Research Article
BibTex RIS Cite

Mamdani ve Sugeno Tip Bulanık Çıkarım Sistemleri ile Sosyal Medya Haber Popülerliğinin Tahmini

Year 2022, Volume: 14 Issue: 3, 303 - 320, 31.12.2022
https://doi.org/10.29137/umagd.1169623

Abstract

Haber popülerliği, internet ya da sosyal ağ sitelerinde yayınlanmış haberlerin ilgi düzeyinin ölçüsünün bir göstergesidir. Bu göstergenin değerinin bilinmesi, haber sağlayıcılarını rekabetçi ve kullanıcılar için okunabilirliği yüksek haberler yapmaya zorlar. Bu durum, hem haber servislerinin sürekliliğine hem de haber kalitesinin artırılmasına önemli katkılar sağlar. Bu yüzden, haber popülerliğini otomatik olarak tespit eden sistemlerin olması günümüzde bir ihtiyaç haline gelmiştir. Bu çalışmada, Kaliforniya Üniversitesi (KU)-Irvine Makine Öğrenmesi Deposu veri tabanından indirilen veriler bileştirilerek oluşturulmuş dengesiz veri seti ve bu veri setinden Sentetik Azınlık Örnekleme Tekniği (Synthetic Minority Oversampling Technique (SMOTE)) ile üretilen dengeli veri setine Mamdani ve Sugeno tip bulanık çıkarım sistemi temelli modeller uygulanarak haber popülerliği tahmini yapılmıştır. Haber popülerliği tahmininde çıkarım yöntemleri ve durulaştırma yöntemlerinin farklı biçimde yapılandırılmasından oluşan 6’ sı mamdani tip bulanık çıkarım sistemini ve 2’ si sugeno tip bulanık çıkarım sistemini içeren toplam 8 bulanık mantık temellli tahmin modeli kullanılmıştır. Karışıklık matrisi metrikleri ve R2 eğrileri ile performansları değerlendirilen tahmin modellerine ait deneysel sonuçlar; dengesiz ve dengeli veri setlerinin her ikisinde de tüm metrikler açısından en iyi performansı mak-min çıkarım yöntemi ve ağırlık merkezi durulaştırma yöntemini kullanan Mamdani tip bulanık çıkarım sisteminin sağladığını göstermiştir. Ayrıca yaptığımız çalışmada kullanılan modelleri literatürdeki çalışmalar ile karşılaştırdığımızda, ağırlıklı ortalama yöntemini kullanan Sugeno tip bulanık çıkarım sistemi dışındaki bulanık mantık temelli modellerin literatürdeki modellerin en iyileri kadar rekabetçi bir performans sergileyebildiği görülmüştür.

