Research Article
BibTex RIS Cite

Investigation of Behaviour of Historical Hundi Hatun (Kunç) Bridge Under Increasing Traffic Load

Year 2021, Volume: 13 Issue: 2, 496 - 507, 18.06.2021
https://doi.org/10.29137/umagd.823912

Abstract

The behavior of Hundi Hatun (Kunç) Bridge located in Amasya city under the effect of increasing traffic loads has been examined detailed in this study. The bridge is currently open to vehicle traffic and is located in one of the busiest locations in the city. Therefore, the bridge is exposed to a huge traffic load. The traffic load resulting from the tunnel opened in the city recently is transferred towards the bridge and causes traffic congestion on both sides of the bridge, causing the vehicle to wait on the bridge for a long time. The negative situation caused by this load on the bridge has been examined in this study, considering different vehicle loads. Mohr-Coulomb material model is used as the material model. Analyzes have been carried out according to the most unfavorable situation that both lanes on the bridge is full. Automobile, minibus, van and bus loads were taken into consideration as vehicle load and the resulting stress and deformations were determined. In addition, it has been determined that the deformations that occur do not exceed the limit value, maximum tensile stresses are concentrated on the flattened arch support and around key stone points, and also on the side walls of the upper part of the arches. In addition to these, analyzes were carried out with the Limitstate: Ring software, which uses the rigid block analysis method, and the failure mechanisms and the minimum axle loads that cause failure were determined. The findings obtained from the study are aimed to be a guide for future restoration studies.

