Research Article
BibTex RIS Cite

Atık Mermerlerin Parke Taşlarında İnce Agrega Olarak Kullanılabilirliğinin İncelenmesi

Year 2022, Volume: 14 Issue: 1, 103 - 114, 31.01.2022
https://doi.org/10.29137/umagd.956063

Abstract

Bu çalışmada, Tokat ili mermer işleme fabrikalarında oluşan atık mermerlerin beton parke taşlarında ince agrega olarak kullanımının uygunluğu araştırılmıştır. Karışımlarda bağlayıcı olarak CEM I 42.5 R tipi çimento kullanılmıştır. Agrega olarak kalker kökenli kırmataş agrega ile atık mermer agregası kullanılmıştır. Karışımlarda şebeke suyu kullanılmış olup herhangi bir kimyasal katkı malzemesi kullanılmamıştır. Çalışma kapsamında Karayolları Teknik Şartnamesi (2013) beton parke taşları özelliklerine uygun olarak doğal agrega gradasyonu hazırlanmıştır. Bu gradasyon sabit tutularak atık mermerler agrega karışımının ince agrega grubuna %25, %50, %75 ve %100 oranında ikame edilmiştir. Beş ayrı deneye tabi tutulan beş farklı karışım oranına sahip numune gruplarında her bir deney için 3 adet numune olmak üzere toplamda 75 adet (5*5*3) beton parke taşı numunesi hazırlanmıştır. Hazırlanan numunelerin deney sonuçları incelendiğinde, boyut-görünüş, su emme oranı, donma-çözünme direnci ve aşınma direnci bakımından şartname limitlerinin sağlandığı görülmüştür. Yarmada çekme dayanımı özellikleri incelendiğinde ise %25 ve %50 oranında ikame edilen mermer agregası ile hazırlanan numunelerin yeterli dayanım gösterdiği; buna karşın %75 ve %100 oranında ikame edilen mermer agregası ile hazırlanan numunelerin ise yeterli dayanımı sağlamadığı görülmüştür. Sonuç olarak atık mermerlerin beton parke taşlarında ince agrega olarak %50 oranına kadar kullanılabilir olduğu tespit edilmiştir.

Supporting Institution

TOKAT GAZİOSMANPAŞA ÜNİVERSİTESİ BİLİMSEL ARAŞTIRMA PROJELERİ

Project Number

2020/10

Thanks

Bu çalışmanın gerçekleşmesinde 2020/10 No’ lu proje kapsamında maddi imkan sağlayan Tokat Gaziosmanpaşa Üniversitesi Bilimsel Araştırma Projeleri (BAP) birimine katkılarından dolayı teşekkür ederiz.

