Research Article
BibTex RIS Cite

Kentlerin Aydınlatma Enerjisi için Atıksu Arıtma Tesisleri Hidroelektrik Enerjisinin Kullanımı: Türkiye Örneği

Year 2021, Volume: 13 Issue: 2, 750 - 762, 18.06.2021
https://doi.org/10.29137/umagd.882607

Abstract

Bu çalışmada, öncelikle Türkiye'de yedi coğrafi bölgesindeki atık su arıtma tesislerinden üretilebilecek elektrik gücünün değeri hesaplanmıştır. Ardından, ilgili coğrafi bölgedeki aydınlatma enerjisi ihtiyacını karşılamak için üretilen elektrik gücünün oranını belirlemek üzere bir çalışma yapılmıştır. Bu amaçla, atık su arıtma tesisinin hidroelektrik potansiyelini değerlendirmek için bir yöntem sunulmuştur. Yedi coğrafi bölge için 2018-2025 yıllarındaki nüfus, atık su arıtma tesisinden arıtılacak atık su debi oranı ve her bölge için aydınlatma tüketimi değerleri tahmin edilmiştir. Gelecek yıllar için yapılan tahminler Matlab ortamında yazılan eğri uydurma algoritması ile elde edilen denklemler kullanılarak yapılmıştır. Bu değerler kullanarak, arıtılan atık su ile elektrik üretiminin gerçekleştiği türbin arasındaki mesafenin 3 metre olması durumunda tahmini elektrik gücü değerleri hesaplanmıştır. Araştırmaya göre toplam tahmini atık su 4.16 (2018) ve 5.89 (2025) milyar m3 olacaktır. Türkiye'deki tüm şehirlerin tahmini enerji tüketimi 4429.2 GWh (2018) ve 4941.5 GWh (2025) olacaktır. Atık su arıtma tesisi hidroelektrik santralinden yıllık tahmini elektrik üretimi değerleri ise 28.51 GWh (2018) ve 38.53 GWh (2025) olacaktır.

