Research Article
BibTex RIS Cite

AZ91 Mg Alaşımına Farklı Oranlarda Sb İlavesi İle Katılaşma Hızının Mikroyapı ve Mekanik Özelliklere Etkisi

Year 2019, Volume: 11 Issue: 2, 451 - 463, 30.06.2019
https://doi.org/10.29137/umagd.507264

Abstract

Mevcut kullanım alanları gün geçtikçe artış gösteren Mg alaşımlarının,
teknolojik gelişmelere uyum sağlayabilmesi için mekanik özellikler bakımından
daha fazla geliştirilmesi gerekliliği ortaya çıkmıştır. Günümüzde çözünebilir
biyo-malzeme olarak sağlık alanında da kullanılmaya başlayan Mg ve alaşımlarına
kazandırılan fiziksel ve mekanik özellikler malzemenin kullanım ömrünü tayin
etmektedir. Dolayısıyla bu çalışmada, AZ91 serisi Mg alaşımına farklı oranlarda
(%0.2 - %0.5 ve %1.0) Sb elementi ilavesi ve katılaşma hızının da etkisiyle
mekanik özelliklerinin geliştirilmesi amaçlanmıştır. Yapılan çalışmanın
neticesinde sonuçlar incelendiğinde; AZ91 alaşımının genel olarak tane
yapısının α-Mg ve tane sınırları boyunca yayılan β-Mg17Al12
fazından oluştuğu saptanmıştır. Hızlı soğumanın tane yapısında küçülmelere
sebep olduğu bununla birlikte tane sınırlarında bulunan Mg17Al12
intermetalik fazının incelip parçalandığı tespit edilmiştir. Tespit edilen bu
etkilerin neticesinde de alaşımın çekme, akma ve uzama değerlerinde artışın olduğu gözlenmiştir. Bununla
birlikte AZ91 alaşımına ilave edilen Sb ile yapıda Mg3Sb2
fazı oluşmuştur. Bu intermetalik fazın yapıda meydana getirdiği değişiklikler
ile alaşımın mekanik özelliklerinde artış izlenmiştir. AZ91 alaşımının çekme
dayanımı Sb ilavesi ile 163 MPa seviyelerinden 217 MPa seviyelerine kadar
iyileşmiştir. Sb ilavesiyle AZ91 alaşımında sertlik değerleri yaklaşık 57 HV
değerlerinden 81 HV değerlerine yükselmiştir.