References

  • Behera M., Bhattacharyya S.K., Minocha A. K., Deoliya R., &Maiti S. (2014). Recycled aggregate from C&D waste & its use in concrete – A break through towards sustainability in construction sector: A review. Construction and building materials, 68, 501-516. doi.org/10.1016/j.conbuildmat.2014.07.003
  • Baradan, B., Türkel, S., Yazıcı, H., Ün, H., Yiğiter, H., Felekoğlu, B., Tosun Felekoğlu , K., Aydın, S., Yardımcı, M. Y., Topal, A. & Öztürk, A. U., 2015, Beton, İzmir, Birleşik Matbaacılık.
  • Oikonomou N. D. (2005). Recycled concrete aggregates. Cement and Concrete Composites, 27 (2), 315-318. doi.org/10.1016/j.cemconcomp.2004.02.020
  • AnithaSelvasofia S. D., Dinesh A.& SarathBabu V. (2021). Investigation of waste marble powder in the development of sustainable concrete. Materialstoday: proceedings, 44 (6), 4223-4226. doi.org/10.1016/j.matpr.2020.10.536
  • Saloni, Parveen, Lim, Y. Y., Pham T. M., , Jatin& Kumar J. (2021). Sustainable alkali activated concrete with fly ash and waste marble aggregates: Strength and Durability studies. Construction and building materials, 283, 122795, doi.org/10.1016/j.conbuildmat.2021.122795
  • Binici, H., (2007). Effect of crushed ceramic and basaltic pumice as fine aggregates on concrete mortars properties. Construction and building materials, 21 (6), 1191-1197. doi.org/10.1016/j.conbuildmat.2006.06.002
  • Demir, İ. (2009). Investigation of mechanical properties of concrete produced with waste granites aggregates. Scientific Research and Essay 4 (4), 267-274.
  • Filiz, M., Özel, C., Soykan, O. & Ekiz, Y. (2010). Atık mermer tozunun parke taşlarında kullanılması. Yapı Teknolojileri Elektronik Dergisi, 6(2) 57-72.
  • Yüksel, İ., Özkan, Ö. & Bilir, T. (2007). Yüksek Fırın Cürufu İkameli Parke ve Bordür Üretimi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 13(2), 289-296.
  • Kaya, T. & Karakurt, C. (2016). Uygulamadaki Beton Parke Taşlarının Mühendislik Özelliklerinin İncelenmesi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 4(2016), 469-474.
  • Öztürk, M., (2018). Mermer Kesiminden Kaynaklanan Çevre Kirliliği ve Önlemleri. Çevre ve Şehircilik Bakanlığı, http://www.cevresehirkutuphanesi.com/assets/files/slider_pdf/5mgT7FNMcjwz.pdf.
  • Miraldo, S., Lopes, S., Pacheco-Torgal, F. & Lopes, A. (2021). Advantages and short comings of the utilization of recycled wastes as aggregates in structural concretes. Construction and building materials, 298 (2021), 123729. doi.org/10.1016/j.conbuildmat.2021.123729
  • Kim, H. K. & Lee, H.K. (2011). Use of power plant bottom ash as fine and coarse aggregates in high-strength concrete. Construction and building materials, 25(2011), 1115-1122. doi.org/10.1016/j.conbuildmat.2010.06.065
  • Patra, R. K. &Mukharjee, B. B. (2017). Influence of incorporation of granulated blast furnace slag as replacement of fine aggregate on properties of concrete. Journal of cleaner production. 165 (2017), 468-476. doi.org/10.1016/j.jclepro.2017.07.125
  • Coppola, L., Buoso, A., Coffetti, D., Kara, P. & Lorenzi, S. (2016). Electric arc furnace granulated slag for sustainable concrete. Construction and building materials, 123 (2016), 115-119. doi.org/10.1016/j.conbuildmat.2016.06.142
  • Silva, D., Gameiro, F., de Brito, J., (2013). Mechanical properties of structural concrete containing fine aggregates from waste generated by the marble quarrying industry. J. Mater. Civ. Eng. (ASCE) 26 (6), 04014008. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000948
  • Jankovic, K., Nikolic, D. &Bojovic, D. (2012). Concrete paving block sand flags made with crushed brick as aggregate. Construction and building materials, 28(1), 659-663. doi.org/10.1016/j.conbuildmat.2011.10.036
  • Khandve, P. V. & Rathi, A. S., (2015). Concrete paving block using marble stone industry waste. International Journal of Research in Engineering, Science and Technologies (IJRESTs), 1 (8), 86-91.
  • Ling, T-C, (2012). Effects of compaction method and rubber content on the properties of concrete paving blocks. Construction and building materials, 28(1), 164-175. doi.org/10.1016/j.conbuildmat.2011.08.069
  • Durmuş, G & Şimşek, O. (2008). Uçucu küllerin beton kilitli parke taşı üretiminde kullanımının araştırılması. TUBAV Bilim Dergisi, 1(1), 1-6.
  • Djamaluddin, A. R., Caronge, M. A., Tjaronge, M. W., Lando, A. T. & Irmawaty, R. (2020).Evaluation of sustainable concrete paving blocks incorporating processed waste tea ash. Case Studies in Construction Materials, 12 (2020), doi.org/10.1016/j.cscm.2019.e00325
  • TS 2824 EN 1338, (2006). Concrete paving blocks - Requirements and test methods. Turkish Standard Institution, Ankara, 2012.
  • Karayolu Teknik Şartnamesi (Yol Altyapısı, Sanat Yapıları, Köprü ve Tüneller, Üstyapı ve Çeşitli İşler), (2013). Karayolları Genel Müdürlüğü, Ankara.
  • TS EN 197-1. (2012). Cement–Part 1: compositions and conformity criteria for common cements. Turkish Standard Institution, Ankara, 2012.