References

  • Aghasian, E., Garg, S., & Montgomery, J. (2020). An automated model to score the privacy of unstructured information—Social media case. Computers & Security, 92. https://doi.org/10.1016/j.cose.2020.101778
  • Ahmed, H., Razzaq, M. A., & Qamar, A. M. (2013). Prediction of popular tweets using Similarity Learning. ICET 2013 - 2013 IEEE 9th International Conference on Emerging Technologies. https://doi.org/10.1109/ICET.2013.6743524
  • AL-Mutairi, H. M., & Khan, M. B. (2015). Predicting the Popularity of Trending Arabic Wikipedia Articles Based on External Stimulants Using Data/Text Mining Techniques. 2015 International Conference on Cloud Computing, ICCC 2015. https://doi.org/10.1109/CLOUDCOMP.2015.7149651
  • Appel, O., Chiclana, F., Carter, J., & Fujita, H. (2016). A hybrid approach to the sentiment analysis problem at the sentence level. Knowledge-Based Systems, 108, 110–124. https://doi.org/10.1016/j.knosys.2016.05.040
  • Arapakis, I., Barla Cambazoglu, B., & Lalmas, M. (2014). On the feasibility of predicting news popularity at cold start. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8851, 290–299. https://doi.org/10.1007/978-3-319-13734-6_21/COVER/
  • Augusto, M., Godinho, P., & Torres, P. (2019). Building customers’ resilience to negative information in the airline industry. Journal of Retailing and Consumer Services, 50, 235–248. https://doi.org/10.1016/j.jretconser.2019.05.015
  • Beştaş, M. (2020). SOSYAL MEDYADA HABER POPÜLERLİĞİNİN TAHMİNİ: LİTERATÜR İNCELEMESİ. International Journal of Social Humanities Sciences Research (JSHSR), 7(61), 3140–3155. https://doi.org/10.26450/jshsr.2144
  • Caruana, R., & Niculescu-Mizil, A. (2004). Data mining in metric space. 69. https://doi.org/10.1145/1014052.1014063 Caruana, R., Pratt, L., & Thrun, S. (1997). Multitask Learning. Machine Learning 1997 28:1, 28(1), 41–75. https://doi.org/10.1023/A:1007379606734
  • Chawla, N. v., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic Minority Over-Sampling Technique. Journal of Artificial Intelligence Research, 16(1), 321–357.
  • Chew, A. W. Z., Pan, Y., Wang, Y., & Zhang, L. (2021). Hybrid deep learning of social media big data for predicting the evolution of COVID-19 transmission. Knowledge-Based Systems, 233. https://doi.org/10.1016/j.knosys.2021.107417
  • Colin Cameron, A., & Windmeijer, F. A. G. (1997). An R-squared measure of goodness of fit for some common nonlinear regression models. Journal of Econometrics, 77(2), 329–342. https://doi.org/10.1016/S0304-4076(96)01818-0
  • Deshpande, D. (2018). Prediction Evaluation of Online News Popularity Using Machine Intelligence. 2017 International Conference on Computing, Communication, Control and Automation, ICCUBEA 2017. https://doi.org/10.1109/ICCUBEA.2017.8463790
  • Dhawan, A., Bhalla, M., Arora, D., Kaushal, R., & Kumaraguru, P. (2022). FakeNewsIndia: A benchmark dataset of fake news incidents in India, collection methodology and impact assessment in social media. Computer Communications, 185, 130–141. https://doi.org/10.1016/j.comcom.2022.01.003
  • Fernandes, K., Vinagre, P., & Cortez, P. (2015). A proactive intelligent decision support system for predicting the popularity of online news. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9273, 535–546. https://doi.org/10.1007/978-3-319-23485-4_53
  • Fernandez, A., Garcia, S., Herrera, F., & Chawla, N. v. (2018). SMOTE for Learning from Imbalanced Data: Progress and Challenges, Marking the 15-year Anniversary. Journal of Artificial Intelligence Research, 61, 863–905. https://doi.org/10.1613/jair.1.11192
  • Fischer, U., Kopka, L., & Grabbe, E. (1999). Breast Carcinoma: Effect of Preoperative Contrast-enhanced MR Imaging on the Therapeutic Approach. Radiology, 213(3), 881–888. https://doi.org/10.1148/radiology.213.3.r99dc01881
  • Francisco, M., & Castro, J. L. (2020). A fuzzy model to enhance user profiles in microblogging sites using deep relations. Fuzzy Sets and Systems, 401, 133–149. https://doi.org/10.1016/j.fss.2020.05.006
  • Garcia, J. (2022). Bankruptcy prediction using synthetic sampling. Machine Learning with Applications, 9, 100343. https://doi.org/10.1016/J.MLWA.2022.100343
  • Goodman, L. A., & Kruskal, W. H. (2012). Measures of Association for Cross Classifications*. Https://Doi.Org/10.1080/01621459.1954.10501231, 49(268), 732–764. https://doi.org/10.1080/01621459.1954.10501231
  • Howells, K., & Ertugan, A. (2017). Applying fuzzy logic for sentiment analysis of social media network data in marketing. Procedia Computer Science, 120, 664–670. https://doi.org/10.1016/j.procs.2017.11.293
  • Karyotis, C., Doctor, F., Iqbal, R., & James, A. (2015). An intelligent framework for monitoring students Affective Trajectories using adaptive fuzzy systems. 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 1–8. https://doi.org/10.1109/FUZZ-IEEE.2015.7338001
  • Kazemzadeh, A., Lee, S., & Narayanan, S. (2013). Fuzzy Logic Models for the Meaning of Emotion Words. IEEE Computational Intelligence Magazine, 8(2), 34–49. https://doi.org/10.1109/MCI.2013.2247824
  • Kirkland, T., & Cunningham, W. A. (2012). Mapping emotions through time: How affective trajectories inform the language of emotion. Emotion, 12(2), 268–282. https://doi.org/10.1037/a0024218