References

  • Agarwal, S., Curtin, J., Duffy, B., & Jaiswal, S. (2016). Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications. Materials Science and Engineering: C, 68, 948-963. doi:10.1016/j.msec.2016.06.020
  • Ali, Y., Qiu, D., Jiang, B., Pan, F., & Zhang, M.-X. (2015). Current research progress in grain refinement of cast magnesium alloys: a review article. Journal of Alloys and Compounds, 619, 639-651. doi:10.1016/j.jallcom.2014.09.061
  • Balasubramani, N., Srinivasan, A., Pillai, U., & Pai, B. (2007). Effect of Pb and Sb additions on the precipitation kinetics of AZ91 magnesium alloy. Materials Science and Engineering: A, 457(1-2), 275-281. doi:10.1016/j.msea.2006.12.132
  • Bamberger, M. (2013). Structural refinement of cast magnesium alloys. Materials Science and Technology, 17(1), 15-24. doi:10.1179/026708301101509061
  • Barber, L. P. (2004). Characterization of the solidification behavior and resultant microstructures of magnesium-aluminum alloys. (MS), Worcester Polytechnic Institute, (etd-12234-112022)
  • Boby, A., Srinivasan, A., Pillai, U. T. S., & Pai, B. C. (2015). Effect of Sb, Sn and Pb additions on the microstructure and mechanical properties of AZ91 alloy. Paper presented at the Materials Science Forum.
  • Carbonneau, Y., Couture, A., Van Neste, A., & Tremblay, R. (1998). On the observation of a new ternary MgSiCa phase in Mg-Si alloys. Metallurgical and Materials Transactions A, 29(6), 1759-1763.
  • Čížek, L., Greger, M., Dobrzański, L., Juřička, I., Kocich, R., Pawlica, L., & Tański, T. (2006). Mechanical properties of magnesium alloy AZ91 at elevated temperatures. Journal of Achievements in Materials and Manufacturing Engineering, 18(1-2), 203-206.
  • Çiçek, B., Ahlatçı, H., & Sun, Y. (2013). Wear behaviours of Pb added Mg–Al–Si composites reinforced with in situ Mg2Si particles. Materials & Design, 50, 929-935. doi:10.1016/j.matdes.2013.03.097
  • Çiçek, B., & Sun, Y. (2012). A study on the mechanical and corrosion properties of lead added magnesium alloys. Materials & Design, 37, 369-372. doi:10.1016/j.matdes.2012.01.029
  • Ding, Y., & Ju, D. (2018). Finite Element Analysis of Residual Stress in the Diffusion Zone of Mg/Al Alloys. Advances in Materials Science and Engineering, 2018.
  • Falcon, L., Bedolla, B., Lemus, J., Leon, C., Rosales, I., & Gonzalez-Rodriguez, J. (2011). Corrosion behavior of Mg-Al/TiC composites in NaCl solution. International Journal of Corrosion. doi:10.1155/2011/896845
  • Gaines, L., Cuenca, R., Wu, S., & Stodolsky, F. (1996). Potential automotive uses of wrought magnesium alloys. Paper presented at the Conference: 2. Argonne National Laboratory technical women`s symposium, Argonne, IL (United States), 29-30 Apr 1996; Other Information: PBD: [1996].
  • Gray, J., & Luan, B. (2002). Protective coatings on magnesium and its alloys—a critical review. Journal of Alloys and Compounds, 336(1-2), 88-113.
  • Guangyin, Y., Yangshan, S., & Wenjiang, D. (2000). Effects of Sb addition on the microstructure and mechanical properties of AZ91 magnesium alloy. Scripta Materialia, 43(11), 1009-1013.
  • Guangyin, Y., Yangshan, S., & Wenjiang, D. (2001). Effects of bismuth and antimony additions on the microstructure and mechanical properties of AZ91 magnesium alloy. Materials Science and Engineering: A, 308(1-2), 38-44.
  • Hu, L., Chen, D., Shi, F., Chen, S., & Meng, Q. (2016). Effect of die-casting cooling rate on the chemical conversion treatments of AZ91D magnesium alloy. International Journal of Cast Metals Research, 29(6), 355-361.
  • Jiang, J., Wang, Y., Qu, J., Du, Z., Sun, Y., & Luo, S. (2010). Microstructure evolution of AM60 magnesium alloy semisolid slurry prepared by new SIMA. Journal of Alloys and Compounds, 497(1-2), 62-67.
  • Kazdal, H. (1999). Magnezyum Alaşımları: Otomotiv Endüstrisinde Uygulaması ve Geleceği. Tubitak, Marmara Araştırma Merkezi, Kocaeli, 3-39.
