Research Article
BibTex RIS Cite

Sıcak Presleme Yöntemi ile Üretilen AA2024 ve AA7075 Esaslı %5 SiC Takviyeli Kompozit Malzemelerin Mikroyapı, Sertlik ve Korozyon Özelliklerinin İncelenmesi

Year 2021, Volume: 13 Issue: 1, 104 - 112, 18.01.2021
https://doi.org/10.29137/umagd.733755

Abstract

Bu çalışmada sıcak izostatik presleme ile üretilen AA2024 ve AA7075 alüminyum alaşımı ana malzeme ve %5 SiC takviye içeren iki farklı kompozit malzemenin mikroyapı, sertlik ve korozyon özellikleri incelenmiştir. Toz metalürjisi yönteminin kullanıldığı malzeme üretiminde AA2024 ve AA7075 alaşım tozlarına %5 SiC parçacık takviyesi yapılarak üç eksenli karıştırıcıda harmanlama işleminin ardından sıcak izostatik presleme yöntemi ile iki farklı kompozit malzeme elde edilmiştir. Sıcak izostatik presleme işlemleri 410 °C sıcaklıkta ve 45 MPa basınç altında gerçekleştirilmiştir. Üretilen kompozit malzemelerin mikroyapı, yoğunluk, sertlik ve korozyon özellikleri belirlenmiştir. Mikroyapı incelemelerinde SiC parçacıklarının matris içerisinde homojen dağılım gösterdiği, sertlik sonuçlarına göre AA7075 alüminyum alaşımı esaslı kompozit malzemede sertliğin dolayısıyla mekanik dayanımın daha yüksek olduğu görülmüştür. Fakat bu kompozit malzemenin tuzlu su ortamındaki korozyon dayanımının AA2024 alüminyum alaşımı esaslı kompozit malzemeye göre daha düşük olarak belirlenmiştir.

