Research Article
BibTex RIS Cite

Engineering Properties of Very High Volume Fly-ash Cementitious Composites Reinforced with Synthetic and 5D Steel Fibers

Year 2022, Volume: 14 Issue: 1, 195 - 207, 31.01.2022
https://doi.org/10.29137/umagd.999940

Abstract

In cement-based mortars, using high volume of fly ash modifies several fresh and hardened properties besides an economical design. Although it varies according to the type of fly ash to be used, mixture design proving high amount of fly ash which is pre-targeted according to engineering properties may modify the relationship between matrix and fibers in the cement-based mortars. In this study, cement-based composites containing a very high percentage of fly ash (80%) by total binder weight were developed with polyamide fiber (PL) and five-dimensional steel fibers (5D-ÇL) in single and hybrid forms and investigated in terms of engineering properties. In addition, compressive strength of fiber reinforced composites were assessed at the curing ages of 7, 28, 60 and 90 days. The engineering properties of cementitious composites reinforced with single and binary use of different fibers were obtained by considering load and displacement values at yield and fracture points, maximum load-carrying capacities, ductility, rigidity and energy dissipation capacity. Results reveal that binary use of PL and 5D-ÇL provided a synergy in terms of matrix-fiber bond behavior compared to their single use thus increasing the ductility, initial rigidity and energy dissipation capacities. In addition, in the case of examining single use of fibers, it was found that 5D-ÇL was more effective than PL fibers for improving the engineering properties. It is considered that composites having fly ash/cement ratio of 4.0 by weight are sustainable in terms of economically and performance in the civil engineering applications where early-age mechanical properties is not significative.

