An Investigation of Wear Behaviours of Mg Matrix Composites Reinforced Carbon Nanotube Produced by Powder Metallurgy Method
Year 2021,
Volume: 13 Issue: 3, 1 - 8, 31.12.2021
Musa Yıldırım
,
Dursun Özyürek
Abstract
In this study, production, and wear behaviours of AZ91-carbon nanotube reinforced metal matrix composites by powder metallurgy method were investigated. Composite powders were produced by multi wall carbon nanotube powders (four different amount) were added to AZ91 Mg. Produced composite powders were pre-formed by cold press then they were sintered at 550 ºC for 1 hour. Sintered samples were characterized. Wear tests were done by pin-on disc type wear device under 30 N load with three sliding distances. At the end of the study, it was seen that hardness values were increased with increasing carbon nanotube amount. The maximum hardness value was measured in the 0.25% carbon nanotube added sample. However, according to wear test, the weight loss values were increased with increasing reinforcement amount due to non-homogenous distribution and occurred agglomeration of reinforcement. The maximum weight loss values were measured in added 2 % sample.
References
- Abazari, S., Shamsipur, A., Bakhsheshi-Rad, H. R., Ismail, A. F., Sharif, S., Razzaghi, M., ... & Berto, F. (2020). Carbon nanotubes (CNTs)-reinforced magnesium-based matrix composites: A comprehensive review. Materials, 13(19), 4421. https://doi.org/10.3390/ma13194421
- Akkaş, M (2017) Gaz atomizasyon yöntemi ile AZ91 tozu üretimi ve karakterizasyonu, Doktora Tezi, Karabük Üniversitesi Fen Bilimleri Enstitüsü, Karabük
- Aydin, F., & Durgut, R. (2021). Estimation of wear performance of AZ91 alloy under dry sliding conditions using machine learning methods. Transactions of Nonferrous Metals Society of China, 31(1), 125-137. https://doi.org/10.1016/S1003-6326(20)65482-6
- Bakshi, S. R., Lahiri, D., & Agarwal, A. (2010). Carbon nanotube reinforced metal matrix composites-a review. International materials reviews, 55(1), 41-64. https://doi.org/10.1179/095066009X12572530170543
- Chawla K.K. (2012). Metal Matrix Composites. In: Composite Materials. Springer, New York, NY. https://doi.org/10.1007/978-0-387-74365-3_6
- Dey, A., & Pandey, K. M. (2015). Magnesium Metal Matrix Composites-A Review. Reviews on Advanced Materials Science, 42(1).
- Islak, S., Küçük, Ö., Eski, Ö., Özorak, C., & Akkaş, M. (2017). The Effect of CNT Content and Sintering Temperature on Some Properties of CNT-reinforced MgAl Composites. Science of Sintering, 49(4). https://doi.org/10.2298/SOS1704347I
- Jayabharathy, S., & Mathiazhagan, P. (2020). Investigation of mechanical and wear behaviour of AZ91 magnesium matrix hybrid composite with TiO2/graphene. Materials Today: Proceedings, 27, 2394-2397. https://doi.org/10.1016/j.matpr.2019.09.142
- Kumar, G. V., Rao, C. S. P., & Selvaraj, N. (2011). Mechanical and tribological behavior of particulate reinforced aluminum metal matrix composites–a review. Journal of minerals and materials characterization and engineering, 10(01), 59.