  • Kwak, H., Lee, C., Park, H., & Moon, S. (2010). What is Twitter, a social network or a news media? Proceedings of the 19th International Conference on World Wide Web - WWW ’10, 591–600. https://doi.org/10.1145/1772690.1772751
  • Labatut, V., & Cherifi, H. (2011). Evaluation of Performance Measures for Classifiers Comparison. Ubiquitous Computing and Communication Journal, 6, 21–34.
  • Liu, S.-Y., Xiao, J., & Xu, X.-K. (2020). Sign prediction by motif naive Bayes model in social networks. Information Sciences, 541, 316–331. https://doi.org/10.1016/j.ins.2020.05.128
  • Luo, M., & Hancock, J. T. (2020). Self-disclosure and social media: motivations, mechanisms and psychological well-being. Current Opinion in Psychology, 31, 110–115. https://doi.org/10.1016/j.copsyc.2019.08.019
  • Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63(2), 81–97. https://doi.org/10.1037/h0043158
  • Moniz, N., & Torgo, L. (2018). Multi-Source Social Feedback of Online News Feeds. https://doi.org/10.48550/arxiv.1801.07055 Morente-Molinera, J. A., Kou, G., Pang, C., Cabrerizo, F. J., & Herrera-Viedma, E. (2019). An automatic procedure to create fuzzy ontologies from users’ opinions using sentiment analysis procedures and multi-granular fuzzy linguistic modelling methods. Information Sciences, 476, 222–238. https://doi.org/10.1016/j.ins.2018.10.022
  • Naseri, M., & Zamani, H. (2019). Analyzing and Predicting News Popularity in an Instant Messaging Service. Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, 1053–1056. https://doi.org/10.1145/3331184.3331301
  • Phuvipadawat, S., & Murata, T. (2010). Breaking News Detection and Tracking in Twitter. 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, 120–123. https://doi.org/10.1109/WI-IAT.2010.205
  • Ren, H., & Yang, Q. (2015). Predicting and Evaluating the Popularity of Online News.
  • Russell, J. A. (2003). Core affect and the psychological construction of emotion. Psychological Review, 110(1), 145–172. https://doi.org/10.1037/0033-295X.110.1.145
  • Saeed, R., Abbas, H., Asif, S., Rubab, S., Khan, M. M., Iltaf, N., & Mussiraliyeva, S. (2022). A framework to predict early news popularity using deep temporal propagation patterns. Expert Systems with Applications, 195. https://doi.org/10.1016/j.eswa.2021.116496
  • Statista. (2022, June 15). Social Meia - Statistics & Facts. Statista.
  • Szabo, G., & Huberman, B. A. (2008). Predicting the Popularity of Online Content. SSRN Electronic Journal, 53(8). https://doi.org/10.2139/ssrn.1295610
  • Tavana, M., Momeni, E., Rezaeiniya, N., Mirhedayatian, S. M., & Rezaeiniya, H. (2013). A novel hybrid social media platform selection model using fuzzy ANP and COPRAS-G. Expert Systems with Applications, 40(14), 5694–5702. https://doi.org/10.1016/j.eswa.2013.05.015
  • T.K., B., Annavarapu, C. S. R., & Bablani, A. (2021). Machine learning algorithms for social media analysis: A survey. Computer Science Review, 40. https://doi.org/10.1016/j.cosrev.2021.100395
  • Vashishtha, S., & Susan, S. (2019). Fuzzy rule based unsupervised sentiment analysis from social media posts. Expert Systems with Applications, 138. https://doi.org/10.1016/j.eswa.2019.112834
  • Whelan, E., Islam, A. K. M. N., & Brooks, S. (2020). Applying the SOBC paradigm to explain how social media overload affects academic performance. Computers & Education, 143. https://doi.org/10.1016/j.compedu.2019.103692
  • Wu, B., & Shen, H. (2015). Analyzing and predicting news popularity on Twitter. International Journal of Information Management, 35(6), 702–711. https://doi.org/10.1016/j.ijinfomgt.2015.07.003
  • Wu, D. (2012). Fuzzy sets and systems in building closed-loop affective computing systems for human-computer interaction: Advances and new research directions. 2012 IEEE International Conference on Fuzzy Systems, 1–8. https://doi.org/10.1109/FUZZ-IEEE.2012.6250779
  • Wu, H., Yue, K., Pei, Y., Li, B., Zhao, Y., & Dong, F. (2016). Collaborative Topic Regression with social trust ensemble for recommendation in social media systems. Knowledge-Based Systems, 97, 111–122. https://doi.org/10.1016/j.knosys.2016.01.011
  • Xia, B., Ni, Z., Li, T., Li, Q., & Zhou, Q. (2017). VRer: Context-Based V enue R ecommendation using e mbedded space r anking SVM in location-based social network. Expert Systems with Applications, 83, 18–29. https://doi.org/10.1016/j.eswa.2017.04.020
  • Xiong, J., Yu, L., Zhang, D., & Leng, Y. (2021). DNCP: An attention-based deep learning approach enhanced with attractiveness and timeliness of News for online news click prediction. Information & Management, 58(2). https://doi.org/10.1016/j.im.2021.103428
  • Zaman, T., Fox, E. B., & Bradlow, E. T. (2014). A Bayesian approach for predicting the popularity of tweets. The Annals of Applied Statistics, 8(3), 1583–1611. https://doi.org/10.1214/14-AOAS741
  • Zhang, Z., Liu, H., Chen, D., Zhang, J., Li, H., Shen, M., Pu, Y., Zhang, Z., Zhao, J., & Hu, J. (2022). SMOTE-based method for balanced spectral nondestructive detection of moldy apple core. Food Control, 141. https://doi.org/10.1016/j.foodcont.2022.109100

