Research Article
BibTex RIS Cite

İmge Kümeleriyle Yüz Tanıma için Otomatik Önişleme

Year 2019, Volume: 11 Issue: 2, 464 - 473, 30.06.2019
https://doi.org/10.29137/umagd.510731

Abstract

Otomatik yüz tanıma süreci son yıllarda
popülerliğini arttırmış bir konudur. İmge tabanlı yaklaşımların hâkim olduğu
yüz tanıma süreci, kamera ve hesaplama teknolojilerinin gelişimiyle yerini
video tabanlı yaklaşımlara bırakmaktadır. Video tabanlı yüz tanıma
uygulamalarında, özellikle kişilerin farklı aydınlatma veya cepheden, yandan
görünüm vb. farklı pozlar içeren imge kümelerinin eşleştirilmesi zorluklar
içermektedir. Bu çalışmada, özellikle aydınlatma ve poz çeşitliliklerinin var
olduğu durumlarda, küme tabanlı yüz tanıma yöntemlerinin başarımlarının nasıl
iyileştirilebileceği araştırılmıştır. Ön işleme basamağında, aydınlatma
farklılıkları giderildikten sonra imgeler öncelikle yüz pozuna göre
sınıflandırılmıştır. Pozlara göre ayrıştırılan yüzler, sınıf içi değişimlerinin
azaltılması için ilgili pozun şablonuna hizalanmıştır. Yapılan deneyler
sonucunda, önişleme basamağında önerilen otomatik poz hizalama yöntemi
kullanıldığında, video tabanlı yüz tanıma deneylerinin başarım oranlarında
gelişmeler sağlandığı tespit edilmiştir.