References

  • Al-Kamyani, Z., Figueiredo, Fabio P., Hu, H., Guadagnini, M. & Pilakoutas K. (2018). Shrinkage and flexural behaviour of free and restrained hybrid steel fibre reinforced concrete, Construction and Building Materials. 189(20), 1007-1018.
  • Balaguru, P.N & Shah S.P. (1992). Fiber Reinforced Cement Composites. McGraw-Hill Inc. 37–84.
  • Betterman, L.R., Ouyang, C. & Shah, S.P., (1995). Fiber-matrix interaction in microfiber-reinforced mortar, Advanced Cement-Based Materials (2), 53-61.
  • Demirel, Ö. & Demirhan, S. (2021). Mikronize kalsit içeren yüksek hacimde uçucu kül katkılı çimento harçlarının mikroyapısal özelliklerinin incelenmesi, Journal of the Faculty of Engineering and Architecture of Gazi University, 36(4), 2250-2269.
  • Dehghani, A. & Aslani, F. (2020). The effect of shape memory alloy, steel, and carbon fibres on fresh, mechanical, and electrical properties of self-compacting cementitious composites, Cement and Concrete Composites (112), 103659.
  • Doo-Yeol & Yoo Banthia N. Impact resistance of fiber-reinforced concrete – A review (2019). Cement and Concrete Composites (104), 103389.
  • Hannesson, G., Kuder, K., Shogren, R. & Lehman, D. (2021). The influence of high volume of fly ash and slag on the compressive strength of self-consolidating concrete. Construction and Building Materials. (30), 161-168.
  • Johnston, C.D. (2001). Fiber-reinforced cement and composites. Gordon and Breach Science Publishers, 24–49.
  • Kumbhar, D., Ganbavale, M., Jain, A., Reddy R & Gayathri, S. (2014). Compressive Strength of Hybrid fibre reinforced concrete. Birla Institute of Technology and Science, Pilani, India.
  • Lawler J.S., Wilhelm T., Zampini D & Shah SP. (2003). Fracture process of hybrid fiber reinforced mortar. Materials and Structures (36); 197–208.
  • Lawrence, P. Cyr, M. & Ringot, E. (2003). Mineral admixtures in mortars—effect of inert materials on short-term hydration, Cement and Concrete Research. (33), 1939–1947.
  • Li Ye, Tan, K.H & Yang, H. (2019). Synergistic effects of hybrid polypropylene and steel fibers on explosive spalling prevention of ultra-high performance concrete at elevated temperature. Cement and Concrete Composites. (96), 174-181.
  • Li, V. (2003). On Engineered Cementitious Composites (ECC) A Review of the Material and Its Applications. Journal of Advanced Concrete Technology. 1(3), 215-230.
  • Liu, J., Chen, H., Guan, B., Liu, K., Wen, J. & Sun, Z. (2018). Influence of mineral nano-fibers on the physical properties of road cement concrete material, Construction and Building Materials Volume 190 (30), 287-293.
  • Mehta, P.K. & Monteiro, P.J.M. (2005) Concrete: Microstructure, Properties, and Materials, McGraw-Hill Education, 659. Mobasber, B., Stang, H. & Shah, S.P. (1990). Microcracking in fiber reinforced concrete, Cement and Concrete Research, (20), 665-76.
  • Moon, G.D., Oh, S. & Choi, Y.C. (2016). Effects of the physicochemical properties of fly ash on the compressive strength of high-volume fly ash mortar. Construction and Building Materials. (124), 1072-1080.
  • Nawy, E.G. (2001). Fundamentals of high-performance concrete. 2nd ed. John Wiley & Sons, Inc. 246–289.
  • Öztürk, O & Roig-Flores, M. (2021a). Effect of binary-use mineral admixtures for the advanced autogenous self-healing behavior of fiber-reinforced cementitious composites. International RILEM Conference on Early-age and Long-term Cracking in RC Structures, 389-401. Springer.
  • Öztürk, O & Stefanidou M. (2021b). Sorptivity and mechanical properties of micro-fibrillated cellulose reinforced cementitious composites. Conference: International Conference on Cement-based Materials Tailored for a Sustainable Future, In the honour of Prof. Surendra P. Shah and Prof. Turan Özturan, İstanbul.
  • Öztürk O. Yenidünya E & Keskin, Ü.S (2021). Effect of curing regimes on the mechanical and fresh properties of steel fiber-reinforced concrete, Architecture, Civil Engineering, Environment (4), 69-81
  • Rahhal, V. & Talero, R. (2005). Early hydration of Portland cement with crystalline mineral additions. Cement and Concrete Research. (35);1285–1291.
  • Sahmaran M., Yaman I.O. (2007). Hybrid fiber reinforced self-compacting concrete with a high-volume coarse fly ash. Construction and Building Materials. (21), 150-156.
  • Sanchez, D., & King-Toler, E. (2007). Addressing disparities consultation and outreach strategies for university settings. Consulting Psychology Journal: Practice and Research, 59(4), 286-295. doi:10.1037/1065- 9293.59.4.286
  • Sunayana, S. & Barai, S.V. (2017). Recycled aggregate concrete incorporating fly ash: Comparative study on particle packing and conventional method, Construction and Building Materials, 156 (15), 376-386.
  • TBDY (2019). Türkiye Bina Deprem Yönetmeliği. Deprem Etkisi Altında Binaların Tasarımı İçin Esaslar. Ankara: 1-416.
  • Van Vugt, M., Hogan, R., v Kaiser, R. B. (2008). Leadership, followership, and evolution: Some lessons from the past. American Psychologist, 63(3), 182-196. doi:10.1037/0003-066X.63.3.182
  • Wang, S. & Li V.C. (2007) Engineered Cementitious Composites with High-Volume Fly Ash, Materials Journal. 104(3) 233-241.
  • Wei, J., Li, J. Wu, C., Liu, Z. & Li, J. (2021). Hybrid fibre reinforced ultra-high performance concrete beams under static and impact loads, Engineering Structures. 245(15), 112921.
  • Zhang, D., Yu Tan, G. & Tan, K.H. (2021). Combined effect of flax fibers and steel fibers on spalling resistance of ultra-high performance concrete at high temperature. Cement and Concrete Composites. (121), 104067.
  • Zheng, Y., Wu, X., He, G., Shang, Q., Xu, J. & Sun, Y. (2018). Mechanical properties of steel fiber-reinforced concrete by vibratory mixing Technology. Advances in Civil Engineering. 025715, 1-11

Çok Yüksek Hacimde Uçucu Kül İçeren Sentetik ve 5D Çelik Lif Donatılı Çimento Esaslı Kompozitlerin Mühendislik Özellikleri

Year 2022, Volume: 14 Issue: 1, 195 - 207, 31.01.2022
https://doi.org/10.29137/umagd.999940