Prediction of Social Media News Popularity with Mamdani and Sugeno Type Fuzzy Inference Systems

Year 2022, Volume: 14 Issue: 3, 303 - 320, 31.12.2022
https://doi.org/10.29137/umagd.1169623

Abstract

News popularity is an indicator that measures the relevance of news published on the internet or social networking sites. Knowing the value of this indicator forces news providers to make news that is competitive and readable for users. This contributes to both the continuity of news services and the improvement of news quality. Therefore, it has become a necessity nowadays to have systems that automatically detect news popularity. In this study, news popularity prediction is made by applying Mamdani and Sugeno type fuzzy inference-based models to the unbalanced data set created by combining data downloaded from the University of California (UC)-Irvine Machine Learning Repository database and the balanced data set produced from this dataset by Synthetic Minority Oversampling Technique (SMOTE). A total of 8 fuzzy logic-based prediction models, 6 of which include Mamdani type fuzzy inference system and 2 of which include sugeno type fuzzy inference system, consisting of different configuration of inference methods and defuzification methods, are used to predict news popularity. Experimental results of prediction models, whose performances are evaluated with confusion matrix metrics and R2 curves, show that the best performance in terms of all metrics in both unbalanced and balanced datasets is provided by the Mamdani type fuzzy inference system using the max-min inference method and the centroid defuzzification method. In addition, when we compare the models used in our study with the studies in the literature, it is seen that the fuzzy logic-based models except Sugeno type fuzzy inference system using wtaver method can perform as competitive as the best models in the literature.

