Research Article
BibTex RIS Cite

Investigation of the Oxidation and Hot Corrosion Behavior of a MCrAlY and ZrO2+Y2O3 containing Thermal Barrier Coating (TBC) System Produced by the Atmospheric Plasma Spray (APS) Method at 750°C

Year 2023, Volume: 15 Issue: 2, 404 - 415, 14.07.2023
https://doi.org/10.29137/umagd.1232816

Abstract

In this study, a metallic bond coat with MCrAlY content and a yttria-stabilized zirconia (YSZ) ceramic topcoat were deposited on the Inconel 718 Ni-based superalloy substrate using the atmospheric plasma spray (APS) coating method. The produced TBC system was tested under oxidation and hot corrosion conditions, and its microstructural properties and changes were investigated. At 750 °C, isothermal oxidation tests were performed for 5, 25, 50 and 75 hours. Hot corrosion tests were carried out at 750°C for time periods of 1, 3 and 5 hours using mixtures of 45% Na2SO4 and 55% V2O5. The high-temperature behavior of the TBC system against the main damage mechanisms such as isothermal oxidation and hot corrosion was determined, and its microstructural changes were investigated in detail. It has been observed that factors affecting the TBC system's strength and microstructural changes under high temperature conditions include the composition of the components that comprise the TBC system, the temperature and time processes in which the tests are conducted, the components that constitute the hot corrosion environment, and their ratios.

