a low cost PHEMT technology. Paper presented at the Microwave Symposium Digest, 2002 IEEE MTT-S International.
  • Xu, G., Zong, Y., & Yang, Z. (2013). Applied data mining: CRC Press.

Intelligent Road Condition Sensor Design

Year 2019, Volume: 11 Issue: 1, 396 - 401, 31.01.2019
https://doi.org/10.29137/umagd.510777

Abstract

In this study, intelligent road condition sensor is designed to determine the condition of the road surface. It has been studied on the determination of the icy road situation which endangers the safety of drivers and passengers at most. For road surface estimation, soil temperature, air temperature, sensed humidity, air pressure and conductivity values on the road surface are selected as attributes in classification algorithms. The road surface is classified as icy, dry, wet and salty-wet. K-Near Neigbours and Support Vector Machine were preferred as classification algorithms. It is seen that K-Near Neigbours algorithm has given more accurate results than Support Vector Machine algorithm. The classifier is run in real time on the Raspberry Pi3, known as a single board computer. The designed road condition sensor is easy to install and has high performance in comparison with existing sensors.

References

  • Alonso, J., Lopez, J., Pavón, I., Recuero, M., Asensio, C., Arcas, G., & Bravo, A. (2014). On-board wet road surface identification using tyre/road noise and Support Vector Machines. Applied acoustics, 76, 407-415.
  • Andersson, A. K., & Chapman, L. (2011). The impact of climate change on winter road maintenance and traffic accidents in West Midlands, UK. Accident Analysis & Prevention, 43(1), 284-289.
  • Batista, G., & Silva, D. F. (2009). How k-nearest neighbor parameters affect its performance. Paper presented at the Argentine symposium on artificial intelligence.
  • Bhatia, N. (2010). Survey of nearest neighbor techniques. arXiv preprint arXiv:1007.0085.
  • Casselgren, J., Kutila, M., & Jokela, M. (2012). Slippery road detection by using different methods of polarised light. Advanced Microsystems for Automotive Applications 2012, 207-220.
  • Casselgren, J., Rosendahl, S., Sjödahl, M., & Jonsson, P. (2016). Road condition analysis using NIR illumination and compensating for surrounding light. Optics and lasers in engineering, 77, 175-182.
  • Civelek, Z., Gorel, G., Luy, M., Barısci, N., & Cam, E. Effects on Load-Frequency Control of a Solar Power System with a Two-Area Interconnected Thermal Power Plant and its Control with a New BFA Algorithm. Elektronika ir Elektrotechnika, 24(6), 3-10.
  • Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE transactions on information theory, 13(1), 21-27.
  • Crevier, L.-P., & Delage, Y. (2001). METRo: A new model for road-condition forecasting in Canada. Journal of Applied Meteorology, 40(11), 2026-2037.
  • Gagnon, R., Groves, J., & Pearson, W. (2012). Remote ice detection equipment—RIDE. Cold Regions Science and Technology, 72, 7-16.
  • Gresham, I., Jain, N., Budka, T., Alexanian, A., Kinayman, N., Ziegner, B., . . . Staecker, P. (2001). A compact manufacturable 76-77-GHz radar module for commercial ACC applications. IEEE Transactions on Microwave Theory and Techniques, 49(1), 44-58.
  • Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). Gene selection for cancer classification using support vector machines. Machine learning, 46(1-3), 389-422.
  • Harvey, A. H., McLinden, M. O., & Tew, W. L. (2013). Thermodynamic analysis and experimental study of the effect of atmospheric pressure on the ice point. Paper presented at the AIP Conference Proceedings.
  • Jonsson, P. (2011). Remote sensor for winter road surface status detection. Paper presented at the Sensors, 2011 IEEE.
  • Jonsson, P., Casselgren, J., & Thörnberg, B. (2015). Road surface status classification using spectral analysis of NIR camera images. IEEE Sensors Journal, 15(3), 1641-1656.
  • Jovanovic, B. D. (1991). Subset selection in regression. AJ Miller, Chapman and Hall, London, 1990. No. of pages: x+ 229. Price:£ 25. Statistics in Medicine, 10(7), 1164-1165.
  • Kresse, W., & Danko, D. M. (2012). Springer handbook of geographic information: Springer Science & Business Media.
  • Kuehnle, A., & Burghout, W. (1998). Winter road condition recognition using video image classification. Transportation Research Record: Journal of the Transportation Research Board(1627), 29-33.
  • Lazarev, Y., Medres, C., Raty, J., & Bondarenko, A. (2017). Method of Assessment and Prediction of Temperature Conditions of Roadway Surfacing as a Factor of the Road Safety. Transportation Research Procedia, 20, 393-400.
  • Liu, H., & Zhang, S. (2012). Noisy data elimination using mutual k-nearest neighbor for classification mining. Journal of Systems and Software, 85(5), 1067-1074.
  • Marsland, S. (2011). Machine learning: an algorithmic perspective: Chapman and Hall/CRC.
  • Omer, R., & Fu, L. (2010). An automatic image recognition system for winter road surface condition classification. Paper presented at the Intelligent transportation systems (itsc), 2010 13th international ieee conference on.
  • Sass, B. H. (1997). A numerical forecasting system for the prediction of slippery roads. Journal of Applied Meteorology, 36(6), 801-817.
  • Vapnik, V.N., 1995, The Nature of Statistical Learning Theory, Springer-Verlag, New York.
  • Viikari, V. V., Varpula, T., & Kantanen, M. (2009). Road-condition recognition using 24-GHz automotive radar. IEEE transactions on intelligent transportation systems, 10(4), 639-648.
  • Werthof, A., Siweris, H., Tischer, H., Liebl, W., Jaeger, G., & Grave, T. (2002). A 38/76 GHz automotive radar chip set fabricated by a low cost PHEMT technology. Paper presented at the Microwave Symposium Digest, 2002 IEEE MTT-S International.
  • Xu, G., Zong, Y., & Yang, Z. (2013). Applied data mining: CRC Press.
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Fecir Duran 0000-0001-7256-5471

Mustafa Teke 0000-0002-7262-4918

Publication Date January 31, 2019
Submission Date January 9, 2019
Published in Issue Year 2019 Volume: 11 Issue: 1

Cite

APA Duran, F., & Teke, M. (2019). Akıllı Yol Durum Sensörü Tasarımı. International Journal of Engineering Research and Development, 11(1), 396-401. https://doi.org/10.29137/umagd.510777

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.