Research Article
BibTex RIS Cite

Anodizasyon ve Elektriksel Boşalma Plazma Oksidasyon Yüzey İşlemlerinin Ti6Al4V Alaşımının Aşınma Direncine Etkisi

Year 2020, Volume: 12 Issue: 1, 189 - 201, 31.01.2020
https://doi.org/10.29137/umagd.557405

Abstract

Günümüzde titanyum ve alaşımları yüksek
biyouyumluluk ve düşük elastisite modülüne sahip olmaları nedeniyle çeşitli
implantların üretiminde kullanılmaktadır. Titanyum ve alaşımlarının
dezavantajlarından biri, yüksek sürtünme katsayısı ve düşük aşınma dayanımına
sahip olmalarıdır. Bu dezavantajı gidermek için titanyum ve alaşımlarının
yüzeylerine bir takım işlemler uygulanarak başta aşınma direnci olmak üzere
yüzey özelliklerinin iyileşmesi sağlanabilmektedir. Bu çalışmada, yük taşıyan
implant üretiminde kullanılan Ti6Al4V (Grade 5) taban malzemesi plazma
oksitleme ve anodik oksitleme (anodizasyon) işlemlerine tabi tutulmuştur. İki
farklı oksitleme işleminden elde edilen yüzeyler sertlik, yüzey pürüzlülüğü,
ıslanabilirlik ve aşınma direnci açısından işlemsiz malzeme ile
karşılaştırılmıştır. Bu testlerin gerçekleştirilmesi için XRD, SEM, AFM, Mikro
sertlik cihazı, Temas açısı ölçüm cihazı ve Doğrusal aşınma cihazı
kullanılmıştır. Çalışma sonucunda sertlik değeri işlemsiz malzemeye göre plazma
oksitleme için %116 ve anodik oksitleme için %36 artış göstermiştir. Yüzey
pürüzlülüğü incelendiğinde, plazma oksitleme işleminin yüzey pürüzlülüğünde %11
artış ve anodik oksitleme işleminin %33 düşüşe sebep olduğu görülmüştür. Temas
açısı değerleri işlemsiz malzeme için 48,31° iken plazma oksitleme işlemi
sonrası 73,34° ve anodik oksitleme işlemi sonrası 85,36° olmuştur. Ayrıca her
iki oksitleme işlemi sonrası işlemsiz malzemeye nazaran tribolojik özelliklerin
iyileştiği gözlemlenmiştir.