References

  • Aghasian, E., Garg, S., & Montgomery, J. (2020). An automated model to score the privacy of unstructured information—Social media case. Computers & Security, 92. https://doi.org/10.1016/j.cose.2020.101778
  • Ahmed, H., Razzaq, M. A., & Qamar, A. M. (2013). Prediction of popular tweets using Similarity Learning. ICET 2013 - 2013 IEEE 9th International Conference on Emerging Technologies. https://doi.org/10.1109/ICET.2013.6743524
  • AL-Mutairi, H. M., & Khan, M. B. (2015). Predicting the Popularity of Trending Arabic Wikipedia Articles Based on External Stimulants Using Data/Text Mining Techniques. 2015 International Conference on Cloud Computing, ICCC 2015. https://doi.org/10.1109/CLOUDCOMP.2015.7149651
  • Appel, O., Chiclana, F., Carter, J., & Fujita, H. (2016). A hybrid approach to the sentiment analysis problem at the sentence level. Knowledge-Based Systems, 108, 110–124. https://doi.org/10.1016/j.knosys.2016.05.040
  • Arapakis, I., Barla Cambazoglu, B., & Lalmas, M. (2014). On the feasibility of predicting news popularity at cold start. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8851, 290–299. https://doi.org/10.1007/978-3-319-13734-6_21/COVER/
  • Augusto, M., Godinho, P., & Torres, P. (2019). Building customers’ resilience to negative information in the airline industry. Journal of Retailing and Consumer Services, 50, 235–248. https://doi.org/10.1016/j.jretconser.2019.05.015
  • Beştaş, M. (2020). SOSYAL MEDYADA HABER POPÜLERLİĞİNİN TAHMİNİ: LİTERATÜR İNCELEMESİ. International Journal of Social Humanities Sciences Research (JSHSR), 7(61), 3140–3155. https://doi.org/10.26450/jshsr.2144
  • Caruana, R., & Niculescu-Mizil, A. (2004). Data mining in metric space. 69. https://doi.org/10.1145/1014052.1014063 Caruana, R., Pratt, L., & Thrun, S. (1997). Multitask Learning. Machine Learning 1997 28:1, 28(1), 41–75. https://doi.org/10.1023/A:1007379606734
  • Chawla, N. v., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic Minority Over-Sampling Technique. Journal of Artificial Intelligence Research, 16(1), 321–357.
  • Chew, A. W. Z., Pan, Y., Wang, Y., & Zhang, L. (2021). Hybrid deep learning of social media big data for predicting the evolution of COVID-19 transmission. Knowledge-Based Systems, 233. https://doi.org/10.1016/j.knosys.2021.107417
  • Colin Cameron, A., & Windmeijer, F. A. G. (1997). An R-squared measure of goodness of fit for some common nonlinear regression models. Journal of Econometrics, 77(2), 329–342. https://doi.org/10.1016/S0304-4076(96)01818-0
  • Deshpande, D. (2018). Prediction Evaluation of Online News Popularity Using Machine Intelligence. 2017 International Conference on Computing, Communication, Control and Automation, ICCUBEA 2017. https://doi.org/10.1109/ICCUBEA.2017.8463790
  • Dhawan, A., Bhalla, M., Arora, D., Kaushal, R., & Kumaraguru, P. (2022). FakeNewsIndia: A benchmark dataset of fake news incidents in India, collection methodology and impact assessment in social media. Computer Communications, 185, 130–141. https://doi.org/10.1016/j.comcom.2022.01.003
  • Fernandes, K., Vinagre, P., & Cortez, P. (2015). A proactive intelligent decision support system for predicting the popularity of online news. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9273, 535–546. https://doi.org/10.1007/978-3-319-23485-4_53
  • Fernandez, A., Garcia, S., Herrera, F., & Chawla, N. v. (2018). SMOTE for Learning from Imbalanced Data: Progress and Challenges, Marking the 15-year Anniversary. Journal of Artificial Intelligence Research, 61, 863–905. https://doi.org/10.1613/jair.1.11192