References

  • Ataei, S., Miri, A., & Jahangiri, M. (2017). Assessment of load carrying capacity enhancement of an open spandrel masonry arch bridge by dynamic load testing. International Journal of Architectural Heritage, 11(8), 1086–1100. https://doi.org/10.1080/15583058.2017.1317882
  • Augusthus-Nelson, L., & Swift, G. (2020). Experimental investigation of the residual behaviour of damaged masonry arch structures. Structures, 27(March), 2500–2512. https://doi.org/10.1016/j.istruc.2020.08.008
  • Conde, B., Díaz-Vilariño, L., Lagüela, S., & Arias, P. (2016). Structural analysis of Monforte de Lemos masonry arch bridge considering the influence of the geometry of the arches and fill material on the collapse load estimation. Construction and Building Materials, 120, 630–642. https://doi.org/10.1016/j.conbuildmat.2016.05.107
  • Çakır, F., Şeker, B. Ş. (2015). Structural performance of renovated masonry low bridge in Amasya, Turkey. Earthquakes and Structures, Vol 8, No:6, 1387-1406.
  • Hokelekli, E., & Yilmaz, B. N. (2019). Effect of cohesive contact of backfill with arch and spandrel walls of a historical masonry arch bridge on seismic response. Periodica Polytechnica Civil Engineering, 63(3), 926–937. https://doi.org/10.3311/PPci.14198
  • Kamiński, T. (2018). The ultimate limit state vs. Limit analysis of masonry arch bridges. Maintenance, Safety, Risk, Management and Life-Cycle Performance of Bridges - Proceedings of the 9th International Conference on Bridge Maintenance, Safety and Management, IABMAS 2018, (July 2018), 2687–2694.
  • Karaton, M., Aksoy, H. S., Sayın, E., & Calayır, Y. (2017). Nonlinear seismic performance of a 12th century historical masonry bridge under different earthquake levels. Engineering Failure Analysis, 79(December 2016), 408–421. https://doi.org/10.1016/j.engfailanal.2017.05.017
  • Karaton, M., Aksoy, H.S. and Sayın E. (2017). Nonlinear seismic performance of a 12th century historical masonry bridge under different earthquake levels. Engineering Failure Analysis. 79. 408-421.
  • Kaya, M. (2018). Aksaray Debbağlar Köprüsü: Günümüz Trafik Yükleri Altında Dinamik Analizi. Yüksek Lisans Tezi. Süleyman Demirel Üniversitesi. Fen Bilimleri Enstitüsü. Isparta.
  • Kindij, A., Mandic Ivankovic, A., & Vasilj, M. (2013). Assessment of Masonry Arch Bridge With Concrete Deck. 7th International Conference on Arch Bridges (ARCH’13), (May), 723–730.
  • Meriç C., Ç., & Bağbancı, M. B. (2019). the Investigation of Construction Techniques and Material Usage of Historical Stone Bridges in Anatolia and Balkans. In International Refereed Journal of Design and Architecture (Vol. 17). https://doi.org/10.17365/tmd.2019.2.4
  • Paeglitis, A., Paeglitis, A., Vitiņa, I., & Igaune, S. (2013). Istorinio mūrinio arkinio tilto tyrimas ir atnaujinimas. Baltic Journal of Road and Bridge Engineering, 8(1), 32–39. https://doi.org/10.3846/bjrbe.2013.05
  • Pelà, L., Aprile, A., & Benedetti, A. (2009). Seismic assessment of masonry arch bridges. Engineering Structures, 31(8), 1777–1788. https://doi.org/10.1016/j.engstruct.2009.02.012
  • Pepi, C., Gioffrè, M., Comanducci, G., Cavalagli, N., Bonaca, A., & Ubertini, F. (2017). Dynamic characterization of a severely damaged historic masonry bridge. Procedia Engineering, 199(December), 3398–3403. https://doi.org/10.1016/j.proeng.2017.09.579
  • Pouraminian, M., Pourbakhshian, S., Noroozinejad Farsangi, E., Berenji, S., Borujeni, S. K., Moosavi Asl, M., & Mohammad Hosseini, M. (2020). Reliability-Based Safety Evaluation of the BISTOON Historic Masonry Arch Bridge. Civil and Environmental Engineering Reports, 30(1), 87–110. https://doi.org/10.2478/ceer-2020-0008
  • Rahman, M. E., & Fanning, P. J. (2010). An examination of backing effects on ratings for masonry arch bridges. World Academy of Science, Engineering and Technology, 72(September), 314–316. https://doi.org/10.5281/zenodo.1063128
  • Rodrigo, B. G., Olària, S. R. i, Fernández-Ordoñez, D., & Gómez, J. M. C. S. (2015). Rehabilitation of historic masonry bridges: Lessons learned from a medieval bridge in northeast Spain. Revista de La Construccion, 14(2), 9–13. https://doi.org/10.4067/s0718-915x2015000200001
  • Rodrigues, N., Ramos, A., & Branco, F. (2008). Rehabilitation of Historical Masonry Bridges. 1st International Conference Construction Heritage in Coastal and Marine Environments -- Damage, Diagnostic, Maintenance and Rehabilitation, (January 2008), 1–10. https://doi.org/10.13140/2.1.3993.6007
  • Tiberti, S. and Milani, G. (2018). Historic City Centers After Destructive Seismic Events, The Case of Finale Emilia During the 2012 Emilia-Romagna Earthquake: Advanced Numerical Modelling on Four Case Studies. Open Civ. Eng. Journal. Vol. 11, No. 1. pp. 1059–1078.
  • Tubaldi, E., Minga, E., Macorini, L., & Izzuddin, B. A. (2020). Mesoscale analysis of multi-span masonry arch bridges. Engineering Structures, 225(November 2019), 111137. https://doi.org/10.1016/j.engstruct.2020.111137

Tarihi Hundi Hatun (Kunç) Köprüsünün Artan Trafik Yükü Altında Davranışının İncelenmesi

Year 2021, Volume: 13 Issue: 2, 496 - 507, 18.06.2021
https://doi.org/10.29137/umagd.823912