Investigation of Usability of Waste Marble as Fine Aggregate in Paving Stones

Year 2022, Volume: 14 Issue: 1, 103 - 114, 31.01.2022
https://doi.org/10.29137/umagd.956063

Abstract

In this study, the suitability of the use of waste marbles formed in marble processing factories in Tokat province as fine aggregate in concrete paving stones was investigated. CEM I 42.5 R type cement was used as binder in the mixtures. As aggregates, limestone-based crushed stone aggregate and waste marble aggregate were used. Tap water was used in the mixtures and no chemical additives were used. Within the scope of the study, natural aggregate gradation was prepared in accordance with the specifications of the Highways Technical Specification (2013) concrete paving stones. By keeping this gradation constant, waste marbles were substituted for the fine aggregate group of the aggregate mixture at the rate of 25%, 50%, 75% and 100%. In the sample groups with five different mixing ratios, which were subjected to five different tests, a total of 75 (5*5*3) concrete paving stone samples were prepared, 3 for each test. When the test results of the prepared samples were examined, it was seen that the specification limits were met in terms of size-appearance, water absorption rate, freeze-thaw resistance and abrasion resistance. When the split tensile strength properties are examined, it is seen that the samples prepared with 25% and 50% substituted marble aggregate show sufficient strength; On the other hand, it was observed that the samples prepared with 75% and 100% substituted marble aggregate did not provide sufficient strength. As a result, it has been determined that waste marbles can be used up to 50% as fine aggregate in concrete paving stones.