References

  • Balazic, M., Kopac, J., Jackson, M. J., & Ahmed, W. (2007). Review : titanium and titanium alloy applications in medicine. International Journal of Nano and Biomaterials, 1(1), 3–34.
  • Bayrak, Ö. (2013). Plazma Oksitleme İşleminin Ti6Al7Nb ve Ti45Nb Alaşımlarının Tribolojik, Elektrokimyasal ve Biyouyumluluk Özelliklerine Etkisi. Atatürk Üniversitesi.
  • Dong, H., & Bell, T. (2000). Enhanced wear resistance of titanium surfaces by a new thermal oxidation treatment. Wear, 238(2), 131–137. https://doi.org/10.1016/S0043-1648(99)00359-2
  • Fu, Y., & Batchelor, A. W. (1998). Laser nitriding of pure titanium with Ni, Cr for improved wear performance. Wear, 214(1), 83–90. https://doi.org/10.1016/S0043-1648(97)00204-4
  • Januszewicz, B., & Siniarski, D. (2006). The glow discharge plasma influence on the oxide layer and diffusion zone formation during process of thermal oxidation of titanium and its alloys. Vacuum, 81(3), 215–220. https://doi.org/10.1016/j.vacuum.2006.03.008
  • Kuroda, D., Niinomi, M., Morinaga, M., Kato, Y., & Yashiro, T. (1998). Design and mechanical properties of new β type titanium alloys for implant materials. Materials Science and Engineering: A, 243(1–2), 244–249. https://doi.org/10.1016/S0921-5093(97)00808-3
  • Li, B., Li, J., Liang, C., Li, H., Guo, L., Liu, S., & Wang, H. (2016). Surface Roughness and Hydrophilicity of Titanium after Anodic Oxidation. Rare Metal Materials and Engineering, 45(4), 858–862. https://doi.org/10.1016/S1875-5372(16)30088-1
  • Li, Y., Wong, C., Xiong, J., Hodgson, P., & Wen, C. (2010). Cytotoxicity of Titanium and Titanium Alloying Elements. Journal of Dental Research, 89(5), 493–497. https://doi.org/10.1177/0022034510363675
  • Lu, J., Zhang, Y., Huo, W., Zhang, W., Zhao, Y., & Zhang, Y. (2018). Electrochemical corrosion characteristics and biocompatibility of nanostructured titanium for implants. Applied Surface Science, 434, 63–72. https://doi.org/10.1016/j.apsusc.2017.10.168
  • Meichsner, J., Schmidt, M., Schneider, R., & Wagner, H. E. (2012). Nonthermal Plasma Chemistry and Physics. Retrieved from https://books.google.com.tr/books?id=ckZ3V6Ss32sC
  • Park, J., & Lakes, R. S. (2007). Biomaterials. https://doi.org/10.1007/978-0-387-37880-0
  • Runa, M. J., Mathew, M. T., & Rocha, L. A. (2013). Tribocorrosion response of the Ti6Al4V alloys commonly used in femoral stems. Tribology International, 68, 85–93. https://doi.org/10.1016/j.triboint.2013.09.022
  • Stratton, P., & Graf, M. (2010). Wear of diffusion hardened Ti–6Al–4V sliding against tool steel. Wear, 268(3–4), 612–616. https://doi.org/10.1016/j.wear.2009.10.009
  • Strobel, M., Lyons, C. S., & Mittal, K. L. (1994). Plasma Surface Modification of Polymers: Relevance to Adhesion. Retrieved from https://books.google.com.tr/books?id=P9er1ebJqhAC
  • Welsch, G., Boyer, R., & Collings, E. W. (1993). Materials Properties Handbook: Titanium Alloys. In Materials Properties Handbook. Retrieved from https://books.google.com.tr/books?id=x3rToHWOcD8C
  • Wierzchoń, T., Czarnowska, E., Grzonka, J., Sowińska, A., Tarnowski, M., Kamiński, J., … Kurzydłowski, K. J. (2015). Glow discharge assisted oxynitriding process of titanium for medical application. Applied Surface Science, 334, 74–79. https://doi.org/10.1016/j.apsusc.2014.08.071
  • Yetim, A. F., Yildiz, F., Vangolu, Y., Alsaran, A., & Celik, A. (2009). Several plasma diffusion processes for improving wear properties of Ti6Al4V alloy. Wear, 267(12), 2179–2185. https://doi.org/10.1016/j.wear.2009.04.005
  • Zieliński, A., Sobieszczyk, S., Seramak, T., Serbiński, W., Świeczko-Żurek, B., & Ossowska, A. (2010). Biocompatibility and Bioactivity of Load-Bearing Metallic Implants. Advances in Materials Sciences, 10(4), 21–30. https://doi.org/10.2478/v10077-010-0013-1

The Effect of Anodization and Glow Discharge Plasma Oxidation Surface Treatments on the Wear Resistance of Ti6Al4V Alloy

Year 2020, Volume: 12 Issue: 1, 189 - 201, 31.01.2020
https://doi.org/10.29137/umagd.557405

Abstract

Nowadays, titanium and its alloys are used in the production of various
implants due to their high biocompatibility and low modulus of elasticity. One
of the disadvantages of titanium and its alloys is their high friction
coefficient and low wear resistance. In order to overcome this disadvantage, a
number of processes can be applied to the surfaces of titanium and its alloys
to improve surface properties, especially wear resistance. In this study,
Ti6Al4V (Grade 5) base material used in the load bearing implant production was
subjected to plasma oxidation and anodic oxidation (anodization) processes. The
surfaces obtained from two different oxidation processes were compared with the
untreated material in terms of hardness, surface roughness, wettability and
wear resistance. XRD, SEM, AFM, Micro hardness tester, Contact angle
measurement device and Reciprocating sliding wear device were used for the
realization of these tests. As a result of the study, the hardness value showed
an increase of 116% for plasma oxidation and 36% for anodic oxidation according
to the untreated material. When the surface roughness was examined, it was seen
that the plasma oxidation process caused an 11% increase and anodic oxidation
process caused a 33% decrease in surface roughness. The contact angle values
​​were 48,31° for the untreated material, it was reached 73,34° after the
plasma oxidation and 85,36° after the anodic oxidation process. In addition, it
was observed that tribological properties were improved after both oxidation
processes in comparison to untreated materials.