References

  • Afrasiabi, A., Saremi, M., Kobayashi, A., (2008). A comparative study on hot corrosion resistance of three types of thermal barrier coatings: YSZ, YSZ+Al2O3 and YSZ/Al2O3. Mater. Sci. Eng. A 478, 264–269. doi: 10.1016/j.msea.2007.06.001
  • Brandon, J.R., Taylor, R., 1991. Phase stability of zirconia-based thermal barrier coatings part I. Zirconia-yttria alloys. Surf. Coat. Technol. 46, 75–90. doi:10.1016/0257-8972(91)90151-L
  • Brossmann, U., Würschum, R., Södervall, U., Schaefer, H.-E., (1999). Oxygen diffusion in ultrafine grained monoclinic ZrO2. J. Appl. Phys. 85, 7646–7654. doi:10.1063/1.370567
  • Chen, W. R., Wu, X., Marple, B. R., Patnaik, P.C. (2006). The growth and influence of thermally grown oxide in a thermal barrier coating Surf. Coat. Technol., 201(3-4), 1074-1079. doi: 10.1016/j.surfcoat.2006.01.023
  • Chen, W. R., Wu, X., Marple, B. R., Patnaik, P.C. (2005). Oxidation and crack nucleation/growth in an air-plasma sprayed thermal barrier coating with NiCrAlY bond coat. Surf. Coat. Technol, 197(1), 109-115. doi: 10.1016/j.surfcoat.2004.06.027
  • Darolia, R., Thermal barrier coatings technology: critical review, progress update, remaining challenges and prospects, International Materials Reviews, 58:6, 315-348, 2013. doi:10.1179/1743280413Y.0000000019.
  • Gorelov, V.P., (2019). High-Temperature Phase Transitions in ZrO2. Phys. Solid State 61, 1288–1293. doi:10.1134/S1063783419070096
  • Guo, H., Khor, K.A., Boey, Y.C., Miao, X., (2003). Laminated and functionally graded hydroxyapatite/yttria stabilized tetragonal zirconia composites fabricated by spark plasma sintering. Biomaterials 24, 667–675. doi:10.1016/S0142-9612(02)00381-2
  • Jones, R.L., (1997). Some Aspects of the Hot Corrosion of Thermal Barrier Coatings. J. Therm. Spray Technol. 6, 77–84. doi:10.1007/BF02646315
  • Kim, D.J., Shin, I.H., Koo, J.M., Seok, C.S., Lee, T.W., (2010). Failure mechanisms of coin-type plasma-sprayed thermal barrier coatings with thermal fatigue. Surf. Coat. Technol, 205, S451-S458. doi:10.1016/j.surfcoat.2010.08.130
  • Kulkarni, A., Gutleber, J., Sampath, S., Goland, A., Lindquist, W.B., Herman, H., Allen, A.J., Dowd, B., (2004). Studies of the microstructure and properties of dense ceramic coatings produced by high-velocity oxygen-fuel combustion spraying. Mater. Sci. Eng. A 369, 124–137. doi:10.1016/j.msea.2003.10.295
  • Kumar, N., Mahade, S., Ganvir, A., Joshi, S., (2021). Understanding the influence of microstructure on hot corrosion and erosion behavior of suspension plasma sprayed thermal barrier coatings. Surf. Coat. Technol. 419, 127306. doi:10.1016/j.surfcoat.2021.127306
  • Lamuta, C., Di Girolamo, G., Pagnotta, L. (2015). Microstructural, mechanical and tribological properties of nanostructured YSZ coatings produced with different APS process parameters. Ceramics International, 41(7), 8904-8914. doi:10.1016/j.ceramint.2015.03.148
  • Liu, D., Seraffon, M., Flewitt, P.E., Simms, N.J., Nicholls, J.R., Rickerby, D.S., (2013). Effect of substrate curvature on residual stresses and failure modes of an air plasma sprayed thermal barrier coating system. Journal of the European Ceramic Society, 33(15- 16), 3345-3357. doi:10.1016/j.jeurceramsoc.2013.05.018
  • Loganathan, A., Gandhi, A.S., (2012). Effect of phase transformations on the fracture toughness of t′ yttria stabilized zirconia. Mater. Sci. Eng. A 556, 927–935. doi:10.1016/j.msea.2012.07.095
  • Mahade, S., Jonnalagadda, K. P., Curry, N., Li, X. H., Björklund, S., Markocsan, N., Peng, R.L., (2017). Engineered architectures of gadolinium zirconate based thermal barrier coatings subjected to hot corrosion test. Surf. Coat. Technol, 328, 361-370. doi:10.1016/j.surfcoat.2017.09.005
  • Mehboob, G., Liu, M. J., Xu, T., Hussain, S., Mehboob, G., Tahir, A., (2020). A review on failure mechanism of thermal barrier coatings and strategies to extend their lifetime. Ceramics International, 46(7), 8497-8521. doi:10.1016/j.ceramint.2019.12.200
  • Mohammadi, M., Kobayashi, A., Javadpour, S., Jahromi, S.A.J., (2019). Evaluation of hot corrosion behaviors of Al2O3-YSZ composite TBC on gradient MCrAlY coatings in the presence of Na2SO4-NaVO3 salt. Vacuum, 167, 547-553, 2019. doi:10.1016/j.vacuum.2018.04.042
  • Ozgurluk, Y., Doleker, K.M., Ozkan, D., Ahlatci, H., Karaoglanli, A.C., (2019). Cyclic hot corrosion failure behaviors of EB-PVD TBC systems in the presence of sulfate and vanadate molten salts. Coatings, 9(3), 166. doi:10.3390/coatings9030166
  • Özkan, D. (2022). MCrAlY İçerikli Bağ Kaplamaya Sahip Termal Bariyer Kaplamaların (TBCs) Mikroyapısal Özelliklerinin ve İzotermal Oksidasyon Davranışının İncelenmesi. Politeknik Dergisi, 25 (1) , 331-338. doi:10.2339/politeknik.885466
  • Parlakyigit, A.S., Ozkan, D., Oge, M., Ozgurluk, Y., Doleker, K.M., Gulmez, T., Karaoglanli, A.C., (2020). Formation and growth behavior of TGO layer in TBCs with HVOF sprayed NiCr bond coat. Emerging Materials Research, 9(2), 451-459.
  • Portinha, A., Teixeira, V., Carneiro, J., Martins, J., Costa, M.F., Vassen, R., Stoever, D., (2005). Characterization of thermal barrier coatings with a gradient in porosity. Surf. Coat. Technol. 195, 245–251. doi:10.1016/j.surfcoat.2004.07.094
  • Rabiei, A., Evans, A.G., (2000). Failure mechanisms associated with the thermally grown oxide in plasma sprayed thermal barrier coatings. Acta Mater. 48, 3963–3976. doi:10.1016/S1359-6454(00)00171-3
  • Rahimi, J., Sigaroodi, M.R.J., Poursaeidi, E., (2022). Thermal shock resistance of thermal barrier coating with different bondcoat types and diffusion pre-coating. Ceramics International. doi:10.1016/j.ceramint.2022.09.172
  • Shen, Z., Liu, G., Zhang, R., Dai, J., He, L., Mu, R., (2022). Thermal property and failure behavior of LaSmZrO thermal barrier coatings by EB-PVD. Iscience, 25(4), 104106. doi:10.1016/j.isci.2022.104106
  • Shi, J., Zhang, T., Sun, B., Wang, B., Zhang, X., Song, L., (2020). Isothermal oxidation and TGO growth behavior of NiCoCrAlYYSZ thermal barrier coatings on a Ni-based superalloy. Journal of Alloys and Compounds, 844, 156093. doi:10.1016/j.jallcom.2020.156093
  • Wei, ZY., Meng, GH., Chen, L., (2022). Progress in ceramic materials and structure design toward advanced thermal barrier coatings. J Adv Ceram 11, 985–1068. doi:10.1007/s40145-022-0581-7
  • Vaßen, R., Jarligo, M.O., Steinke, T., Mack, D. E., Stöver, D., (2010). Overview on advanced thermal barrier coatings Surf. Coat. Technol, 205(4), 938-942. doi:10.1016/j.surfcoat.2010.08.151
  • Vakilifard, H., Ghasemi, R., Rahimipour, M., (2017). Hot corrosion behaviour of plasma-sprayed functionally graded thermal barrier coatings in the presence of Na2SO4+V2O5 molten salt. Surf. Coat. Technol. 326, 238 246. doi:10.1016/j.surfcoat.2017.07.058