Abstract

Çimento esaslı harçlarda yüksek hacimlerde kullanılan uçucu küller ekonomik bir tasarımın yanında çeşitli taze ve sertleşmiş özellikleri modifiye etmektedir. Kullanılacak uçucu kül tipine göre değişmekle birlikte, istenen mühendislik özelliklerine göre seçilecek bir karışım tasarımı yüksek oranda uçucu külün kullanımını mümkün kılarak, çimento esaslı harçların içerisinde matris ile lif arasındaki ilişkiyi değiştirebilir. Bu çalışmada, toplam bağlayıcı ağırlığınca çok yüksek oranda (%80) uçucu kül içeren çimento esaslı kompozitler polyamid lif (PL) ve beş boyutlu çelik liflerle (5D-ÇL) tekli ve hibrit formda geliştirilerek mühendislik özellikleri açısından araştırılmıştır. Bunun yanında, lif donatılı kompozitlerin basınç mukavemetleri 7, 28, 60 ve 90 günlük kür yaşlarında belirlenmiştir. Tekli ve hibrit formda farklı tür lif donatılı çimento esaslı kompozitlerin mühendislik özellikleri, akma ve kırılma noktalarındaki yük ve deplasman değerleri, maksimum taşıma kapasitesi, süneklik oranı, rijitlik ve enerji yutma kapasitesi parametreleri dikkate alınarak değerlendirilmiştir. Sonuçlar bir arada kullanılan PL ve 5D-ÇL liflerinin tek formda kullanılmalarına göre matris-lif bağ davranışı açısından sinerji meydana getirdiğini ve buna bağlı olarak süneklik, başlangıç rijitlik ve enerji yutma kapasitelerini arttırdığını işaret etmektedir. Ayrıca tekil olarak lifler irdelendiğinde, 5D-ÇL’lerin PL liflerine göre mühendislik özelliklerini iyileştirmede daha etkili olduğu düşünülmektedir. Uçucu kül/çimento oranı ağırlıkça 4,0 olan kompozitlerin, erken yaş mekanik özelliklerin belirleyici olmadığı inşaat mühendisliği uygulamalarında ekonomiklik ve yapısal performans açısından sürdürülebilir bir tasarım olduğu düşünülmektedir.