References

  • Ahonen, T., Hadid, A., & Pietikainen, M. (2006). Face description with local binary patterns: Application to face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28 (12), 2037-2041. doi: 10.1109/tpami.2006.244
  • Cevikalp, H., & Triggs, B. (2010). Face recognition based on image sets. In 2010 IEEE computer society conference on computer vision and pattern recognition. IEEE. doi: 10.1109/cvpr.2010.5539965
  • Chelali, F., Djeradi, A., & Djeradi, R. (2009). Linear discriminant analysis for face recognition. In 2009 international conference on multimedia computing and systems. IEEE. doi: 10.1109/mmcs.2009.5256630
  • Gross, R., & Shi, J. (2001). The cmu motion of body (mobo) database (Tech. Rep. No. CMU-RI-TR-01-18). Pittsburgh, PA: Carnegie Mellon University.
  • Harandi, M. T., Sanderson, C., Shirazi, S., & Lovell, B. C. (2013). Kernel analysis on Grassmann manifolds for action recognition. Pattern Recognition Letters, 34 (15), 1906-1915. doi: 10.1016/j.patrec.2013.01.008
  • Hassaballah, M., & Aly, S. (2015). Face recognition: challenges, achievements and future directions. IET Computer Vision, 9 (4), 614-626. doi: 10.1049/iet-cvi.2014.0084
  • Hu, Y., Mian, A. S., & Owens, R. (2012). Face recognition using sparse approximated nearest points between image sets. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34 (10), 1992-2004. doi: 10.1109/TPAMI.2011.283
  • Intraface. (2018, oct). Intraface software, the human sensing laboratory of carnegie mellon university. Retrieved from http://www.humansensing.cs.cmu.edu/software
  • Kim, M., Kumar, S., Pavlovic, V., & Rowley, H. (2008). Face tracking and recognition with visual constraints in real-world videos. In 2008 IEEE conference on computer vision and pattern recognition. IEEE. doi: 10.1109/cvpr.2008.4587572
  • Lee, K.-C., Ho, J., Yang, M.-H., & Kriegman, D. (2005). Visual tracking and recognition using probabilistic appearance manifolds. Computer Vision and Image Understanding, 99 (3), 303-331. doi: 10.1016/j.cviu.2005.02.002
  • Li, S. Z., & Jain, A. K. (Eds.). (2011). Handbook of face recognition. Springer London.
  • Li, Z., Lin, D., & Tang, X. (2009). Nonparametric discriminant analysis for face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31 (4), 755-761. doi: 10.1109/tpami.2008.174
  • Lienhart, R., & Maydt, J. (2002). An extended set of haar-like features for rapid object detection. In proceedings of international conference on image processing. IEEE. doi: 10.1109/icip.2002.1038171
  • Liu, C. (2004). Gabor-based kernel pca with fractional power polynomial models for face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26 (5), 572-581. doi: 10.1109/tpami.2004.1273927
  • Lu, J., Plataniotis, K., & Venetsanopoulos, A. (2003). Face recognition using kernel direct discriminant analysis algorithms. IEEE Transactions on Neural Networks, 14 (1), 117-126. doi: 10.1109/tnn.2002.806629
  • Lu, J., Wang, G., & Zhou, J. (2017). Simultaneous feature and dictionary learning for image set based face recognition. IEEE Transactions on Image Processing, 26 (8), 4042-4054. doi: 10.1109/tip.2017.2713940
  • Mika, S., Ratsch, G., Weston, J., Scholkopf, B., & Mullers, K. (1999). Fisher discriminant analysis with kernels. In Neural networks for signal processing IX: Proceedings of the 1999 IEEE signal processing society workshop (cat. no.98th8468). IEEE. doi: 10.1109/nnsp.1999.788121
  • Nhat, V. D. M., & Lee, S. (2007). Kernel-based 2dpca for face recognition. In 2007 IEEE international symposium on signal processing and information technology. IEEE. doi: 10.1109/isspit.2007.4458104
  • OpenCV. (2018, dec). Open source computer vision (opencv) library. Retrieved from https://opencv.org/
  • Scholkopf, B., Smola, A., & Muller, K.-R. (1997). Kernel principal component analysis. In Lecture notes in computer science (pp. 583{588). Springer Berlin Heidelberg. doi: 10.1007/bfb0020217