Abstract

Amasya kentinde yer alan Hundi Hatun (Kunç) köprüsünün artan trafik yükleri etkisi altındaki davranışı bu çalışmada detaylı olarak incelenmiştir. Köprü, halihazırda taşıt trafiğine açık durumda olup, şehrin en işlek mevkilerinden birinde bulunmaktadır. Bundan dolayı köprü, oldukça fazla trafik yüküne maruz kalmaktadır. Yakın zamanda şehir içinde açılan tünelden hasıl olan trafik yükü de köprüye doğru iletilmekte ve köprünün her iki yakasında trafik sıkışıklığına neden olarak, köprü üzerinde uzun süre araç beklemesine neden olmaktadır. Bu yükün köprü üzerinde meydana getirdiği olumsuz durum bu çalışmada, farklı araç yükleri dikkate alınarak incelenmiştir. Malzeme modeli olarak Mohr-Coulomb malzeme modeli kullanılmıştır. Köprü üzerinde mevcut olan her iki şeritin en olumsuz durum olan tamamen dolu olmasını durumuna göre analizler gerçekleştirilmiştir. Araç yükü olarak otomobil, minibüs, kamyonet ve otobüs yükleri dikkate alınmış ve meydana gelen gerilme ve deformasyonlar belirlenmiştir. Ayrıca meydana gelen deformasyonların sınır değeri aşmadığı, oluşan çekme gerilmelerinin basık kemer mesnet ve tepe noktalarında, ayrıca köprü taşıyıcı kemerleri üst kısmındaki yan duvarlarda yoğunlaştığı tespit edilmiştir. Bunlara ek olarak rijit blok analizi yöntemini kullanan Limitstate: Ring yazılımı ile de analizler gerçekleştirilmiş ve yenilme mekanizmaları ve buna sebep olan minimum dingil yükleri de tespit edilmiştir. Çalışmadan elde edilen bulguların ilerdeki restorasyon çalışmaları için yol gösterici olması hedeflenmiştir.