  • Laukli, H., Lohne, O., Sannes, S., Gjestland, H., & Arnberg, L. (2003). Grain size distribution in a complex AM60 magnesium alloy die casting. International Journal of Cast Metals Research, 16(6), 515-521.
  • Lee, S., Lee, S. H., & Kim, D. H. (1998). Effect of Y, Sr, and Nd additions on the microstructure and microfracture mechanism of squeeze-cast AZ91-X magnesium alloys. Metallurgical and Materials Transactions A, 29(4), 1221-1235.
  • Lee, Y., Dahle, A., & StJohn, D. (2000). The role of solute in grain refinement of magnesium. Metallurgical and Materials Transactions A, 31A(11), 2895-2906. doi:10.1007/BF02830349
  • Mordike, B., & Ebert, T. (2001). Magnesium: properties—applications—potential. Materials Science and Engineering: A, 302(1), 37-45. doi:10.1016/S0921-5093(00)01351-4
  • MÖ, P. (1992). Magnesium alloying, some potentials for alloy development. Journal of Japan Institute of Light Metals, 42(12), 679-686.
  • Nave, M., Dahle, A., & StJohn, D. (2000). The effect of solidification rate on the structure of magnesium-aluminium eutectic grains. International Journal of Cast Metals Research, 13(1), 1-7.
  • Park, W., Park, H., Kim, D., & Kim, N. J. (1994). Structure and decomposition behaviour of rapidly solidified Mg Nd X (X, Al, Si) Alloys. Materials Science and Engineering: A, 179, 637-640.
  • Pekguleryuz, M. O., & Kaya, A. A. (2003). Creep resistant magnesium alloys for powertrain applications. Advanced engineering materials, 5(12), 866-878. doi:10.1002/adem.200300403
  • Polmear, I. (1989). Light alloys- Metallurgy of the light metals.
  • Polmear, I. (1996). Recent developments in light alloys. Materials transactions, JIM, 37(1), 12-31.
  • Song, G., & Song, S. (2007). A possible biodegradable magnesium implant material. Advanced engineering materials, 9(4), 298-302. doi:10.1002/adem.200600252
  • Srinivasan, A., Pillai, U., & Pai, B. (2005). Microstructure and mechanical properties of Si and Sb added AZ91 magnesium alloy. Metallurgical and Materials Transactions A, 36(8), 2235-2243.
  • Srinivasan, A., Swaminathan, J., Gunjan, M., Pillai, U., & Pai, B. (2010). Effect of intermetallic phases on the creep behavior of AZ91 magnesium alloy. Materials Science and Engineering: A, 527(6), 1395-1403.
  • Staiger, M. P., Pietak, A. M., Huadmai, J., & Dias, G. (2006). Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials, 27(9), 1728-1734. doi:10.1016/j.biomaterials.2005.10.003
  • Suh, J., Victoria-Hernandez, J., Letzig, D., Golle, R., Yi, S., Bohlen, J., & Volk, W. (2015). Improvement in cold formability of AZ31 magnesium alloy sheets processed by equal channel angular pressing. Journal of Materials Processing Technology, 217, 286-293. doi:10.1016/j.jmatprotec.2014.11.029
  • Unal, M. (2008). An investigation of casting properties of magnesium alloys. (Ph. D. Thesis), Gazi University, Ankara, Turkey. (212936)
  • Unal, M. (2014). Effects of solidification rate and Sb additions on microstructure and mechanical properties of as cast AM60 magnesium alloys. International Journal of Cast Metals Research, 27(2), 80-86. doi:10.1179/1743133613Y.0000000082
  • Wang, Q., Chen, W., Ding, W., Zhu, Y., & Mabuchi, M. (2001). Effect of Sb on the microstructure and mechanical properties of AZ91 magnesium alloy. Metallurgical and Materials Transactions A, 32(13), 787-794.
  • Westengen, H., & Rashed, H. (2016). Magnesium Alloys: Alloy and Temper Designation System: Elsevier.
  • Witte, F., Ulrich, H., Rudert, M., & Willbold, E. (2007). Biodegradable magnesium scaffolds: Part 1: appropriate inflammatory response. Journal of biomedical materials research Part A, 81(3), 748-756. doi:10.1002/jbm.a.31170
  • Wolff, M., Schaper, J., Dahms, M., Ebel, T., Kainer, K., & Klassen, T. (2014). Magnesium powder injection moulding for biomedical application. Powder Metallurgy, 57(5), 331-340. doi:10.1179/1743290114Y.0000000111
  • Zhang, Z. (2000). Development of magnesium-based alloys for elevated temperature applications. (Doctoral Thesis), Genie Universities, Quebec-Canada.