References

  • Balazic, M., Kopac, J., Jackson, M. J., & Ahmed, W. (2007). Review : titanium and titanium alloy applications in medicine. International Journal of Nano and Biomaterials, 1(1), 3–34.
  • Bayrak, Ö. (2013). Plazma Oksitleme İşleminin Ti6Al7Nb ve Ti45Nb Alaşımlarının Tribolojik, Elektrokimyasal ve Biyouyumluluk Özelliklerine Etkisi. Atatürk Üniversitesi.
  • Dong, H., & Bell, T. (2000). Enhanced wear resistance of titanium surfaces by a new thermal oxidation treatment. Wear, 238(2), 131–137. https://doi.org/10.1016/S0043-1648(99)00359-2
  • Fu, Y., & Batchelor, A. W. (1998). Laser nitriding of pure titanium with Ni, Cr for improved wear performance. Wear, 214(1), 83–90. https://doi.org/10.1016/S0043-1648(97)00204-4
  • Januszewicz, B., & Siniarski, D. (2006). The glow discharge plasma influence on the oxide layer and diffusion zone formation during process of thermal oxidation of titanium and its alloys. Vacuum, 81(3), 215–220. https://doi.org/10.1016/j.vacuum.2006.03.008
  • Kuroda, D., Niinomi, M., Morinaga, M., Kato, Y., & Yashiro, T. (1998). Design and mechanical properties of new β type titanium alloys for implant materials. Materials Science and Engineering: A, 243(1–2), 244–249. https://doi.org/10.1016/S0921-5093(97)00808-3
  • Li, B., Li, J., Liang, C., Li, H., Guo, L., Liu, S., & Wang, H. (2016). Surface Roughness and Hydrophilicity of Titanium after Anodic Oxidation. Rare Metal Materials and Engineering, 45(4), 858–862. https://doi.org/10.1016/S1875-5372(16)30088-1
  • Li, Y., Wong, C., Xiong, J., Hodgson, P., & Wen, C. (2010). Cytotoxicity of Titanium and Titanium Alloying Elements. Journal of Dental Research, 89(5), 493–497. https://doi.org/10.1177/0022034510363675
  • Lu, J., Zhang, Y., Huo, W., Zhang, W., Zhao, Y., & Zhang, Y. (2018). Electrochemical corrosion characteristics and biocompatibility of nanostructured titanium for implants. Applied Surface Science, 434, 63–72. https://doi.org/10.1016/j.apsusc.2017.10.168
  • Meichsner, J., Schmidt, M., Schneider, R., & Wagner, H. E. (2012). Nonthermal Plasma Chemistry and Physics. Retrieved from https://books.google.com.tr/books?id=ckZ3V6Ss32sC
  • Park, J., & Lakes, R. S. (2007). Biomaterials. https://doi.org/10.1007/978-0-387-37880-0
  • Runa, M. J., Mathew, M. T., & Rocha, L. A. (2013). Tribocorrosion response of the Ti6Al4V alloys commonly used in femoral stems. Tribology International, 68, 85–93. https://doi.org/10.1016/j.triboint.2013.09.022
  • Stratton, P., & Graf, M. (2010). Wear of diffusion hardened Ti–6Al–4V sliding against tool steel. Wear, 268(3–4), 612–616. https://doi.org/10.1016/j.wear.2009.10.009
  • Strobel, M., Lyons, C. S., & Mittal, K. L. (1994). Plasma Surface Modification of Polymers: Relevance to Adhesion. Retrieved from https://books.google.com.tr/books?id=P9er1ebJqhAC
  • Welsch, G., Boyer, R., & Collings, E. W. (1993). Materials Properties Handbook: Titanium Alloys. In Materials Properties Handbook. Retrieved from https://books.google.com.tr/books?id=x3rToHWOcD8C
  • Wierzchoń, T., Czarnowska, E., Grzonka, J., Sowińska, A., Tarnowski, M., Kamiński, J., … Kurzydłowski, K. J. (2015). Glow discharge assisted oxynitriding process of titanium for medical application. Applied Surface Science, 334, 74–79. https://doi.org/10.1016/j.apsusc.2014.08.071
  • Yetim, A. F., Yildiz, F., Vangolu, Y., Alsaran, A., & Celik, A. (2009). Several plasma diffusion processes for improving wear properties of Ti6Al4V alloy. Wear, 267(12), 2179–2185. https://doi.org/10.1016/j.wear.2009.04.005
  • Zieliński, A., Sobieszczyk, S., Seramak, T., Serbiński, W., Świeczko-Żurek, B., & Ossowska, A. (2010). Biocompatibility and Bioactivity of Load-Bearing Metallic Implants. Advances in Materials Sciences, 10(4), 21–30. https://doi.org/10.2478/v10077-010-0013-1
There are 18 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Özgü Bayrak 0000-0002-9031-4980

Hojjat Ghahramanzadeh Asl This is me 0000-0002-9078-1933

Publication Date January 31, 2020
Submission Date April 23, 2019
Published in Issue Year 2020 Volume: 12 Issue: 1

Cite

APA Bayrak, Ö., & Ghahramanzadeh Asl, H. (2020). Anodizasyon ve Elektriksel Boşalma Plazma Oksidasyon Yüzey İşlemlerinin Ti6Al4V Alaşımının Aşınma Direncine Etkisi. International Journal of Engineering Research and Development, 12(1), 189-201. https://doi.org/10.29137/umagd.557405

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.