  • Shi, B., Bai, X., Liu, W., & Wang, J. (2018). Face alignment with deep regression. IEEE Transactions on Neural Networks and Learning Systems, 29 (1), 183-194. doi: 10.1109/tnnls.2016.2618340
  • Tistarelli, M., & Champod, C. (Eds.). (2017). Handbook of biometrics for forensic science. Springer International Publishing. doi: 10.1007/978-3-319-50673-9
  • Turk, M., & Pentland, A. (1991). Eigenfaces for recognition. Journal of Cognitive Neuroscience, 3 (1), 71-86. doi: 10.1162/jocn.1991.3.1.71
  • Vinay, A., Shekhar, V., Murthy, K. B., & Natarajan, S. (2015). Face recognition using gabor wavelet features with PCA and KPCA - a comparative study. Procedia Computer Science, 57 , 650-659. doi: 10.1016/j.procs.2015.07.434
  • Viola, P., & Jones, M. (2001). Robust real-time object detection. International Journal of Computer Vision, 57, 137-154. doi: 10.1023/B:VISI.0000013087.49260.fb
  • Wang, H., Wang, Y., & Cao, Y. (2009). Video-based face recognition: A survey. World Academy of Science, Engineering and Technology, 2 , 136-139. doi: 10.1007/978-1-84882-385-3_8
  • Wang, R., Shan, S., Chen, X., Dai, Q., & Gao, W. (2012). Manifold-manifold distance and its application to face recognition with image sets. IEEE Transactions on Image Processing, 21 (10), 4466-4479. doi: 10.1109/tip.2012.2206039
  • Wiskott, L., Fellous, J.-M., Kruger, N., & von der Malsburg, C. (1997). Face recognition by elastic bunch graph matching. In Computer analysis of images and patterns (pp. 456-463). Springer Berlin Heidelberg. doi: 10.1007/3-540-63460-6_150
  • Wu, Y., & Ji, Q. (2018). Facial landmark detection: A literature survey. International Journal of Computer Vision. doi: 10.1007/s11263-018-1097-z
  • Xiong, X., & De La Torre, F. (2013). Supervised descent method and its applications to face alignment. In Proceedings of the ieee computer society conference on computer vision and pattern recognition (pp. 532-539). doi: 10.1109/CVPR.2013.75
  • Yalcin, M., Cevikalp, H., & Yavuz, H. S. (2015). Towards large-scale face recognition based on videos. In 2015 IEEE international conference on computer vision workshop (ICCVW). IEEE. doi: 10.1109/iccvw.2015.141
  • Yamaguchi, O., Fukui, E., & Maeda, K. (1998). Face recognition using temporal image sequence. In proceedings third IEEE international conference on automatic face and gesture recognition. IEEE. doi: 10.1109/afgr.1998.670968
  • Yang, M., Wang, X., Liu, W., & Shen, L. (2017). Joint regularized nearest points for image set based face recognition. Image and Vision Computing, 58 , 47-60. doi: 10.1016/j.imavis.2016.07.008
  • Yang, M., Zhu, P., Gool, L. V., & Zhang, L. (2013). Face recognition based on regularized nearest points between image sets. In 2013 10th IEEE international conference and workshops on automatic face and gesture recognition (FG). IEEE. doi: 10.1109/fg.2013.6553727
  • Yang, M. H., Kriegman, D. J., & Ahuja, N. (2002). Detecting faces in images: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24 (1), 34-58. doi: 10.1109/34.982883
  • Yavuz, H. S., Cevikalp, H., & Edizkan, R. (2013). Automatic face recognition from frontal images. In 2013 21st signal processing and communications applications conference (SIU). IEEE. doi: 10.1109/SIU.2013.6531215
  • Zhao, J., Han, J., & Shao, L. (2018). Unconstrained face recognition using a set-to-set distance measure on deep learned features. IEEE Transactions on Circuits and Systems for Video Technology, 28 (10), 2679-2689. doi: 10.1109/tcsvt.2017.2710120
  • Zhou, E., Fan, H., Cao, Z., Jiang, Y., & Yin, Q. (2013). Extensive facial landmark localization with coarse-to-fine convolutional network cascade. In Proceedings of the ieee international conference on computer vision (pp. 386-391). doi: 10.1109/ICCVW.2013.58
  • Zhu, X., & Ramanan, D. (2012). Face detection, pose estimation, and landmark localization in the wild. In Proceedings of the ieee computer society conference on computer vision and pattern recognition (pp. 2879-2886). doi: 10.1109/CVPR.2012.6248014