References

  • Alaneme, K.K. & Olubambi, P.A. (2013). Corrosion and wear behaviour of rice husk ash-alumina reinforced Al-Mg-Si alloy matrix hybrid composites. Journal of Materials Research Technology, 2, 188-194. doi.org/10.1016/j.jmrt.2013.02.005
  • Bodukuri, A.K., Eswaraiah, K., Rajendar, K. & Sampath, V. (2016). Fabrication of Al-SiC-B4C metal matrix composite by powder metallurgy technique and evaluating mechanical properties. Perspectives in Science, 8, 428-431. doi.org/10.1016/j.pisc.2016.04.096
  • Çanakçı, A. & Varol, T. (2012). Production and microstructure of AA2024-B4C metal matrix composites by mechanical alloying method. Uşak University Journal of Material Sciences, 1, 15-22.
  • De Salazar, J.M.G., Urena, A., Manzanedo, S. & Barrena, M.I. (1999). Corrosion behavior of AA6061 and AA7005 reinforced with Al2O3 particles in aerated %3.5 chloride solutions: Potentiodynamic measurements and microstructure evaluation. Corrosion Science, 41, 529-545. doi.org/10.1016/S0010-938X(98)00135-8
  • Dobrzanski, L.A., Wlodarczyk, A. & Adamiak, M. (2005). Structure, properties and corrosion resistance of PM composite materials based on EN AW-2124 aluminum alloy reinforced with the Al2O3 ceramic particles. Journal of Materials Processing Technology, 162, 27-32. doi: 10.1016/j.jmatprotec.2005.02.006
  • Fattah-alhosseini, H., Naseri, M. & Alemi, M.H. (2016). Corrosion behavior assessment of finely dispersed and highly uniform Al/B4C/SiC hybrid composite fabricated via accumulative roll bonding process. Journal of Manufacturing Processes, 22, 120-126. doi.org/10.1016/j.jmapro.2016.03.006
  • Hihara, L.H. & Latanision, R.M. (1994). Corrosion of metal matrix composites. International Materials Reviews, 39(6), 245-264. doi.org/10.1179/imr.1994.39.6.245
  • Katkar, V.A., Gunasekaran, G., Rao, A.G. & Koli, P.M. (2011). Effect of the reinforced boron carbide particulate content of AA6061 alloy on formation of the passive film in seawater. Corrosion Science, 53, 2700-2712. doi: 10.1016/j.corsci.2011.04.023
  • Loto, R.T. & Babalola, P. (2018). Effect of alumina nano-particle size and weight content on the corrosion resistance of AA1070 aluminum in chloride/sulphate solution. Results in Physics, doi: https://doi.org/10.1016/j.rinp.2018.07.025.
  • Mahajan, G., Karve, N., Patil, U., Kuppan, P. & Venkatesan, K. (2015). Analysis of microstructure, hardness and wear of Al-SiC-TiB₂ hybrid metal matrix composite. Indian Journal of Science and Technology, 8, 101-105. doi.org/10.17485/ijst/2015/v8iS2/59081
  • Matik, U. & Tanatti, K. (2017). Sıcak ekstrüze edilmiş AA7075/SiCp kompozitlerin sertlik ve korozyon direncine T6 ve T73 ısıl işlemlerinin etkisi. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 8(4), 827-834.
  • Monticelli, C., Zucchi, F., Brunoro, G. & Trabanelli, G. (1997). Stress corrosion cracking behaviour of some aluminium based metal matrix composites. Corrosion Science, 39(10), 1949-1963. doi.org/10.1016/S0010-938X(97)00088-7
  • Qiao, Y., Qu, L., Zhang, X. & Zhang, H. (2015). Boron carbide composite ceramic preparation and corrosion behavior in simulated seawater. Ceramics International, 41, 5026-5031. doi: 10.1016/j.ceramint.2014.12.070
  • Pardo, A., Merino, M.C., Merino, S., Viejo, F., Carboneras, M. & Arrabal, R. (2005). Influence of reinforcement proportion and matrix composition on pitting corrosion behaviour of cast aluminium matrix composites (A3xx.x/SiCp). Corrosion Science, 47, 1750-1764. doi.org/10.1016/j.corsci.2004.08.010
  • Saraswathi, Y.L., Das, S. & Mondal, D.P. (2006). Influence of microstructure and experimental parameters on the erosion corrosion behavior of Al alloy composites. Materials Science and Engineering A, 425, 244-254. doi:10.1016/j.msea.2006.03.083
  • Saxena, M., Modi, O.P., Prasad, B.K. & Jha, A.K. (1993). Erosion and corrosion characteristics of an aluminum alloy-alumina fiber composite. Wear, 169(1), 119-124. doi.org/10.1016/0043-1648(93)90397-5
  • Senthilvelan, T., Gopalakannan, S., Vishnuvarthan, S. & Keerthivaran, K. (2013). Fabrication and characterization of SiC, Al2O3 and B4C reinforced Al-Zn-Mg-Cu Alloy (AA 7075) metal matrix composites. Advanced Materials Research, 622, 1295-1299. doi.org/10.4028/www.scientific.net/AMR.622-623.1295
  • Shanbhag, V.V., Yalamoori, N.N., Karthikeyan, S., Ramanujam, R. & Venkatesan, K. (2014). Fabrication, surface morphology and corrosion investigation of Al 7075-Al2O3 matrix composite in seawater and industrial environment. Procedia Engineering, 97, 607-613. doi.org/10.1016/j.proeng.2014.12.289
  • Shimizu, Y., Nishimura, T. & Matsushima, I. (1995). Corrosion resistance of Al-based metal matrix composites. Materials Science and Engineering A, 198, 113-118. doi.org/10.1016/0921-5093(95)80065-3
  • Shorowordi, K.M., Laoui, T., Haseeb, A.S.M.A., Celis, J.P. & Froyen, L. (2003). Microstructure and interface characteristics of B4C, SiC and Al2O3 reinforced Al matrix composites: A Comparative study. Journal of Materials Processing Technology, 142, 738-743. doi.org/10.1016/S0924-0136(03)00815-X
  • Srivyas, P.D. & Charoo, M.S. (2018). Role of reinforcements on the mechanical and tribological behavior of aluminum metal matrix composites. Materials Today: Proceedings, 5, 20041-20053. doi.org/10.1016/j.matpr.2018.06.371
  • Toptan, F., Alves, A.C., Kerti, I., Ariza, E. & Rocha, L.A. (2013). Corrosion and tribocorrosion behaviour of Al-Si-Cu-Mg alloy and its composites reinforced with B4C particles in 0.05 M NaCl solution. Wear, 306, 27-35. doi: 10.1016/j.wear.2013.06.026
  • Trzaskoma, P.P. (1990). Pit morphology of aluminum alloy and silicon carbide/aluminum alloy metal matrix composites. Corrosion, 46(5), 402-409. doi.org/10.5006/1.3585124
  • Verma, A.S., Sumankant, Suri, N.M. & Yashpal. (2015). Corrosion behavior of aluminum base particulate metal matrix composites. Materials Today: Proceedings, 2, 2840-2851. doi.org/10.1016/j.matpr.2015.07.299
  • Web.gtu.edu.tr/aluminyum/2016/02/08/aluminyum-alasimlarin-mekanik-ozellikleri/
  • Yashpal, Sumankant, Jawalkar, C.S., Verma, A.S. & Suri, N.M. (2017). Fabrication of aluminum metal matrix composites with particulate reinforcement. Materials Today: Proceedings, 4, 2927-2936. doi.org/10.1016/j.matpr.2017.02.174