References

  • Abbas, A.I., Qandil, M.D., Al-Haddad, M.R., Saravani, M.S. (2018). Amano, R.S., Utilization of Hydro-Turbines in Wastewater Treatment Plants. ASME 2018 12th International Conference on Energy Sustainability collocated with the ASME 2018 Power Conference and the ASME 2018 Nuclear Forum, ES2018-7349 (V001T01A003) 7 pages. https://doi.org/10.1115/ES2018-7349.
  • Ak, M., Kentel, E. & Kucukali, S. (2017). A fuzzy logic tool to evaluate low-head hydropower technologies at the outlet of wastewater treatment plants. Renewable and Sustainable Energy Reviews, 68 (1) 727-737. https://doi.org/10.1016/j.rser.2016.10.010.
  • Baran, B. (2019). Sınır Değerler Arasında Kalan Evsel Atıksu Numune Analizi Sonucunun Aşırı Öğrenme Makineleri İle Sınıflandırılması. Journal of Engineering Sciences and Design, 7(1) 18–25, (2019). https://doi.org/10.21923/jesd.457085.
  • Berger, V., Niemann, A., Frehmann, T., Brockmann, H. (2013). Advanced energy recovery strategies for wastewater treatment plants and sewer systems using small hydropower. Water Utility Journal, 5, 15-24.
  • Bhandari, B., Poudel, S.R., Lee, K.T. & Ahn, S.H. (2014). Mathematical Modeling of Hybrid Renewable Energy System: A Review on Small Hydro-Solar-Wind Power Generation. International Journal of Precision Engineering and Manufacturing-Green Technology, 1(2), 157-173. doi: 10.1007/s40684-014-0021-4.
  • Bousquet, C., Samora, I., Manso, P., Rossi, L., Heller, P. & Schleiss, A.J. (2017). Assessment of hydropower potential in wastewater systems and application to Switzerland. Renewable Energy, 113, 64-73. https://doi.org/10.1016/j.renene.2017.05.062.
  • Chae, K.J., Kim, I.S., Ren, X. & Cheon, K.H. (2015). Reliable energy recovery in an existing municipal wastewater treatment plant with a flow-variable micro-hydropower system. Energy Conversion and Management, 101, 681–688. https://doi.org/10.1016/j.enconman.2015.06.016.
  • Curve Fitting. 2018. Curve Fitting Method. Retrieved from www.yildiz.edu.tr/~nguzel/Egri_Uydurma_ve_En_Kucuk_Kareler_Yontemi.docx.
  • EPDK. (2019). Republic of Turkey Energy Market Regulatory Authority, Development Reports, Retrieved from https://www.epdk.org.tr/Home/En.
  • Frijns, J., Hofman, J., Nederlof, M., 2013. The potential of (waste)water as energy carrier. Energy Conversion and Management, 65, 357-363. https://doi.org/10.1016/j.enconman.2012.08.023.
  • Gu, Y., Li, Y., Li, X., Luo, P., Wang, H., Robinson, Z.P., Wang, X., Wu, J. & Li, F. (2017). The feasibility and challenges of energy self-sufficient wastewater treatment plants. Applied Energy, 204, 1463–1475. https://doi.org/10.1016/j.apenergy.2017.02.069.
  • Hydroelectric-1. (2019). Hydroelectric Power. Retrieved from https://www.usgs.gov/special-topic/water-science-school/science/hydroelectric-power-how-it-works?qt-science_center_objects=0#qt-science_center_objects.
  • Hydroelectric-2. (2019). Hydroelectric Power. Retrieved from https://www.conserve-energy-future.com/howhydropowerplantsworks.php.
  • Hydroelectric-3. (2019). Principle of hydropower Generation. Retrieved from https://www.brighthubengineering.com/fluid-mechanics-hydraulics/7066-principle-of-hydropower-generation.
  • Hydroelectric-4. (2019). Hydroelectric Power. Reclamation Managing Water in the West. Retrieved from https://www.usbr.gov/power/edu/pamphlet.pdf.
  • Kose, F & Kaya, M.N. (2013). Analysis on meeting the electric energy demand of an active plant with a wind-hydro hybrid power station in Konya, Turkey: Konya water treatment plant. Renewable Energy, 55, 196-201. https://doi.org/10.1016/j.renene.2012.12.047.
  • Kollmann, R., Neugebauer, G., Kretschmer, F., Truger, B., Kindermann, H., Stoeglehner, G., Ertl, T. & Narodoslawsky, M. (2017). Renewable energy from wastewater - Practical aspects of integrating a wastewater treatment plant into local energy supply concepts. Journal of Cleaner Production, 155, 119-129. https://doi.org/10.1016/j.jclepro.2016.08.168.
  • Manzano-Agugliaro, F., Taher, M., Zapata-Sierra, A., Juaidia, A. & Montoya, F.G., (2017). An overview of research and energy evolution for small hydropower in Europe. Renewable and Sustainable Energy Reviews, 75, 476-489. https://doi.org/10.1016/j.rser.2016.11.013.
  • Nasir, B.A. (2014). Design Considerations Of Micro-Hydro-ElectricPowerPlant, The International Conference on Technologies and Materials for Renewable Energy. Environment andSustainability, TMREES14. Energy Procedia, 1-9. https://doi.org/10.1016/j.egypro.2014.06.003.
  • Nimje, A.A. & Dhanjode, G. (2015). Pico-Hydro-Plant for Small Scale Power Generation in Remote Villages. IOSR Journal of Environmental Science. Toxicology and Food Technology (IOSR-JESTFT), 9(1)(3) 59-67.
  • Power, C., McNabola, A. & Coughlan, P. (2014). Development of an evaluation method for hydropower energy recovery in wastewater treatment plants: Case studies in Ireland and the UK. Sustainable Energy Technologies and Assessments, 7, 166-177. https://doi.org/10.1016/j.seta.2014.06.001.
  • Tamrakar, A., Pandey, S.K. & Dubey, S.C. (2015). Hydro Power Opportunity in the Sewage Waste Water. American International Journal of Research in Science. Technology, Engineering &Mathematics, 10 (2) 179-183.
  • TUIK. (2019). Turkish Statistical Institute. Turkey's population and wastewater amount of data. Retrieved from www.turkstat.gov.tr.
  • Yah, N.F., Oumer, A.N. & Idris, M.S. (2017). Small scale hydro-power as a source of renewable energy in Malaysia: A review. Renewable and Sustainable Energy Reviews, 72, 228-239. https://doi.org/10.1016/j.rser.2017.01.068.
  • Zarfl, C., Lumsdon, A.E., Berlekamp, J., Tydecks, L. & Tockner, K. (2015). A global boom in hydropower dam construction. Aquatic Sciences, 77(1) 161–170. doi: 10.1007/s00027-014-0377-0.
  • Zhou, D. & Deng, Z.D. (2017). Ultra-low-head hydroelectric technology: A review. Renewable and Sustainable Energy Reviews, 78, 23–30. https://doi.org/10.1016/j.rser.2017.04.086.
  • Zhou, Y., Hejazi, M., Smith, S., Edmonds, J., Li, H., Clarke, L., Calvin, K. & Thomson, A. (2015). A Comprehensive View of Global Potential for Hydro-generated Electricity. Energy and Environmental Sciences, 9. doi: 10.1039/C5EE00888C.