Project Number

2020/10

References

  • Behera M., Bhattacharyya S.K., Minocha A. K., Deoliya R., &Maiti S. (2014). Recycled aggregate from C&D waste & its use in concrete – A break through towards sustainability in construction sector: A review. Construction and building materials, 68, 501-516. doi.org/10.1016/j.conbuildmat.2014.07.003
  • Baradan, B., Türkel, S., Yazıcı, H., Ün, H., Yiğiter, H., Felekoğlu, B., Tosun Felekoğlu , K., Aydın, S., Yardımcı, M. Y., Topal, A. & Öztürk, A. U., 2015, Beton, İzmir, Birleşik Matbaacılık.
  • Oikonomou N. D. (2005). Recycled concrete aggregates. Cement and Concrete Composites, 27 (2), 315-318. doi.org/10.1016/j.cemconcomp.2004.02.020
  • AnithaSelvasofia S. D., Dinesh A.& SarathBabu V. (2021). Investigation of waste marble powder in the development of sustainable concrete. Materialstoday: proceedings, 44 (6), 4223-4226. doi.org/10.1016/j.matpr.2020.10.536
  • Saloni, Parveen, Lim, Y. Y., Pham T. M., , Jatin& Kumar J. (2021). Sustainable alkali activated concrete with fly ash and waste marble aggregates: Strength and Durability studies. Construction and building materials, 283, 122795, doi.org/10.1016/j.conbuildmat.2021.122795
  • Binici, H., (2007). Effect of crushed ceramic and basaltic pumice as fine aggregates on concrete mortars properties. Construction and building materials, 21 (6), 1191-1197. doi.org/10.1016/j.conbuildmat.2006.06.002
  • Demir, İ. (2009). Investigation of mechanical properties of concrete produced with waste granites aggregates. Scientific Research and Essay 4 (4), 267-274.
  • Filiz, M., Özel, C., Soykan, O. & Ekiz, Y. (2010). Atık mermer tozunun parke taşlarında kullanılması. Yapı Teknolojileri Elektronik Dergisi, 6(2) 57-72.
  • Yüksel, İ., Özkan, Ö. & Bilir, T. (2007). Yüksek Fırın Cürufu İkameli Parke ve Bordür Üretimi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 13(2), 289-296.
  • Kaya, T. & Karakurt, C. (2016). Uygulamadaki Beton Parke Taşlarının Mühendislik Özelliklerinin İncelenmesi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 4(2016), 469-474.
  • Öztürk, M., (2018). Mermer Kesiminden Kaynaklanan Çevre Kirliliği ve Önlemleri. Çevre ve Şehircilik Bakanlığı, http://www.cevresehirkutuphanesi.com/assets/files/slider_pdf/5mgT7FNMcjwz.pdf.
  • Miraldo, S., Lopes, S., Pacheco-Torgal, F. & Lopes, A. (2021). Advantages and short comings of the utilization of recycled wastes as aggregates in structural concretes. Construction and building materials, 298 (2021), 123729. doi.org/10.1016/j.conbuildmat.2021.123729
  • Kim, H. K. & Lee, H.K. (2011). Use of power plant bottom ash as fine and coarse aggregates in high-strength concrete. Construction and building materials, 25(2011), 1115-1122. doi.org/10.1016/j.conbuildmat.2010.06.065
  • Patra, R. K. &Mukharjee, B. B. (2017). Influence of incorporation of granulated blast furnace slag as replacement of fine aggregate on properties of concrete. Journal of cleaner production. 165 (2017), 468-476. doi.org/10.1016/j.jclepro.2017.07.125
  • Coppola, L., Buoso, A., Coffetti, D., Kara, P. & Lorenzi, S. (2016). Electric arc furnace granulated slag for sustainable concrete. Construction and building materials, 123 (2016), 115-119. doi.org/10.1016/j.conbuildmat.2016.06.142
  • Silva, D., Gameiro, F., de Brito, J., (2013). Mechanical properties of structural concrete containing fine aggregates from waste generated by the marble quarrying industry. J. Mater. Civ. Eng. (ASCE) 26 (6), 04014008. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000948
  • Jankovic, K., Nikolic, D. &Bojovic, D. (2012). Concrete paving block sand flags made with crushed brick as aggregate. Construction and building materials, 28(1), 659-663. doi.org/10.1016/j.conbuildmat.2011.10.036
  • Khandve, P. V. & Rathi, A. S., (2015). Concrete paving block using marble stone industry waste. International Journal of Research in Engineering, Science and Technologies (IJRESTs), 1 (8), 86-91.
  • Ling, T-C, (2012). Effects of compaction method and rubber content on the properties of concrete paving blocks. Construction and building materials, 28(1), 164-175. doi.org/10.1016/j.conbuildmat.2011.08.069
  • Durmuş, G & Şimşek, O. (2008). Uçucu küllerin beton kilitli parke taşı üretiminde kullanımının araştırılması. TUBAV Bilim Dergisi, 1(1), 1-6.
  • Djamaluddin, A. R., Caronge, M. A., Tjaronge, M. W., Lando, A. T. & Irmawaty, R. (2020).Evaluation of sustainable concrete paving blocks incorporating processed waste tea ash. Case Studies in Construction Materials, 12 (2020), doi.org/10.1016/j.cscm.2019.e00325
  • TS 2824 EN 1338, (2006). Concrete paving blocks - Requirements and test methods. Turkish Standard Institution, Ankara, 2012.
  • Karayolu Teknik Şartnamesi (Yol Altyapısı, Sanat Yapıları, Köprü ve Tüneller, Üstyapı ve Çeşitli İşler), (2013). Karayolları Genel Müdürlüğü, Ankara.
  • TS EN 197-1. (2012). Cement–Part 1: compositions and conformity criteria for common cements. Turkish Standard Institution, Ankara, 2012.
There are 24 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section Articles
Authors

Melih Naci Ağaoğlu 0000-0001-8600-0834

Ezgi Çeviren 0000-0002-8086-9800

Erdinç Halis Alakara 0000-0001-7925-4190

Project Number 2020/10
Publication Date January 31, 2022
Submission Date June 22, 2021
Published in Issue Year 2022 Volume: 14 Issue: 1

Cite

APA Ağaoğlu, M. N., Çeviren, E., & Alakara, E. H. (2022). Atık Mermerlerin Parke Taşlarında İnce Agrega Olarak Kullanılabilirliğinin İncelenmesi. International Journal of Engineering Research and Development, 14(1), 103-114. https://doi.org/10.29137/umagd.956063

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.