Research Article
BibTex RIS Cite

Hareketli Bir Plakadan Olan Isı Transferinin faklı Nanoakışkanlar ve Çarpan Jetle İncelenmesi

Year 2022, Volume: 14 Issue: 1, 115 - 127, 31.01.2022
https://doi.org/10.29137/umagd.958557

Abstract

Bu çalışmada, nanoakışkanların çarpan akışkan jet tekniği ile oluşturduğu müşterek etkinin, yüksek ısı akılı hareketli bakır bir plakadan olan ısı transferine etkisi sayısal olarak incelenmiştir. Çalışmanın ilk aşamasında, literatürdeki mevcut çalışmaları doğrulamak amacıyla temel akışkan olarak Cu-H2O nanoakışkanın hareketsiz bir plakada farklı Reynolds sayılarında ısı transfer analizi yapılmıştır. Model sonuçları literatürdeki mevcut deneysel çalışmalarla karşılaştırılmış ve doğrulanmıştır. İkinci aşamasında ise, hem hareketli hem de hareketsiz bir plakada Al2O3-H2O nanoakışkanı kullanılarak farklı parçacık çaplarında, farklı plaka hızlarında, ısı transfer analizi yapılmıştır. Ayrıca hareketli bakır plakada farklı tip nanoakışkan kullanılması durumunda ısı transferine olan etki de incelenmiştir. Sayısal çalışmada PHOENICS HAD programınn düşük Re sayılı k-ε türbülans modeli kullanılmıştır. Sonuç olarak; nanoparçaçık çapı Dp=40nm’den 10nm’ye azaltıldığında ortalama Nusselt sayısında %9,1’lik artış sağlandığı tespit edilmiştir. Plaka hızı Vplaka=0-6 m/s aralığında arttırıldığında ortalama Nusselt sayısında %88,9 oranında artış sağlandığı, farklı nanoakışkanların karşılaştırılması durumunda ise, en iyi ısı transfer performansının Cu-H2O nanoakışkanın gösterdiği belirlenmiştir.