Usage of Waste Water Treatment Plants Hydroelectric Energy for Urban Lighting Energy: The Case of Turkey

Year 2021, Volume: 13 Issue: 2, 750 - 762, 18.06.2021
https://doi.org/10.29137/umagd.882607

Abstract

In this study, primarily from wastewater treatment plants in seven geographical regions in Turkey value of electrical power that can be generated were calculated. Then, a study was carried out to determine the ratio of the electrical power generated to meet the lighting energy requirement in the relevant geographical region. For this purpose, a method for evaluating the hydroelectric potential of wastewater treatment plant was presented. For seven geographical regions, population prediction in 2018-2025, predicted flow rate of wastewater to be treated from wastewater treatment plant and lighting consumption for each region were predicted. Predictions for the future years were made by using the equations obtained through the curve fitting algorithm written in Matlab environment. Using these values, the predicted electrical power values were calculated in case the distance between the treated wastewater falls and the turbine where electricity generation took place was 3 meters. According to study total predicted wastewater would be 4.16 (2018) and 5.89 (2025) billion m3. Total cities’ predicted lighting energy consumption in Turkey would be 4429.2 GWh (2018) and 4941.5 GWh (2025). And yearly predicted electricity generation from wastewater treatment plant hydroelectric would be 28.51 GWh (2018) and 38.53 GWh (2025).