Autonomous Preprocessing for Image Set Based Face Recognition

Year 2019, Volume: 11 Issue: 2, 464 - 473, 30.06.2019
https://doi.org/10.29137/umagd.510731

Abstract

Automatic face recognition process has become a popular topic in recent years. The facial recognition process, where previously single-image based methods were more common, has started to leave its place in video-based approaches by the development of camera and computing technologies. In video based recognition applications, it becomes more difficult to match the image sets of the same person whose frames captured under different illumination conditions or when the compared frames include different face poses such as frontal versus profile. In this study, we investigate how to improve the accuracies of set based face recognition methods in case of lighting and face pose variations. At the pre-processing stage, after the illumination differences are refined, the images are firstly classified according to face exposure. The faces that are separated according to the poses are aligned to the corresponding canonical pose patterns to reduce intra class variations. Experimental results demonstrate that set based recognition methods give higher correct recognition rates when the proposed methodology schemes have been applied as a preprocessing stage.

References

  • Ahonen, T., Hadid, A., & Pietikainen, M. (2006). Face description with local binary patterns: Application to face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28 (12), 2037-2041. doi: 10.1109/tpami.2006.244
  • Cevikalp, H., & Triggs, B. (2010). Face recognition based on image sets. In 2010 IEEE computer society conference on computer vision and pattern recognition. IEEE. doi: 10.1109/cvpr.2010.5539965
  • Chelali, F., Djeradi, A., & Djeradi, R. (2009). Linear discriminant analysis for face recognition. In 2009 international conference on multimedia computing and systems. IEEE. doi: 10.1109/mmcs.2009.5256630
  • Gross, R., & Shi, J. (2001). The cmu motion of body (mobo) database (Tech. Rep. No. CMU-RI-TR-01-18). Pittsburgh, PA: Carnegie Mellon University.
  • Harandi, M. T., Sanderson, C., Shirazi, S., & Lovell, B. C. (2013). Kernel analysis on Grassmann manifolds for action recognition. Pattern Recognition Letters, 34 (15), 1906-1915. doi: 10.1016/j.patrec.2013.01.008
  • Hassaballah, M., & Aly, S. (2015). Face recognition: challenges, achievements and future directions. IET Computer Vision, 9 (4), 614-626. doi: 10.1049/iet-cvi.2014.0084
  • Hu, Y., Mian, A. S., & Owens, R. (2012). Face recognition using sparse approximated nearest points between image sets. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34 (10), 1992-2004. doi: 10.1109/TPAMI.2011.283
  • Intraface. (2018, oct). Intraface software, the human sensing laboratory of carnegie mellon university. Retrieved from http://www.humansensing.cs.cmu.edu/software
  • Kim, M., Kumar, S., Pavlovic, V., & Rowley, H. (2008). Face tracking and recognition with visual constraints in real-world videos. In 2008 IEEE conference on computer vision and pattern recognition. IEEE. doi: 10.1109/cvpr.2008.4587572
  • Lee, K.-C., Ho, J., Yang, M.-H., & Kriegman, D. (2005). Visual tracking and recognition using probabilistic appearance manifolds. Computer Vision and Image Understanding, 99 (3), 303-331. doi: 10.1016/j.cviu.2005.02.002
  • Li, S. Z., & Jain, A. K. (Eds.). (2011). Handbook of face recognition. Springer London.
  • Li, Z., Lin, D., & Tang, X. (2009). Nonparametric discriminant analysis for face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31 (4), 755-761. doi: 10.1109/tpami.2008.174
  • Lienhart, R., & Maydt, J. (2002). An extended set of haar-like features for rapid object detection. In proceedings of international conference on image processing. IEEE. doi: 10.1109/icip.2002.1038171
  • Liu, C. (2004). Gabor-based kernel pca with fractional power polynomial models for face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26 (5), 572-581. doi: 10.1109/tpami.2004.1273927
  • Lu, J., Plataniotis, K., & Venetsanopoulos, A. (2003). Face recognition using kernel direct discriminant analysis algorithms. IEEE Transactions on Neural Networks, 14 (1), 117-126. doi: 10.1109/tnn.2002.806629
  • Lu, J., Wang, G., & Zhou, J. (2017). Simultaneous feature and dictionary learning for image set based face recognition. IEEE Transactions on Image Processing, 26 (8), 4042-4054. doi: 10.1109/tip.2017.2713940
  • Mika, S., Ratsch, G., Weston, J., Scholkopf, B., & Mullers, K. (1999). Fisher discriminant analysis with kernels. In Neural networks for signal processing IX: Proceedings of the 1999 IEEE signal processing society workshop (cat. no.98th8468). IEEE. doi: 10.1109/nnsp.1999.788121
  • Nhat, V. D. M., & Lee, S. (2007). Kernel-based 2dpca for face recognition. In 2007 IEEE international symposium on signal processing and information technology. IEEE. doi: 10.1109/isspit.2007.4458104