Effects of Solidification Rate on Microstructure and Mechanical Properties with Sb at Different Ratio of AZ91 Quality Mg Alloy

Year 2019, Volume: 11 Issue: 2, 451 - 463, 30.06.2019
https://doi.org/10.29137/umagd.507264

Abstract

The increasing use of Mg alloys in today's
applications has necessitated further improvement in mechanical properties in
order to adapt to technological developments. The physical and mechanical
properties of Mg and its alloys, which are now being used in the field of
health as soluble biomaterials, determine the useful life of the material.
Therefore, in this study, it was aimed to improve the mechanical properties of
AZ91 series Mg alloy at different ratios (0.2% - 0.5% and 1.0%) by the addition
of Sb element and the effect of solidification rate. When the results of the
study are examined, it has been found that the AZ91 alloy generally consists of
α-Mg grain structure and β-Mg17Al12 phase extending along
grain boundaries. It has been found that the intermetallic phase of Mg17Al12
in the grain boundaries has been thinned and disintegrated because of rapid
cooling causing the grain structure to shrink. As a result of these detected
effects, it was observed that the tensile strength of the alloy, the yield
strength and the unit (percent) elongation ratios were increased. However, Mg3Sb2
phase was formed with Sb added to AZ91 alloy. The mechanical properties of the
alloy increased with the changes in the structure of this intermetallic phase.
The tensile strength of the AZ91 alloy improved with the addition of Sb from
163 MPa to 217 MPa and with the increasing amount of Sb, the hardness values of
the AZ91 alloy increased from about 57 HV to 81 HV.