References

  • Barewar, S. D., Tawri, S., Chougule, S. S. (2019). Heat transfer characteristics of free nanofluid impinging jet on flat surface with different jet to plate distance: An experimental investigation. Chemical Engineering and Processing Intensification, vol.136, pp.1-10.
  • Başaran, A., Selimefendigil, F. (2013). Numerical study of heat transfer due to twinjets impingement onto an isothermal moving plate. Mathematical and Computational Applications, 18(3), 340-350.
  • Batchelor G. K.,(1977). Effect of Brownian-Motion on bulk stress in a suspension of spherical-particles", Journal of Fluid Mechanics, vol.83(1), pp.97–117.
  • Buonomo, B., Manca, O., Bondareva, N. S., & Sheremet, M. A. (2019). Thermal and fluid dynamic behaviors of confined slot jets impinging on an isothermal moving surface with nanofluids. Energies, vol.12(11), 2074.
  • Choi, S. U., Eastman, J. A. (1995). Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP-84938; CONF-951135-29). Argonne National Lab., IL (United States).
  • Corcione M.,(2011). Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Conversion and Management, vol. 52(1), pp. 789–793.
  • Devdatta, P.K., Debendra, K.D., Ravikanth S.V.,(2009). Application of nanofluids in heating building and reducing pollution , Applied Energy, vol.86, pp.2566-2573.
  • Ersayın, E., Selimefendigil, F. (2013). Numerical investigation of impinging jets with nanofluids on a moving plate. Mathematical and Computational Applications, vol.18(3), pp.428-437.
  • Ho, S.A., Hyungdae, K., Hanglin, J., Soon Ho, K., Wonpyo, C., Moo H.K.,(2010). Experimental Study Of Critical Heat Flux Ebhancement During Forced Convective Flow Boiling Of Nanofluid On A Short Heated Surface , Int.J. Multiphase Flow, vol.36, pp.375-384.
  • Kakaç, S., Pramuanjaroenkıj, A. (2009). Review of convective heat transfer enhancement with nanofluids. International Journal of Heat and Mass Transfer, vol.52, pp.3187-3196.
  • Kasaeian, A., Eshghi, A.T., Sameti, M.,(2015). A Review on The Applications of Nanofluids in Solar Energy Systems , Renew. Sust. Energ. Rev., vol.43, pp.584-598.
  • Khan, I. A. (2021). Experimental validation of enhancement in thermal conductivity of titania/water nanofluid by the addition of silver nanoparticles. International Communications in Heat and Mass Transfer, vol.120, 104910. Kilic M., Başkaya Ş.,(2017). Farklı geometride akış yönlendiriciler ve çarpan jet kullanarak yüksek ısı akılı bir yüzeyden olan ısı transferinin iyileştirilmesi, Journal of the Faculty of Engineering and Architecture of Gazi University, vol.32(3), pp.693-707.
  • Kilic, M. (2013). Çarpmalı Akışkan Jetlerle Kanal içine Yerleştirilmiş Elemanlardan Olan Konveksiyonla Isı Transferinin Sayısal ve Deneysel Olarak incelenmesi (Doktora Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara).
  • Kilic, M., Ali, H. M. (2019). Numerical investigation of combined effect of nanofluids and multiple jets on heat transfer. Thermal Science, 23(5 Part B), 3165-3173.
  • Kilic, M., Ozcan, O.,(2017). Numerical investigation of heat transfer and fluid flow of nanofluids with jets: International Conference On Advances and Innovations in Engineering (ICAIE); pp.434-440.
  • Lahari, M. C., Sai, P. S. T., Swamy, K. N., KrishnaMurthy, N., Sharma, K. V. (2018). Investigation on heat transfer properties of water based TiO2-ZnO nanofluids. In IOP conference series: materials science and engineering vol.45(1),pp.012092. Li., Xuan Y., Yu F.,(2012). "Experimental investigation of submerged single jet impingement using Cu-Water Nanofluid. Applied Thermal Engineering, vol.36 (1), pp.426–433.
  • Pak, B. C., Cho, Y. I.(1998). Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Experimental Heat Transfer an International Journal, vol.11(2), pp.151–170.
  • Peyghambarzadeh, S. M., Hashemabadi, S. H., Hoseini, S. M., Jamnani, M. S. (2011). Experimental study of heat transfer enhancement using water/ethylene glycol based nanofluids as a new coolant for car radiators.International communications in heat and mass transfer, vol.38(9), pp.1283-1290.
  • Sarkar, J., Ghosh, P., Adil, A. (2015). A review on hybrid nanofluids: recent research, development and applications. Renewable and Sustainable Energy Reviews, vol.43, pp.164-177.
  • Selvakumar, P., Suresh, S.,(2012). Convective Performance Of Cuo/Water Nanofluid In An Electronic Heat Sink, Exp., Thermal Fluid Science,vol.40, pp.57-63.
  • Sharif, M. A. R., Banerjee, A. (2009). Numerical analysis of heat transfer due to confined slot-jet impingement on a moving plate. Applied Thermal Engineering, vol.29(2-3), pp.532-540. Sun, B., Zhang, Y., Yang, D., Li, H. (2019). Experimental study on heat transfer characteristics of hybrid nanofluid jets. Applied Thermal Engineering, vol.151, pp.556-566.
  • Suresh, S., Chandrasekar, S., Sekhar, C.,(2011). Experimental Studies on Heat Transfer and Friction Factor Characteristics of CuO/Water Nanofluid under Turbulent Flow in a Helically Dimpled Tube, Exp.Thermal Fluid Sci., vol.35, pp.542-549.
  • Wang B.X., Zhou L.P., Peng X.F.(2006). Surface and size effects on the specific heat capacity of nanoparticles, International Journal of Thermophysics, vol.27(1), pp.139–151.
  • Xuan, Y., Li, Q. (2000). Heat transfer enhancement of nanofluids. International Journal of Heat and fluid flow, vol.21(1), pp.58-64.