  • OpenCV. (2018, dec). Open source computer vision (opencv) library. Retrieved from https://opencv.org/
  • Scholkopf, B., Smola, A., & Muller, K.-R. (1997). Kernel principal component analysis. In Lecture notes in computer science (pp. 583{588). Springer Berlin Heidelberg. doi: 10.1007/bfb0020217
  • Shi, B., Bai, X., Liu, W., & Wang, J. (2018). Face alignment with deep regression. IEEE Transactions on Neural Networks and Learning Systems, 29 (1), 183-194. doi: 10.1109/tnnls.2016.2618340
  • Tistarelli, M., & Champod, C. (Eds.). (2017). Handbook of biometrics for forensic science. Springer International Publishing. doi: 10.1007/978-3-319-50673-9
  • Turk, M., & Pentland, A. (1991). Eigenfaces for recognition. Journal of Cognitive Neuroscience, 3 (1), 71-86. doi: 10.1162/jocn.1991.3.1.71
  • Vinay, A., Shekhar, V., Murthy, K. B., & Natarajan, S. (2015). Face recognition using gabor wavelet features with PCA and KPCA - a comparative study. Procedia Computer Science, 57 , 650-659. doi: 10.1016/j.procs.2015.07.434
  • Viola, P., & Jones, M. (2001). Robust real-time object detection. International Journal of Computer Vision, 57, 137-154. doi: 10.1023/B:VISI.0000013087.49260.fb
  • Wang, H., Wang, Y., & Cao, Y. (2009). Video-based face recognition: A survey. World Academy of Science, Engineering and Technology, 2 , 136-139. doi: 10.1007/978-1-84882-385-3_8
  • Wang, R., Shan, S., Chen, X., Dai, Q., & Gao, W. (2012). Manifold-manifold distance and its application to face recognition with image sets. IEEE Transactions on Image Processing, 21 (10), 4466-4479. doi: 10.1109/tip.2012.2206039
  • Wiskott, L., Fellous, J.-M., Kruger, N., & von der Malsburg, C. (1997). Face recognition by elastic bunch graph matching. In Computer analysis of images and patterns (pp. 456-463). Springer Berlin Heidelberg. doi: 10.1007/3-540-63460-6_150
  • Wu, Y., & Ji, Q. (2018). Facial landmark detection: A literature survey. International Journal of Computer Vision. doi: 10.1007/s11263-018-1097-z
  • Xiong, X., & De La Torre, F. (2013). Supervised descent method and its applications to face alignment. In Proceedings of the ieee computer society conference on computer vision and pattern recognition (pp. 532-539). doi: 10.1109/CVPR.2013.75
  • Yalcin, M., Cevikalp, H., & Yavuz, H. S. (2015). Towards large-scale face recognition based on videos. In 2015 IEEE international conference on computer vision workshop (ICCVW). IEEE. doi: 10.1109/iccvw.2015.141
  • Yamaguchi, O., Fukui, E., & Maeda, K. (1998). Face recognition using temporal image sequence. In proceedings third IEEE international conference on automatic face and gesture recognition. IEEE. doi: 10.1109/afgr.1998.670968
  • Yang, M., Wang, X., Liu, W., & Shen, L. (2017). Joint regularized nearest points for image set based face recognition. Image and Vision Computing, 58 , 47-60. doi: 10.1016/j.imavis.2016.07.008
  • Yang, M., Zhu, P., Gool, L. V., & Zhang, L. (2013). Face recognition based on regularized nearest points between image sets. In 2013 10th IEEE international conference and workshops on automatic face and gesture recognition (FG). IEEE. doi: 10.1109/fg.2013.6553727
  • Yang, M. H., Kriegman, D. J., & Ahuja, N. (2002). Detecting faces in images: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24 (1), 34-58. doi: 10.1109/34.982883
  • Yavuz, H. S., Cevikalp, H., & Edizkan, R. (2013). Automatic face recognition from frontal images. In 2013 21st signal processing and communications applications conference (SIU). IEEE. doi: 10.1109/SIU.2013.6531215
  • Zhao, J., Han, J., & Shao, L. (2018). Unconstrained face recognition using a set-to-set distance measure on deep learned features. IEEE Transactions on Circuits and Systems for Video Technology, 28 (10), 2679-2689. doi: 10.1109/tcsvt.2017.2710120
  • Zhou, E., Fan, H., Cao, Z., Jiang, Y., & Yin, Q. (2013). Extensive facial landmark localization with coarse-to-fine convolutional network cascade. In Proceedings of the ieee international conference on computer vision (pp. 386-391). doi: 10.1109/ICCVW.2013.58
  • Zhu, X., & Ramanan, D. (2012). Face detection, pose estimation, and landmark localization in the wild. In Proceedings of the ieee computer society conference on computer vision and pattern recognition (pp. 2879-2886). doi: 10.1109/CVPR.2012.6248014
There are 39 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Hasan Serhan Yavuz

Meltem Seyirt This is me

Publication Date June 30, 2019
Submission Date January 9, 2019
Published in Issue Year 2019 Volume: 11 Issue: 2

Cite

APA Yavuz, H. S., & Seyirt, M. (2019). İmge Kümeleriyle Yüz Tanıma için Otomatik Önişleme. International Journal of Engineering Research and Development, 11(2), 464-473. https://doi.org/10.29137/umagd.510731

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.