References

  • Agarwal, S., Curtin, J., Duffy, B., & Jaiswal, S. (2016). Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications. Materials Science and Engineering: C, 68, 948-963. doi:10.1016/j.msec.2016.06.020
  • Ali, Y., Qiu, D., Jiang, B., Pan, F., & Zhang, M.-X. (2015). Current research progress in grain refinement of cast magnesium alloys: a review article. Journal of Alloys and Compounds, 619, 639-651. doi:10.1016/j.jallcom.2014.09.061
  • Balasubramani, N., Srinivasan, A., Pillai, U., & Pai, B. (2007). Effect of Pb and Sb additions on the precipitation kinetics of AZ91 magnesium alloy. Materials Science and Engineering: A, 457(1-2), 275-281. doi:10.1016/j.msea.2006.12.132
  • Bamberger, M. (2013). Structural refinement of cast magnesium alloys. Materials Science and Technology, 17(1), 15-24. doi:10.1179/026708301101509061
  • Barber, L. P. (2004). Characterization of the solidification behavior and resultant microstructures of magnesium-aluminum alloys. (MS), Worcester Polytechnic Institute, (etd-12234-112022)
  • Boby, A., Srinivasan, A., Pillai, U. T. S., & Pai, B. C. (2015). Effect of Sb, Sn and Pb additions on the microstructure and mechanical properties of AZ91 alloy. Paper presented at the Materials Science Forum.
  • Carbonneau, Y., Couture, A., Van Neste, A., & Tremblay, R. (1998). On the observation of a new ternary MgSiCa phase in Mg-Si alloys. Metallurgical and Materials Transactions A, 29(6), 1759-1763.
  • Čížek, L., Greger, M., Dobrzański, L., Juřička, I., Kocich, R., Pawlica, L., & Tański, T. (2006). Mechanical properties of magnesium alloy AZ91 at elevated temperatures. Journal of Achievements in Materials and Manufacturing Engineering, 18(1-2), 203-206.
  • Çiçek, B., Ahlatçı, H., & Sun, Y. (2013). Wear behaviours of Pb added Mg–Al–Si composites reinforced with in situ Mg2Si particles. Materials & Design, 50, 929-935. doi:10.1016/j.matdes.2013.03.097
  • Çiçek, B., & Sun, Y. (2012). A study on the mechanical and corrosion properties of lead added magnesium alloys. Materials & Design, 37, 369-372. doi:10.1016/j.matdes.2012.01.029
  • Ding, Y., & Ju, D. (2018). Finite Element Analysis of Residual Stress in the Diffusion Zone of Mg/Al Alloys. Advances in Materials Science and Engineering, 2018.
  • Falcon, L., Bedolla, B., Lemus, J., Leon, C., Rosales, I., & Gonzalez-Rodriguez, J. (2011). Corrosion behavior of Mg-Al/TiC composites in NaCl solution. International Journal of Corrosion. doi:10.1155/2011/896845
  • Gaines, L., Cuenca, R., Wu, S., & Stodolsky, F. (1996). Potential automotive uses of wrought magnesium alloys. Paper presented at the Conference: 2. Argonne National Laboratory technical women`s symposium, Argonne, IL (United States), 29-30 Apr 1996; Other Information: PBD: [1996].
  • Gray, J., & Luan, B. (2002). Protective coatings on magnesium and its alloys—a critical review. Journal of Alloys and Compounds, 336(1-2), 88-113.
  • Guangyin, Y., Yangshan, S., & Wenjiang, D. (2000). Effects of Sb addition on the microstructure and mechanical properties of AZ91 magnesium alloy. Scripta Materialia, 43(11), 1009-1013.
  • Guangyin, Y., Yangshan, S., & Wenjiang, D. (2001). Effects of bismuth and antimony additions on the microstructure and mechanical properties of AZ91 magnesium alloy. Materials Science and Engineering: A, 308(1-2), 38-44.
  • Hu, L., Chen, D., Shi, F., Chen, S., & Meng, Q. (2016). Effect of die-casting cooling rate on the chemical conversion treatments of AZ91D magnesium alloy. International Journal of Cast Metals Research, 29(6), 355-361.
  • Jiang, J., Wang, Y., Qu, J., Du, Z., Sun, Y., & Luo, S. (2010). Microstructure evolution of AM60 magnesium alloy semisolid slurry prepared by new SIMA. Journal of Alloys and Compounds, 497(1-2), 62-67.
  • Kazdal, H. (1999). Magnezyum Alaşımları: Otomotiv Endüstrisinde Uygulaması ve Geleceği. Tubitak, Marmara Araştırma Merkezi, Kocaeli, 3-39.
  • Laukli, H., Lohne, O., Sannes, S., Gjestland, H., & Arnberg, L. (2003). Grain size distribution in a complex AM60 magnesium alloy die casting. International Journal of Cast Metals Research, 16(6), 515-521.
  • Lee, S., Lee, S. H., & Kim, D. H. (1998). Effect of Y, Sr, and Nd additions on the microstructure and microfracture mechanism of squeeze-cast AZ91-X magnesium alloys. Metallurgical and Materials Transactions A, 29(4), 1221-1235.