  • Fischer, U., Kopka, L., & Grabbe, E. (1999). Breast Carcinoma: Effect of Preoperative Contrast-enhanced MR Imaging on the Therapeutic Approach. Radiology, 213(3), 881–888. https://doi.org/10.1148/radiology.213.3.r99dc01881
  • Francisco, M., & Castro, J. L. (2020). A fuzzy model to enhance user profiles in microblogging sites using deep relations. Fuzzy Sets and Systems, 401, 133–149. https://doi.org/10.1016/j.fss.2020.05.006
  • Garcia, J. (2022). Bankruptcy prediction using synthetic sampling. Machine Learning with Applications, 9, 100343. https://doi.org/10.1016/J.MLWA.2022.100343
  • Goodman, L. A., & Kruskal, W. H. (2012). Measures of Association for Cross Classifications*. Https://Doi.Org/10.1080/01621459.1954.10501231, 49(268), 732–764. https://doi.org/10.1080/01621459.1954.10501231
  • Howells, K., & Ertugan, A. (2017). Applying fuzzy logic for sentiment analysis of social media network data in marketing. Procedia Computer Science, 120, 664–670. https://doi.org/10.1016/j.procs.2017.11.293
  • Karyotis, C., Doctor, F., Iqbal, R., & James, A. (2015). An intelligent framework for monitoring students Affective Trajectories using adaptive fuzzy systems. 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 1–8. https://doi.org/10.1109/FUZZ-IEEE.2015.7338001
  • Kazemzadeh, A., Lee, S., & Narayanan, S. (2013). Fuzzy Logic Models for the Meaning of Emotion Words. IEEE Computational Intelligence Magazine, 8(2), 34–49. https://doi.org/10.1109/MCI.2013.2247824
  • Kirkland, T., & Cunningham, W. A. (2012). Mapping emotions through time: How affective trajectories inform the language of emotion. Emotion, 12(2), 268–282. https://doi.org/10.1037/a0024218
  • Kwak, H., Lee, C., Park, H., & Moon, S. (2010). What is Twitter, a social network or a news media? Proceedings of the 19th International Conference on World Wide Web - WWW ’10, 591–600. https://doi.org/10.1145/1772690.1772751
  • Labatut, V., & Cherifi, H. (2011). Evaluation of Performance Measures for Classifiers Comparison. Ubiquitous Computing and Communication Journal, 6, 21–34.
  • Liu, S.-Y., Xiao, J., & Xu, X.-K. (2020). Sign prediction by motif naive Bayes model in social networks. Information Sciences, 541, 316–331. https://doi.org/10.1016/j.ins.2020.05.128
  • Luo, M., & Hancock, J. T. (2020). Self-disclosure and social media: motivations, mechanisms and psychological well-being. Current Opinion in Psychology, 31, 110–115. https://doi.org/10.1016/j.copsyc.2019.08.019
  • Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63(2), 81–97. https://doi.org/10.1037/h0043158
  • Moniz, N., & Torgo, L. (2018). Multi-Source Social Feedback of Online News Feeds. https://doi.org/10.48550/arxiv.1801.07055 Morente-Molinera, J. A., Kou, G., Pang, C., Cabrerizo, F. J., & Herrera-Viedma, E. (2019). An automatic procedure to create fuzzy ontologies from users’ opinions using sentiment analysis procedures and multi-granular fuzzy linguistic modelling methods. Information Sciences, 476, 222–238. https://doi.org/10.1016/j.ins.2018.10.022
  • Naseri, M., & Zamani, H. (2019). Analyzing and Predicting News Popularity in an Instant Messaging Service. Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, 1053–1056. https://doi.org/10.1145/3331184.3331301
  • Phuvipadawat, S., & Murata, T. (2010). Breaking News Detection and Tracking in Twitter. 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, 120–123. https://doi.org/10.1109/WI-IAT.2010.205
  • Ren, H., & Yang, Q. (2015). Predicting and Evaluating the Popularity of Online News.
  • Russell, J. A. (2003). Core affect and the psychological construction of emotion. Psychological Review, 110(1), 145–172. https://doi.org/10.1037/0033-295X.110.1.145