References

  • Abbas, A.I., Qandil, M.D., Al-Haddad, M.R., Saravani, M.S. (2018). Amano, R.S., Utilization of Hydro-Turbines in Wastewater Treatment Plants. ASME 2018 12th International Conference on Energy Sustainability collocated with the ASME 2018 Power Conference and the ASME 2018 Nuclear Forum, ES2018-7349 (V001T01A003) 7 pages. https://doi.org/10.1115/ES2018-7349.
  • Ak, M., Kentel, E. & Kucukali, S. (2017). A fuzzy logic tool to evaluate low-head hydropower technologies at the outlet of wastewater treatment plants. Renewable and Sustainable Energy Reviews, 68 (1) 727-737. https://doi.org/10.1016/j.rser.2016.10.010.
  • Baran, B. (2019). Sınır Değerler Arasında Kalan Evsel Atıksu Numune Analizi Sonucunun Aşırı Öğrenme Makineleri İle Sınıflandırılması. Journal of Engineering Sciences and Design, 7(1) 18–25, (2019). https://doi.org/10.21923/jesd.457085.
  • Berger, V., Niemann, A., Frehmann, T., Brockmann, H. (2013). Advanced energy recovery strategies for wastewater treatment plants and sewer systems using small hydropower. Water Utility Journal, 5, 15-24.
  • Bhandari, B., Poudel, S.R., Lee, K.T. & Ahn, S.H. (2014). Mathematical Modeling of Hybrid Renewable Energy System: A Review on Small Hydro-Solar-Wind Power Generation. International Journal of Precision Engineering and Manufacturing-Green Technology, 1(2), 157-173. doi: 10.1007/s40684-014-0021-4.
  • Bousquet, C., Samora, I., Manso, P., Rossi, L., Heller, P. & Schleiss, A.J. (2017). Assessment of hydropower potential in wastewater systems and application to Switzerland. Renewable Energy, 113, 64-73. https://doi.org/10.1016/j.renene.2017.05.062.
  • Chae, K.J., Kim, I.S., Ren, X. & Cheon, K.H. (2015). Reliable energy recovery in an existing municipal wastewater treatment plant with a flow-variable micro-hydropower system. Energy Conversion and Management, 101, 681–688. https://doi.org/10.1016/j.enconman.2015.06.016.
  • Curve Fitting. 2018. Curve Fitting Method. Retrieved from www.yildiz.edu.tr/~nguzel/Egri_Uydurma_ve_En_Kucuk_Kareler_Yontemi.docx.
  • EPDK. (2019). Republic of Turkey Energy Market Regulatory Authority, Development Reports, Retrieved from https://www.epdk.org.tr/Home/En.
  • Frijns, J., Hofman, J., Nederlof, M., 2013. The potential of (waste)water as energy carrier. Energy Conversion and Management, 65, 357-363. https://doi.org/10.1016/j.enconman.2012.08.023.
  • Gu, Y., Li, Y., Li, X., Luo, P., Wang, H., Robinson, Z.P., Wang, X., Wu, J. & Li, F. (2017). The feasibility and challenges of energy self-sufficient wastewater treatment plants. Applied Energy, 204, 1463–1475. https://doi.org/10.1016/j.apenergy.2017.02.069.
  • Hydroelectric-1. (2019). Hydroelectric Power. Retrieved from https://www.usgs.gov/special-topic/water-science-school/science/hydroelectric-power-how-it-works?qt-science_center_objects=0#qt-science_center_objects.
  • Hydroelectric-2. (2019). Hydroelectric Power. Retrieved from https://www.conserve-energy-future.com/howhydropowerplantsworks.php.
  • Hydroelectric-3. (2019). Principle of hydropower Generation. Retrieved from https://www.brighthubengineering.com/fluid-mechanics-hydraulics/7066-principle-of-hydropower-generation.
  • Hydroelectric-4. (2019). Hydroelectric Power. Reclamation Managing Water in the West. Retrieved from https://www.usbr.gov/power/edu/pamphlet.pdf.
  • Kose, F & Kaya, M.N. (2013). Analysis on meeting the electric energy demand of an active plant with a wind-hydro hybrid power station in Konya, Turkey: Konya water treatment plant. Renewable Energy, 55, 196-201. https://doi.org/10.1016/j.renene.2012.12.047.
  • Kollmann, R., Neugebauer, G., Kretschmer, F., Truger, B., Kindermann, H., Stoeglehner, G., Ertl, T. & Narodoslawsky, M. (2017). Renewable energy from wastewater - Practical aspects of integrating a wastewater treatment plant into local energy supply concepts. Journal of Cleaner Production, 155, 119-129. https://doi.org/10.1016/j.jclepro.2016.08.168.
  • Manzano-Agugliaro, F., Taher, M., Zapata-Sierra, A., Juaidia, A. & Montoya, F.G., (2017). An overview of research and energy evolution for small hydropower in Europe. Renewable and Sustainable Energy Reviews, 75, 476-489. https://doi.org/10.1016/j.rser.2016.11.013.
  • Nasir, B.A. (2014). Design Considerations Of Micro-Hydro-ElectricPowerPlant, The International Conference on Technologies and Materials for Renewable Energy. Environment andSustainability, TMREES14. Energy Procedia, 1-9. https://doi.org/10.1016/j.egypro.2014.06.003.
  • Nimje, A.A. & Dhanjode, G. (2015). Pico-Hydro-Plant for Small Scale Power Generation in Remote Villages. IOSR Journal of Environmental Science. Toxicology and Food Technology (IOSR-JESTFT), 9(1)(3) 59-67.
  • Power, C., McNabola, A. & Coughlan, P. (2014). Development of an evaluation method for hydropower energy recovery in wastewater treatment plants: Case studies in Ireland and the UK. Sustainable Energy Technologies and Assessments, 7, 166-177. https://doi.org/10.1016/j.seta.2014.06.001.
  • Tamrakar, A., Pandey, S.K. & Dubey, S.C. (2015). Hydro Power Opportunity in the Sewage Waste Water. American International Journal of Research in Science. Technology, Engineering &Mathematics, 10 (2) 179-183.
  • TUIK. (2019). Turkish Statistical Institute. Turkey's population and wastewater amount of data. Retrieved from www.turkstat.gov.tr.
  • Yah, N.F., Oumer, A.N. & Idris, M.S. (2017). Small scale hydro-power as a source of renewable energy in Malaysia: A review. Renewable and Sustainable Energy Reviews, 72, 228-239. https://doi.org/10.1016/j.rser.2017.01.068.
  • Zarfl, C., Lumsdon, A.E., Berlekamp, J., Tydecks, L. & Tockner, K. (2015). A global boom in hydropower dam construction. Aquatic Sciences, 77(1) 161–170. doi: 10.1007/s00027-014-0377-0.
  • Zhou, D. & Deng, Z.D. (2017). Ultra-low-head hydroelectric technology: A review. Renewable and Sustainable Energy Reviews, 78, 23–30. https://doi.org/10.1016/j.rser.2017.04.086.
  • Zhou, Y., Hejazi, M., Smith, S., Edmonds, J., Li, H., Clarke, L., Calvin, K. & Thomson, A. (2015). A Comprehensive View of Global Potential for Hydro-generated Electricity. Energy and Environmental Sciences, 9. doi: 10.1039/C5EE00888C.
There are 27 citations in total.

Details

Primary Language English
Subjects Electrical Engineering
Journal Section Articles
Authors

Burhan Baran 0000-0001-6394-412X

Publication Date June 18, 2021
Submission Date February 27, 2021
Published in Issue Year 2021 Volume: 13 Issue: 2

Cite

APA Baran, B. (2021). Usage of Waste Water Treatment Plants Hydroelectric Energy for Urban Lighting Energy: The Case of Turkey. International Journal of Engineering Research and Development, 13(2), 750-762. https://doi.org/10.29137/umagd.882607

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.