Heat Transfer Analysis of a Moving Plate with different Nanofluids and Impining Jet

Year 2022, Volume: 14 Issue: 1, 115 - 127, 31.01.2022
https://doi.org/10.29137/umagd.958557

Abstract

In this study, the common effect of impinging fluid jet technique of nanofluids on heat transfer from a high heat flux moving copper plate was examined numerically. In the first phase of the study, heat transfer was analyzed for the basic fluid Cu-H2O nanofluids in different Reynolds numbers on a stationary plate to confirm the current studies in the literature. The model results were compared and verified with existing experimental studies in the literature. In the second phase, heat transfer analysis was performed at different particle diameters, different plate velocity, and different volume ratios using Al2O3-H2O nanofluid on both a moving and stationary plate. Furthermore, the effect of heat transfer was examined in the case of using different types of nanofluids in the moving copper plate. In the numerical study, the low Re numbered k-ε turbulence model of PHOENICS CFD program was used. According to the results of the study, if the nanoparticle diameter is reduced from Dp=40 nm to 10 nm, average Nusselt number increases of 9.1%. When the plate velocity was increased in the range of Vplate=0-6 m/s, average Nusselt number increases of 88.9%. In case of comparing different nanofluids it is obtained that the best heat transfer performance was determined by Cu-H2O nanofluid.