- Li, Q., Viereckl, A., Rottmair, C. A., & Singer, R. F. (2009). Improved processing of carbon nanotube/magnesium alloy composites. Composites Science and Technology, 69(7-8), 1193-1199. https://doi.org/10.1016/j.compscitech.2009.02.020
- Mindivan, H., Efe, A., Kosatepe, A. H., & Kayali, E. S. (2014). Fabrication and characterization of carbon nanotube reinforced magnesium matrix composites. Applied surface science, 318, 234-243. https://doi.org/10.1016/j.apsusc.2014.04.127
- Paramsothy, M., Chan, J., Kwok, R., & Gupta, M. (2011). Enhanced mechanical response of hybrid alloy AZ31/AZ91 based on the addition of Si3N4 nanoparticles. Materials Science and Engineering: A, 528(21), 6545-6551. https://doi.org/10.1016/j.msea.2011.05.003
- Tjong, S. C. (2013). Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets. Materials Science and Engineering: R: Reports, 74(10), 281-350. https://doi.org/10.1016/j.mser.2013.08.001
- Turan, M. E., Zengin, H., & Sun, Y. (2020). Dry sliding wear behavior of (MWCNT+ GNPs) reinforced AZ91 magnesium matrix hybrid composites. Metals and Materials International, 26(4), 541-550. https://doi.org/10.1007/s12540-019-00338-8
- Wang, L., Zhang, B. P., & Shinohara, T. (2010). Corrosion behavior of AZ91 magnesium alloy in dilute NaCl solutions. Materials & Design, 31(2), 857-863. https://doi.org/10.1016/j.matdes.2009.07.049
- Zhao, F. Z., Feng, X. H., & Yang, Y. S. (2016). Microstructure and mechanical properties of CNT-reinforced AZ91D composites fabricated by ultrasonic processing. Acta Metallurgica Sinica (English Letters), 29(7), 652-660. https://doi.org/10.1007/s40195-016-0438-6
- Zhou, D., Qiu, F., Wang, H., & Jiang, Q. (2014). Manufacture of nano-sized particle-reinforced metal matrix composites: a review. Acta Metallurgica Sinica (English Letters), 27(5), 798-805. https://doi.org/10.1007/s40195-014-0154-z
Toz Metalurjisi Yöntemiyle Üretilen Karbon Nanotüp Takviyeli Mg Matrisli Kompozitlerin Aşınma Davranışlarının İncelenmesi
Year 2021,
Volume: 13 Issue: 3, 1 - 8, 31.12.2021
Musa Yıldırım
,
Dursun Özyürek
Abstract
Toz metalurjisi yöntemi ile AZ91-Karbon nanotüp takviyeli metal matrisli kompozitlerin üretimi ve aşınma davranışlarının incelendiği bu çalışmada, AZ91 Magnezyum alaşımına çok duvarlı karbon nanotüp ilave edilerek kompozit tozlar üretilmiştir. Üretilen kompozit tozlar soğuk preslenerek ön şekillendirilmiş arkasından 550 ºC’de 1 saat sinterlenmiştir. Sinterlenen kompozitlerin karakterizasyon çalışmaları yapılmıştır. Pin-on disk tipi aşınma cihazında 30 N yük altında üç farklı kayma mesafesinde aşınma testleri yapılmıştır. Yapılan çalışmalar sonucunda karbon nanotüp ilave edilen kompozitlerde sertlik değerinin arttığı en yüksek sertlik %0,25 karbon nanotüp ilave edilen kompozitte elde edilmiştir. Ancak yapılan aşınma testleri sonucunda takviye elemanının yapı içerisinde homojen dağılmaması ve oluşan aglomerasyonlar sonucu ilave edilen takviye miktarıyla aşınmanın arttığı, ağırlık kaybındaki en yüksek değer %2 karbon nanotüp takviyeli kompozitte elde edilmiştir.