Investigation of Microstructure, Hardness and Corrosion Properties of AA2024 and AA7075 based 5% SiC Reinforced Composite Materials Produced by Hot Pressing Method

Year 2021, Volume: 13 Issue: 1, 104 - 112, 18.01.2021
https://doi.org/10.29137/umagd.733755

Abstract

In this study, microstructure, hardness and corrosion properties of AA2024 and AA7075 aluminum based composite materials reinforced with 5% SiC were investigated. The composite materials were produced by hot isostatic pressing method. Two different composite materials were obtained by using hot isostatic pressing method after blending in a three-axis mixer by using 5% SiC particle reinforcement to AA2024 and AA7075 alloy powders in the production of materials using powder metallurgy method. Hot isostatic pressing processes were carried out at 410 °C and 45 MPa pressure. Microstructure, density, hardness and corrosion properties of the composites were investigated. In microstructure studies, it was observed that SiC particles showed homogeneous distribution in the matrix, and in hardness studies, AA7075 aluminum alloy-based composite material had higher hardness and therefore mechanical strength. However, the corrosion resistance of this composite material in salt water environment is determined to be lower than AA2024 aluminum alloy composite material.

References

  • Alaneme, K.K. & Olubambi, P.A. (2013). Corrosion and wear behaviour of rice husk ash-alumina reinforced Al-Mg-Si alloy matrix hybrid composites. Journal of Materials Research Technology, 2, 188-194. doi.org/10.1016/j.jmrt.2013.02.005
  • Bodukuri, A.K., Eswaraiah, K., Rajendar, K. & Sampath, V. (2016). Fabrication of Al-SiC-B4C metal matrix composite by powder metallurgy technique and evaluating mechanical properties. Perspectives in Science, 8, 428-431. doi.org/10.1016/j.pisc.2016.04.096
  • Çanakçı, A. & Varol, T. (2012). Production and microstructure of AA2024-B4C metal matrix composites by mechanical alloying method. Uşak University Journal of Material Sciences, 1, 15-22.
  • De Salazar, J.M.G., Urena, A., Manzanedo, S. & Barrena, M.I. (1999). Corrosion behavior of AA6061 and AA7005 reinforced with Al2O3 particles in aerated %3.5 chloride solutions: Potentiodynamic measurements and microstructure evaluation. Corrosion Science, 41, 529-545. doi.org/10.1016/S0010-938X(98)00135-8
  • Dobrzanski, L.A., Wlodarczyk, A. & Adamiak, M. (2005). Structure, properties and corrosion resistance of PM composite materials based on EN AW-2124 aluminum alloy reinforced with the Al2O3 ceramic particles. Journal of Materials Processing Technology, 162, 27-32. doi: 10.1016/j.jmatprotec.2005.02.006
  • Fattah-alhosseini, H., Naseri, M. & Alemi, M.H. (2016). Corrosion behavior assessment of finely dispersed and highly uniform Al/B4C/SiC hybrid composite fabricated via accumulative roll bonding process. Journal of Manufacturing Processes, 22, 120-126. doi.org/10.1016/j.jmapro.2016.03.006
  • Hihara, L.H. & Latanision, R.M. (1994). Corrosion of metal matrix composites. International Materials Reviews, 39(6), 245-264. doi.org/10.1179/imr.1994.39.6.245
  • Katkar, V.A., Gunasekaran, G., Rao, A.G. & Koli, P.M. (2011). Effect of the reinforced boron carbide particulate content of AA6061 alloy on formation of the passive film in seawater. Corrosion Science, 53, 2700-2712. doi: 10.1016/j.corsci.2011.04.023
  • Loto, R.T. & Babalola, P. (2018). Effect of alumina nano-particle size and weight content on the corrosion resistance of AA1070 aluminum in chloride/sulphate solution. Results in Physics, doi: https://doi.org/10.1016/j.rinp.2018.07.025.
  • Mahajan, G., Karve, N., Patil, U., Kuppan, P. & Venkatesan, K. (2015). Analysis of microstructure, hardness and wear of Al-SiC-TiB₂ hybrid metal matrix composite. Indian Journal of Science and Technology, 8, 101-105. doi.org/10.17485/ijst/2015/v8iS2/59081
  • Matik, U. & Tanatti, K. (2017). Sıcak ekstrüze edilmiş AA7075/SiCp kompozitlerin sertlik ve korozyon direncine T6 ve T73 ısıl işlemlerinin etkisi. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 8(4), 827-834.