  • Saeed, R., Abbas, H., Asif, S., Rubab, S., Khan, M. M., Iltaf, N., & Mussiraliyeva, S. (2022). A framework to predict early news popularity using deep temporal propagation patterns. Expert Systems with Applications, 195. https://doi.org/10.1016/j.eswa.2021.116496
  • Statista. (2022, June 15). Social Meia - Statistics & Facts. Statista.
  • Szabo, G., & Huberman, B. A. (2008). Predicting the Popularity of Online Content. SSRN Electronic Journal, 53(8). https://doi.org/10.2139/ssrn.1295610
  • Tavana, M., Momeni, E., Rezaeiniya, N., Mirhedayatian, S. M., & Rezaeiniya, H. (2013). A novel hybrid social media platform selection model using fuzzy ANP and COPRAS-G. Expert Systems with Applications, 40(14), 5694–5702. https://doi.org/10.1016/j.eswa.2013.05.015
  • T.K., B., Annavarapu, C. S. R., & Bablani, A. (2021). Machine learning algorithms for social media analysis: A survey. Computer Science Review, 40. https://doi.org/10.1016/j.cosrev.2021.100395
  • Vashishtha, S., & Susan, S. (2019). Fuzzy rule based unsupervised sentiment analysis from social media posts. Expert Systems with Applications, 138. https://doi.org/10.1016/j.eswa.2019.112834
  • Whelan, E., Islam, A. K. M. N., & Brooks, S. (2020). Applying the SOBC paradigm to explain how social media overload affects academic performance. Computers & Education, 143. https://doi.org/10.1016/j.compedu.2019.103692
  • Wu, B., & Shen, H. (2015). Analyzing and predicting news popularity on Twitter. International Journal of Information Management, 35(6), 702–711. https://doi.org/10.1016/j.ijinfomgt.2015.07.003
  • Wu, D. (2012). Fuzzy sets and systems in building closed-loop affective computing systems for human-computer interaction: Advances and new research directions. 2012 IEEE International Conference on Fuzzy Systems, 1–8. https://doi.org/10.1109/FUZZ-IEEE.2012.6250779
  • Wu, H., Yue, K., Pei, Y., Li, B., Zhao, Y., & Dong, F. (2016). Collaborative Topic Regression with social trust ensemble for recommendation in social media systems. Knowledge-Based Systems, 97, 111–122. https://doi.org/10.1016/j.knosys.2016.01.011
  • Xia, B., Ni, Z., Li, T., Li, Q., & Zhou, Q. (2017). VRer: Context-Based V enue R ecommendation using e mbedded space r anking SVM in location-based social network. Expert Systems with Applications, 83, 18–29. https://doi.org/10.1016/j.eswa.2017.04.020
  • Xiong, J., Yu, L., Zhang, D., & Leng, Y. (2021). DNCP: An attention-based deep learning approach enhanced with attractiveness and timeliness of News for online news click prediction. Information & Management, 58(2). https://doi.org/10.1016/j.im.2021.103428
  • Zaman, T., Fox, E. B., & Bradlow, E. T. (2014). A Bayesian approach for predicting the popularity of tweets. The Annals of Applied Statistics, 8(3), 1583–1611. https://doi.org/10.1214/14-AOAS741
  • Zhang, Z., Liu, H., Chen, D., Zhang, J., Li, H., Shen, M., Pu, Y., Zhang, Z., Zhao, J., & Hu, J. (2022). SMOTE-based method for balanced spectral nondestructive detection of moldy apple core. Food Control, 141. https://doi.org/10.1016/j.foodcont.2022.109100
There are 47 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

İsmail Atacak 0000-0002-6357-0073

Ömer Ayberk Şencan 0000-0002-5519-0935

Publication Date December 31, 2022
Submission Date September 1, 2022
Published in Issue Year 2022 Volume: 14 Issue: 3

Cite

APA Atacak, İ., & Şencan, Ö. A. (2022). Mamdani ve Sugeno Tip Bulanık Çıkarım Sistemleri ile Sosyal Medya Haber Popülerliğinin Tahmini. International Journal of Engineering Research and Development, 14(3), 303-320. https://doi.org/10.29137/umagd.1169623

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.