References

  • Barewar, S. D., Tawri, S., Chougule, S. S. (2019). Heat transfer characteristics of free nanofluid impinging jet on flat surface with different jet to plate distance: An experimental investigation. Chemical Engineering and Processing Intensification, vol.136, pp.1-10.
  • Başaran, A., Selimefendigil, F. (2013). Numerical study of heat transfer due to twinjets impingement onto an isothermal moving plate. Mathematical and Computational Applications, 18(3), 340-350.
  • Batchelor G. K.,(1977). Effect of Brownian-Motion on bulk stress in a suspension of spherical-particles", Journal of Fluid Mechanics, vol.83(1), pp.97–117.
  • Buonomo, B., Manca, O., Bondareva, N. S., & Sheremet, M. A. (2019). Thermal and fluid dynamic behaviors of confined slot jets impinging on an isothermal moving surface with nanofluids. Energies, vol.12(11), 2074.
  • Choi, S. U., Eastman, J. A. (1995). Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP-84938; CONF-951135-29). Argonne National Lab., IL (United States).
  • Corcione M.,(2011). Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Conversion and Management, vol. 52(1), pp. 789–793.
  • Devdatta, P.K., Debendra, K.D., Ravikanth S.V.,(2009). Application of nanofluids in heating building and reducing pollution , Applied Energy, vol.86, pp.2566-2573.
  • Ersayın, E., Selimefendigil, F. (2013). Numerical investigation of impinging jets with nanofluids on a moving plate. Mathematical and Computational Applications, vol.18(3), pp.428-437.
  • Ho, S.A., Hyungdae, K., Hanglin, J., Soon Ho, K., Wonpyo, C., Moo H.K.,(2010). Experimental Study Of Critical Heat Flux Ebhancement During Forced Convective Flow Boiling Of Nanofluid On A Short Heated Surface , Int.J. Multiphase Flow, vol.36, pp.375-384.
  • Kakaç, S., Pramuanjaroenkıj, A. (2009). Review of convective heat transfer enhancement with nanofluids. International Journal of Heat and Mass Transfer, vol.52, pp.3187-3196.
  • Kasaeian, A., Eshghi, A.T., Sameti, M.,(2015). A Review on The Applications of Nanofluids in Solar Energy Systems , Renew. Sust. Energ. Rev., vol.43, pp.584-598.
  • Khan, I. A. (2021). Experimental validation of enhancement in thermal conductivity of titania/water nanofluid by the addition of silver nanoparticles. International Communications in Heat and Mass Transfer, vol.120, 104910. Kilic M., Başkaya Ş.,(2017). Farklı geometride akış yönlendiriciler ve çarpan jet kullanarak yüksek ısı akılı bir yüzeyden olan ısı transferinin iyileştirilmesi, Journal of the Faculty of Engineering and Architecture of Gazi University, vol.32(3), pp.693-707.
  • Kilic, M. (2013). Çarpmalı Akışkan Jetlerle Kanal içine Yerleştirilmiş Elemanlardan Olan Konveksiyonla Isı Transferinin Sayısal ve Deneysel Olarak incelenmesi (Doktora Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara).
  • Kilic, M., Ali, H. M. (2019). Numerical investigation of combined effect of nanofluids and multiple jets on heat transfer. Thermal Science, 23(5 Part B), 3165-3173.
  • Kilic, M., Ozcan, O.,(2017). Numerical investigation of heat transfer and fluid flow of nanofluids with jets: International Conference On Advances and Innovations in Engineering (ICAIE); pp.434-440.
  • Lahari, M. C., Sai, P. S. T., Swamy, K. N., KrishnaMurthy, N., Sharma, K. V. (2018). Investigation on heat transfer properties of water based TiO2-ZnO nanofluids. In IOP conference series: materials science and engineering vol.45(1),pp.012092. Li., Xuan Y., Yu F.,(2012). "Experimental investigation of submerged single jet impingement using Cu-Water Nanofluid. Applied Thermal Engineering, vol.36 (1), pp.426–433.
  • Pak, B. C., Cho, Y. I.(1998). Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Experimental Heat Transfer an International Journal, vol.11(2), pp.151–170.
  • Peyghambarzadeh, S. M., Hashemabadi, S. H., Hoseini, S. M., Jamnani, M. S. (2011). Experimental study of heat transfer enhancement using water/ethylene glycol based nanofluids as a new coolant for car radiators.International communications in heat and mass transfer, vol.38(9), pp.1283-1290.
  • Sarkar, J., Ghosh, P., Adil, A. (2015). A review on hybrid nanofluids: recent research, development and applications. Renewable and Sustainable Energy Reviews, vol.43, pp.164-177.
  • Selvakumar, P., Suresh, S.,(2012). Convective Performance Of Cuo/Water Nanofluid In An Electronic Heat Sink, Exp., Thermal Fluid Science,vol.40, pp.57-63.
  • Sharif, M. A. R., Banerjee, A. (2009). Numerical analysis of heat transfer due to confined slot-jet impingement on a moving plate. Applied Thermal Engineering, vol.29(2-3), pp.532-540. Sun, B., Zhang, Y., Yang, D., Li, H. (2019). Experimental study on heat transfer characteristics of hybrid nanofluid jets. Applied Thermal Engineering, vol.151, pp.556-566.
  • Suresh, S., Chandrasekar, S., Sekhar, C.,(2011). Experimental Studies on Heat Transfer and Friction Factor Characteristics of CuO/Water Nanofluid under Turbulent Flow in a Helically Dimpled Tube, Exp.Thermal Fluid Sci., vol.35, pp.542-549.
  • Wang B.X., Zhou L.P., Peng X.F.(2006). Surface and size effects on the specific heat capacity of nanoparticles, International Journal of Thermophysics, vol.27(1), pp.139–151.
  • Xuan, Y., Li, Q. (2000). Heat transfer enhancement of nanofluids. International Journal of Heat and fluid flow, vol.21(1), pp.58-64.
There are 24 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Articles
Authors

Mustafa Kılıç 0000-0002-8006-149X

Mine Efeoğlu This is me 0000-0002-9752-4673

Publication Date January 31, 2022
Submission Date June 28, 2021
Published in Issue Year 2022 Volume: 14 Issue: 1

Cite

APA Kılıç, M., & Efeoğlu, M. (2022). Hareketli Bir Plakadan Olan Isı Transferinin faklı Nanoakışkanlar ve Çarpan Jetle İncelenmesi. International Journal of Engineering Research and Development, 14(1), 115-127. https://doi.org/10.29137/umagd.958557

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.