  • Monticelli, C., Zucchi, F., Brunoro, G. & Trabanelli, G. (1997). Stress corrosion cracking behaviour of some aluminium based metal matrix composites. Corrosion Science, 39(10), 1949-1963. doi.org/10.1016/S0010-938X(97)00088-7
  • Qiao, Y., Qu, L., Zhang, X. & Zhang, H. (2015). Boron carbide composite ceramic preparation and corrosion behavior in simulated seawater. Ceramics International, 41, 5026-5031. doi: 10.1016/j.ceramint.2014.12.070
  • Pardo, A., Merino, M.C., Merino, S., Viejo, F., Carboneras, M. & Arrabal, R. (2005). Influence of reinforcement proportion and matrix composition on pitting corrosion behaviour of cast aluminium matrix composites (A3xx.x/SiCp). Corrosion Science, 47, 1750-1764. doi.org/10.1016/j.corsci.2004.08.010
  • Saraswathi, Y.L., Das, S. & Mondal, D.P. (2006). Influence of microstructure and experimental parameters on the erosion corrosion behavior of Al alloy composites. Materials Science and Engineering A, 425, 244-254. doi:10.1016/j.msea.2006.03.083
  • Saxena, M., Modi, O.P., Prasad, B.K. & Jha, A.K. (1993). Erosion and corrosion characteristics of an aluminum alloy-alumina fiber composite. Wear, 169(1), 119-124. doi.org/10.1016/0043-1648(93)90397-5
  • Senthilvelan, T., Gopalakannan, S., Vishnuvarthan, S. & Keerthivaran, K. (2013). Fabrication and characterization of SiC, Al2O3 and B4C reinforced Al-Zn-Mg-Cu Alloy (AA 7075) metal matrix composites. Advanced Materials Research, 622, 1295-1299. doi.org/10.4028/www.scientific.net/AMR.622-623.1295
  • Shanbhag, V.V., Yalamoori, N.N., Karthikeyan, S., Ramanujam, R. & Venkatesan, K. (2014). Fabrication, surface morphology and corrosion investigation of Al 7075-Al2O3 matrix composite in seawater and industrial environment. Procedia Engineering, 97, 607-613. doi.org/10.1016/j.proeng.2014.12.289
  • Shimizu, Y., Nishimura, T. & Matsushima, I. (1995). Corrosion resistance of Al-based metal matrix composites. Materials Science and Engineering A, 198, 113-118. doi.org/10.1016/0921-5093(95)80065-3
  • Shorowordi, K.M., Laoui, T., Haseeb, A.S.M.A., Celis, J.P. & Froyen, L. (2003). Microstructure and interface characteristics of B4C, SiC and Al2O3 reinforced Al matrix composites: A Comparative study. Journal of Materials Processing Technology, 142, 738-743. doi.org/10.1016/S0924-0136(03)00815-X
  • Srivyas, P.D. & Charoo, M.S. (2018). Role of reinforcements on the mechanical and tribological behavior of aluminum metal matrix composites. Materials Today: Proceedings, 5, 20041-20053. doi.org/10.1016/j.matpr.2018.06.371
  • Toptan, F., Alves, A.C., Kerti, I., Ariza, E. & Rocha, L.A. (2013). Corrosion and tribocorrosion behaviour of Al-Si-Cu-Mg alloy and its composites reinforced with B4C particles in 0.05 M NaCl solution. Wear, 306, 27-35. doi: 10.1016/j.wear.2013.06.026
  • Trzaskoma, P.P. (1990). Pit morphology of aluminum alloy and silicon carbide/aluminum alloy metal matrix composites. Corrosion, 46(5), 402-409. doi.org/10.5006/1.3585124
  • Verma, A.S., Sumankant, Suri, N.M. & Yashpal. (2015). Corrosion behavior of aluminum base particulate metal matrix composites. Materials Today: Proceedings, 2, 2840-2851. doi.org/10.1016/j.matpr.2015.07.299
  • Web.gtu.edu.tr/aluminyum/2016/02/08/aluminyum-alasimlarin-mekanik-ozellikleri/
  • Yashpal, Sumankant, Jawalkar, C.S., Verma, A.S. & Suri, N.M. (2017). Fabrication of aluminum metal matrix composites with particulate reinforcement. Materials Today: Proceedings, 4, 2927-2936. doi.org/10.1016/j.matpr.2017.02.174
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Materials Engineering (Other)
Journal Section Articles
Authors

Hasan Karabulut 0000-0002-3370-9994

Kubilay Karacif 0000-0001-7180-7897

Mustafa Türkmen 0000-0002-9402-2459

Publication Date January 18, 2021
Submission Date May 7, 2020
Published in Issue Year 2021 Volume: 13 Issue: 1

Cite

APA Karabulut, H., Karacif, K., & Türkmen, M. (2021). Sıcak Presleme Yöntemi ile Üretilen AA2024 ve AA7075 Esaslı %5 SiC Takviyeli Kompozit Malzemelerin Mikroyapı, Sertlik ve Korozyon Özelliklerinin İncelenmesi. International Journal of Engineering Research and Development, 13(1), 104-112. https://doi.org/10.29137/umagd.733755

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.