References

  • Ataei, S., Miri, A., & Jahangiri, M. (2017). Assessment of load carrying capacity enhancement of an open spandrel masonry arch bridge by dynamic load testing. International Journal of Architectural Heritage, 11(8), 1086–1100. https://doi.org/10.1080/15583058.2017.1317882
  • Augusthus-Nelson, L., & Swift, G. (2020). Experimental investigation of the residual behaviour of damaged masonry arch structures. Structures, 27(March), 2500–2512. https://doi.org/10.1016/j.istruc.2020.08.008
  • Conde, B., Díaz-Vilariño, L., Lagüela, S., & Arias, P. (2016). Structural analysis of Monforte de Lemos masonry arch bridge considering the influence of the geometry of the arches and fill material on the collapse load estimation. Construction and Building Materials, 120, 630–642. https://doi.org/10.1016/j.conbuildmat.2016.05.107
  • Çakır, F., Şeker, B. Ş. (2015). Structural performance of renovated masonry low bridge in Amasya, Turkey. Earthquakes and Structures, Vol 8, No:6, 1387-1406.
  • Hokelekli, E., & Yilmaz, B. N. (2019). Effect of cohesive contact of backfill with arch and spandrel walls of a historical masonry arch bridge on seismic response. Periodica Polytechnica Civil Engineering, 63(3), 926–937. https://doi.org/10.3311/PPci.14198
  • Kamiński, T. (2018). The ultimate limit state vs. Limit analysis of masonry arch bridges. Maintenance, Safety, Risk, Management and Life-Cycle Performance of Bridges - Proceedings of the 9th International Conference on Bridge Maintenance, Safety and Management, IABMAS 2018, (July 2018), 2687–2694.
  • Karaton, M., Aksoy, H. S., Sayın, E., & Calayır, Y. (2017). Nonlinear seismic performance of a 12th century historical masonry bridge under different earthquake levels. Engineering Failure Analysis, 79(December 2016), 408–421. https://doi.org/10.1016/j.engfailanal.2017.05.017
  • Karaton, M., Aksoy, H.S. and Sayın E. (2017). Nonlinear seismic performance of a 12th century historical masonry bridge under different earthquake levels. Engineering Failure Analysis. 79. 408-421.
  • Kaya, M. (2018). Aksaray Debbağlar Köprüsü: Günümüz Trafik Yükleri Altında Dinamik Analizi. Yüksek Lisans Tezi. Süleyman Demirel Üniversitesi. Fen Bilimleri Enstitüsü. Isparta.
  • Kindij, A., Mandic Ivankovic, A., & Vasilj, M. (2013). Assessment of Masonry Arch Bridge With Concrete Deck. 7th International Conference on Arch Bridges (ARCH’13), (May), 723–730.
  • Meriç C., Ç., & Bağbancı, M. B. (2019). the Investigation of Construction Techniques and Material Usage of Historical Stone Bridges in Anatolia and Balkans. In International Refereed Journal of Design and Architecture (Vol. 17). https://doi.org/10.17365/tmd.2019.2.4
  • Paeglitis, A., Paeglitis, A., Vitiņa, I., & Igaune, S. (2013). Istorinio mūrinio arkinio tilto tyrimas ir atnaujinimas. Baltic Journal of Road and Bridge Engineering, 8(1), 32–39. https://doi.org/10.3846/bjrbe.2013.05
  • Pelà, L., Aprile, A., & Benedetti, A. (2009). Seismic assessment of masonry arch bridges. Engineering Structures, 31(8), 1777–1788. https://doi.org/10.1016/j.engstruct.2009.02.012
  • Pepi, C., Gioffrè, M., Comanducci, G., Cavalagli, N., Bonaca, A., & Ubertini, F. (2017). Dynamic characterization of a severely damaged historic masonry bridge. Procedia Engineering, 199(December), 3398–3403. https://doi.org/10.1016/j.proeng.2017.09.579
  • Pouraminian, M., Pourbakhshian, S., Noroozinejad Farsangi, E., Berenji, S., Borujeni, S. K., Moosavi Asl, M., & Mohammad Hosseini, M. (2020). Reliability-Based Safety Evaluation of the BISTOON Historic Masonry Arch Bridge. Civil and Environmental Engineering Reports, 30(1), 87–110. https://doi.org/10.2478/ceer-2020-0008
  • Rahman, M. E., & Fanning, P. J. (2010). An examination of backing effects on ratings for masonry arch bridges. World Academy of Science, Engineering and Technology, 72(September), 314–316. https://doi.org/10.5281/zenodo.1063128
  • Rodrigo, B. G., Olària, S. R. i, Fernández-Ordoñez, D., & Gómez, J. M. C. S. (2015). Rehabilitation of historic masonry bridges: Lessons learned from a medieval bridge in northeast Spain. Revista de La Construccion, 14(2), 9–13. https://doi.org/10.4067/s0718-915x2015000200001
  • Rodrigues, N., Ramos, A., & Branco, F. (2008). Rehabilitation of Historical Masonry Bridges. 1st International Conference Construction Heritage in Coastal and Marine Environments -- Damage, Diagnostic, Maintenance and Rehabilitation, (January 2008), 1–10. https://doi.org/10.13140/2.1.3993.6007
  • Tiberti, S. and Milani, G. (2018). Historic City Centers After Destructive Seismic Events, The Case of Finale Emilia During the 2012 Emilia-Romagna Earthquake: Advanced Numerical Modelling on Four Case Studies. Open Civ. Eng. Journal. Vol. 11, No. 1. pp. 1059–1078.
  • Tubaldi, E., Minga, E., Macorini, L., & Izzuddin, B. A. (2020). Mesoscale analysis of multi-span masonry arch bridges. Engineering Structures, 225(November 2019), 111137. https://doi.org/10.1016/j.engstruct.2020.111137
There are 20 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section Articles
Authors

Burçin Şenol Şeker 0000-0002-6644-7548

Murat Gökçe 0000-0002-8117-0866

Publication Date June 18, 2021
Submission Date November 10, 2020
Published in Issue Year 2021 Volume: 13 Issue: 2

Cite

APA Şeker, B. Ş., & Gökçe, M. (2021). Tarihi Hundi Hatun (Kunç) Köprüsünün Artan Trafik Yükü Altında Davranışının İncelenmesi. International Journal of Engineering Research and Development, 13(2), 496-507. https://doi.org/10.29137/umagd.823912

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.