References
- Abazari, S., Shamsipur, A., Bakhsheshi-Rad, H. R., Ismail, A. F., Sharif, S., Razzaghi, M., ... & Berto, F. (2020). Carbon nanotubes (CNTs)-reinforced magnesium-based matrix composites: A comprehensive review. Materials, 13(19), 4421. https://doi.org/10.3390/ma13194421
- Akkaş, M (2017) Gaz atomizasyon yöntemi ile AZ91 tozu üretimi ve karakterizasyonu, Doktora Tezi, Karabük Üniversitesi Fen Bilimleri Enstitüsü, Karabük
- Aydin, F., & Durgut, R. (2021). Estimation of wear performance of AZ91 alloy under dry sliding conditions using machine learning methods. Transactions of Nonferrous Metals Society of China, 31(1), 125-137. https://doi.org/10.1016/S1003-6326(20)65482-6
- Bakshi, S. R., Lahiri, D., & Agarwal, A. (2010). Carbon nanotube reinforced metal matrix composites-a review. International materials reviews, 55(1), 41-64. https://doi.org/10.1179/095066009X12572530170543
- Chawla K.K. (2012). Metal Matrix Composites. In: Composite Materials. Springer, New York, NY. https://doi.org/10.1007/978-0-387-74365-3_6
- Dey, A., & Pandey, K. M. (2015). Magnesium Metal Matrix Composites-A Review. Reviews on Advanced Materials Science, 42(1).
- Islak, S., Küçük, Ö., Eski, Ö., Özorak, C., & Akkaş, M. (2017). The Effect of CNT Content and Sintering Temperature on Some Properties of CNT-reinforced MgAl Composites. Science of Sintering, 49(4). https://doi.org/10.2298/SOS1704347I
- Jayabharathy, S., & Mathiazhagan, P. (2020). Investigation of mechanical and wear behaviour of AZ91 magnesium matrix hybrid composite with TiO2/graphene. Materials Today: Proceedings, 27, 2394-2397. https://doi.org/10.1016/j.matpr.2019.09.142
- Kumar, G. V., Rao, C. S. P., & Selvaraj, N. (2011). Mechanical and tribological behavior of particulate reinforced aluminum metal matrix composites–a review. Journal of minerals and materials characterization and engineering, 10(01), 59.
- Li, Q., Viereckl, A., Rottmair, C. A., & Singer, R. F. (2009). Improved processing of carbon nanotube/magnesium alloy composites. Composites Science and Technology, 69(7-8), 1193-1199. https://doi.org/10.1016/j.compscitech.2009.02.020
- Mindivan, H., Efe, A., Kosatepe, A. H., & Kayali, E. S. (2014). Fabrication and characterization of carbon nanotube reinforced magnesium matrix composites. Applied surface science, 318, 234-243. https://doi.org/10.1016/j.apsusc.2014.04.127
- Paramsothy, M., Chan, J., Kwok, R., & Gupta, M. (2011). Enhanced mechanical response of hybrid alloy AZ31/AZ91 based on the addition of Si3N4 nanoparticles. Materials Science and Engineering: A, 528(21), 6545-6551. https://doi.org/10.1016/j.msea.2011.05.003
- Tjong, S. C. (2013). Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets. Materials Science and Engineering: R: Reports, 74(10), 281-350. https://doi.org/10.1016/j.mser.2013.08.001
- Turan, M. E., Zengin, H., & Sun, Y. (2020). Dry sliding wear behavior of (MWCNT+ GNPs) reinforced AZ91 magnesium matrix hybrid composites. Metals and Materials International, 26(4), 541-550. https://doi.org/10.1007/s12540-019-00338-8
- Wang, L., Zhang, B. P., & Shinohara, T. (2010). Corrosion behavior of AZ91 magnesium alloy in dilute NaCl solutions. Materials & Design, 31(2), 857-863. https://doi.org/10.1016/j.matdes.2009.07.049
- Zhao, F. Z., Feng, X. H., & Yang, Y. S. (2016). Microstructure and mechanical properties of CNT-reinforced AZ91D composites fabricated by ultrasonic processing. Acta Metallurgica Sinica (English Letters), 29(7), 652-660. https://doi.org/10.1007/s40195-016-0438-6
- Zhou, D., Qiu, F., Wang, H., & Jiang, Q. (2014). Manufacture of nano-sized particle-reinforced metal matrix composites: a review. Acta Metallurgica Sinica (English Letters), 27(5), 798-805. https://doi.org/10.1007/s40195-014-0154-z