  • Lee, Y., Dahle, A., & StJohn, D. (2000). The role of solute in grain refinement of magnesium. Metallurgical and Materials Transactions A, 31A(11), 2895-2906. doi:10.1007/BF02830349
  • Mordike, B., & Ebert, T. (2001). Magnesium: properties—applications—potential. Materials Science and Engineering: A, 302(1), 37-45. doi:10.1016/S0921-5093(00)01351-4
  • MÖ, P. (1992). Magnesium alloying, some potentials for alloy development. Journal of Japan Institute of Light Metals, 42(12), 679-686.
  • Nave, M., Dahle, A., & StJohn, D. (2000). The effect of solidification rate on the structure of magnesium-aluminium eutectic grains. International Journal of Cast Metals Research, 13(1), 1-7.
  • Park, W., Park, H., Kim, D., & Kim, N. J. (1994). Structure and decomposition behaviour of rapidly solidified Mg Nd X (X, Al, Si) Alloys. Materials Science and Engineering: A, 179, 637-640.
  • Pekguleryuz, M. O., & Kaya, A. A. (2003). Creep resistant magnesium alloys for powertrain applications. Advanced engineering materials, 5(12), 866-878. doi:10.1002/adem.200300403
  • Polmear, I. (1989). Light alloys- Metallurgy of the light metals.
  • Polmear, I. (1996). Recent developments in light alloys. Materials transactions, JIM, 37(1), 12-31.
  • Song, G., & Song, S. (2007). A possible biodegradable magnesium implant material. Advanced engineering materials, 9(4), 298-302. doi:10.1002/adem.200600252
  • Srinivasan, A., Pillai, U., & Pai, B. (2005). Microstructure and mechanical properties of Si and Sb added AZ91 magnesium alloy. Metallurgical and Materials Transactions A, 36(8), 2235-2243.
  • Srinivasan, A., Swaminathan, J., Gunjan, M., Pillai, U., & Pai, B. (2010). Effect of intermetallic phases on the creep behavior of AZ91 magnesium alloy. Materials Science and Engineering: A, 527(6), 1395-1403.
  • Staiger, M. P., Pietak, A. M., Huadmai, J., & Dias, G. (2006). Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials, 27(9), 1728-1734. doi:10.1016/j.biomaterials.2005.10.003
  • Suh, J., Victoria-Hernandez, J., Letzig, D., Golle, R., Yi, S., Bohlen, J., & Volk, W. (2015). Improvement in cold formability of AZ31 magnesium alloy sheets processed by equal channel angular pressing. Journal of Materials Processing Technology, 217, 286-293. doi:10.1016/j.jmatprotec.2014.11.029
  • Unal, M. (2008). An investigation of casting properties of magnesium alloys. (Ph. D. Thesis), Gazi University, Ankara, Turkey. (212936)
  • Unal, M. (2014). Effects of solidification rate and Sb additions on microstructure and mechanical properties of as cast AM60 magnesium alloys. International Journal of Cast Metals Research, 27(2), 80-86. doi:10.1179/1743133613Y.0000000082
  • Wang, Q., Chen, W., Ding, W., Zhu, Y., & Mabuchi, M. (2001). Effect of Sb on the microstructure and mechanical properties of AZ91 magnesium alloy. Metallurgical and Materials Transactions A, 32(13), 787-794.
  • Westengen, H., & Rashed, H. (2016). Magnesium Alloys: Alloy and Temper Designation System: Elsevier.
  • Witte, F., Ulrich, H., Rudert, M., & Willbold, E. (2007). Biodegradable magnesium scaffolds: Part 1: appropriate inflammatory response. Journal of biomedical materials research Part A, 81(3), 748-756. doi:10.1002/jbm.a.31170
  • Wolff, M., Schaper, J., Dahms, M., Ebel, T., Kainer, K., & Klassen, T. (2014). Magnesium powder injection moulding for biomedical application. Powder Metallurgy, 57(5), 331-340. doi:10.1179/1743290114Y.0000000111
  • Zhang, Z. (2000). Development of magnesium-based alloys for elevated temperature applications. (Doctoral Thesis), Genie Universities, Quebec-Canada.
There are 41 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Levent Elen 0000-0001-8740-7900

Yunus Türen 0000-0001-8755-1865

Erkan Koç 0000-0002-9287-1756

Publication Date June 30, 2019
Submission Date January 3, 2019
Published in Issue Year 2019 Volume: 11 Issue: 2

Cite

APA Elen, L., Türen, Y., & Koç, E. (2019). AZ91 Mg Alaşımına Farklı Oranlarda Sb İlavesi İle Katılaşma Hızının Mikroyapı ve Mekanik Özelliklere Etkisi. International Journal of Engineering Research and Development, 11(2), 451-463. https://doi.org/10.29137/umagd.507264

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.