References

  • Al-Kamyani, Z., Figueiredo, Fabio P., Hu, H., Guadagnini, M. & Pilakoutas K. (2018). Shrinkage and flexural behaviour of free and restrained hybrid steel fibre reinforced concrete, Construction and Building Materials. 189(20), 1007-1018.
  • Balaguru, P.N & Shah S.P. (1992). Fiber Reinforced Cement Composites. McGraw-Hill Inc. 37–84.
  • Betterman, L.R., Ouyang, C. & Shah, S.P., (1995). Fiber-matrix interaction in microfiber-reinforced mortar, Advanced Cement-Based Materials (2), 53-61.
  • Demirel, Ö. & Demirhan, S. (2021). Mikronize kalsit içeren yüksek hacimde uçucu kül katkılı çimento harçlarının mikroyapısal özelliklerinin incelenmesi, Journal of the Faculty of Engineering and Architecture of Gazi University, 36(4), 2250-2269.
  • Dehghani, A. & Aslani, F. (2020). The effect of shape memory alloy, steel, and carbon fibres on fresh, mechanical, and electrical properties of self-compacting cementitious composites, Cement and Concrete Composites (112), 103659.
  • Doo-Yeol & Yoo Banthia N. Impact resistance of fiber-reinforced concrete – A review (2019). Cement and Concrete Composites (104), 103389.
  • Hannesson, G., Kuder, K., Shogren, R. & Lehman, D. (2021). The influence of high volume of fly ash and slag on the compressive strength of self-consolidating concrete. Construction and Building Materials. (30), 161-168.
  • Johnston, C.D. (2001). Fiber-reinforced cement and composites. Gordon and Breach Science Publishers, 24–49.
  • Kumbhar, D., Ganbavale, M., Jain, A., Reddy R & Gayathri, S. (2014). Compressive Strength of Hybrid fibre reinforced concrete. Birla Institute of Technology and Science, Pilani, India.
  • Lawler J.S., Wilhelm T., Zampini D & Shah SP. (2003). Fracture process of hybrid fiber reinforced mortar. Materials and Structures (36); 197–208.
  • Lawrence, P. Cyr, M. & Ringot, E. (2003). Mineral admixtures in mortars—effect of inert materials on short-term hydration, Cement and Concrete Research. (33), 1939–1947.
  • Li Ye, Tan, K.H & Yang, H. (2019). Synergistic effects of hybrid polypropylene and steel fibers on explosive spalling prevention of ultra-high performance concrete at elevated temperature. Cement and Concrete Composites. (96), 174-181.
  • Li, V. (2003). On Engineered Cementitious Composites (ECC) A Review of the Material and Its Applications. Journal of Advanced Concrete Technology. 1(3), 215-230.
  • Liu, J., Chen, H., Guan, B., Liu, K., Wen, J. & Sun, Z. (2018). Influence of mineral nano-fibers on the physical properties of road cement concrete material, Construction and Building Materials Volume 190 (30), 287-293.
  • Mehta, P.K. & Monteiro, P.J.M. (2005) Concrete: Microstructure, Properties, and Materials, McGraw-Hill Education, 659. Mobasber, B., Stang, H. & Shah, S.P. (1990). Microcracking in fiber reinforced concrete, Cement and Concrete Research, (20), 665-76.
  • Moon, G.D., Oh, S. & Choi, Y.C. (2016). Effects of the physicochemical properties of fly ash on the compressive strength of high-volume fly ash mortar. Construction and Building Materials. (124), 1072-1080.
  • Nawy, E.G. (2001). Fundamentals of high-performance concrete. 2nd ed. John Wiley & Sons, Inc. 246–289.
  • Öztürk, O & Roig-Flores, M. (2021a). Effect of binary-use mineral admixtures for the advanced autogenous self-healing behavior of fiber-reinforced cementitious composites. International RILEM Conference on Early-age and Long-term Cracking in RC Structures, 389-401. Springer.
  • Öztürk, O & Stefanidou M. (2021b). Sorptivity and mechanical properties of micro-fibrillated cellulose reinforced cementitious composites. Conference: International Conference on Cement-based Materials Tailored for a Sustainable Future, In the honour of Prof. Surendra P. Shah and Prof. Turan Özturan, İstanbul.
  • Öztürk O. Yenidünya E & Keskin, Ü.S (2021). Effect of curing regimes on the mechanical and fresh properties of steel fiber-reinforced concrete, Architecture, Civil Engineering, Environment (4), 69-81
  • Rahhal, V. & Talero, R. (2005). Early hydration of Portland cement with crystalline mineral additions. Cement and Concrete Research. (35);1285–1291.
  • Sahmaran M., Yaman I.O. (2007). Hybrid fiber reinforced self-compacting concrete with a high-volume coarse fly ash. Construction and Building Materials. (21), 150-156.
  • Sanchez, D., & King-Toler, E. (2007). Addressing disparities consultation and outreach strategies for university settings. Consulting Psychology Journal: Practice and Research, 59(4), 286-295. doi:10.1037/1065- 9293.59.4.286
  • Sunayana, S. & Barai, S.V. (2017). Recycled aggregate concrete incorporating fly ash: Comparative study on particle packing and conventional method, Construction and Building Materials, 156 (15), 376-386.
  • TBDY (2019). Türkiye Bina Deprem Yönetmeliği. Deprem Etkisi Altında Binaların Tasarımı İçin Esaslar. Ankara: 1-416.
  • Van Vugt, M., Hogan, R., v Kaiser, R. B. (2008). Leadership, followership, and evolution: Some lessons from the past. American Psychologist, 63(3), 182-196. doi:10.1037/0003-066X.63.3.182
  • Wang, S. & Li V.C. (2007) Engineered Cementitious Composites with High-Volume Fly Ash, Materials Journal. 104(3) 233-241.
  • Wei, J., Li, J. Wu, C., Liu, Z. & Li, J. (2021). Hybrid fibre reinforced ultra-high performance concrete beams under static and impact loads, Engineering Structures. 245(15), 112921.
  • Zhang, D., Yu Tan, G. & Tan, K.H. (2021). Combined effect of flax fibers and steel fibers on spalling resistance of ultra-high performance concrete at high temperature. Cement and Concrete Composites. (121), 104067.
  • Zheng, Y., Wu, X., He, G., Shang, Q., Xu, J. & Sun, Y. (2018). Mechanical properties of steel fiber-reinforced concrete by vibratory mixing Technology. Advances in Civil Engineering. 025715, 1-11
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section Articles
Authors

Oğuzhan Öztürk 0000-0003-3085-4528

Publication Date January 31, 2022
Submission Date September 23, 2021
Published in Issue Year 2022 Volume: 14 Issue: 1

Cite

APA Öztürk, O. (2022). Çok Yüksek Hacimde Uçucu Kül İçeren Sentetik ve 5D Çelik Lif Donatılı Çimento Esaslı Kompozitlerin Mühendislik Özellikleri. International Journal of Engineering Research and Development, 14(1), 195-207. https://doi.org/10.29137/umagd.999940

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.