Atmosferik Plazma Sprey (APS) Yöntemi ile Üretilmiş MCrAlY ve ZrO2+Y2O3 içerikli Termal Bariyer Kaplama (TBC) Sisteminin 750°C Sıcaklıktaki Oksidasyon ve Sıcak Korozyon Davranışlarının İncelenmesi

Year 2023, Volume: 15 Issue: 2, 404 - 415, 14.07.2023
https://doi.org/10.29137/umagd.1232816

Abstract

Bu çalışmada, Inconel 718 Ni-esaslı süper alaşım altlık malzeme üzerine MCrAlY içeriğine sahip metalik bağ ve itriya ile stabilize edilmiş zirkonya (YSZ) seramik üst kaplamalar atmosferik plazma sprey (APS) kaplama yöntemi kullanılarak üretilmiştir. Üretilen TBC sistemi oksidasyon ve sıcak korozyon koşulları altında test edilerek, mikroyapısal özellikleri ve oluşan değişimleri
incelenmiştir. İzotermal oksidasyon testleri 750°C’de 5, 25, 50 ve 75 saatlik zaman süreçlerinde gerçekleştirilmiştir. Sıcak korozyon testleri 750°C’de 1, 3 ve 5 saatlik zaman süreçlerinde %45 Na2SO4 ve %55 V2O5 oranlarındaki karışımlar kullanılarak gerçekleştirilmiştir. TBC sisteminin izotermal oksidasyon ve sıcak korozyon gibi ana hasar mekanizmalarına karşı yüksek sıcaklık davranışları belirlenerek, mikroyapısal değişimleri ayrıntılı olarak incelenmiştir. TBC sistemini oluşturan bileşenlerin içerikleri, testlerin gerçekleştirildiği sıcaklık ve zaman süreçleri ile sıcak korozyon ortamını oluşturan bileşenler ve oranlarının TBC sisteminin yüksek sıcaklık koşullarında dayanımını ve mikroyapısal değişimlerini belirleyen faktörler olduğu görülmüştür.

References

  • Afrasiabi, A., Saremi, M., Kobayashi, A., (2008). A comparative study on hot corrosion resistance of three types of thermal barrier coatings: YSZ, YSZ+Al2O3 and YSZ/Al2O3. Mater. Sci. Eng. A 478, 264–269. doi: 10.1016/j.msea.2007.06.001
  • Brandon, J.R., Taylor, R., 1991. Phase stability of zirconia-based thermal barrier coatings part I. Zirconia-yttria alloys. Surf. Coat. Technol. 46, 75–90. doi:10.1016/0257-8972(91)90151-L
  • Brossmann, U., Würschum, R., Södervall, U., Schaefer, H.-E., (1999). Oxygen diffusion in ultrafine grained monoclinic ZrO2. J. Appl. Phys. 85, 7646–7654. doi:10.1063/1.370567
  • Chen, W. R., Wu, X., Marple, B. R., Patnaik, P.C. (2006). The growth and influence of thermally grown oxide in a thermal barrier coating Surf. Coat. Technol., 201(3-4), 1074-1079. doi: 10.1016/j.surfcoat.2006.01.023
  • Chen, W. R., Wu, X., Marple, B. R., Patnaik, P.C. (2005). Oxidation and crack nucleation/growth in an air-plasma sprayed thermal barrier coating with NiCrAlY bond coat. Surf. Coat. Technol, 197(1), 109-115. doi: 10.1016/j.surfcoat.2004.06.027
  • Darolia, R., Thermal barrier coatings technology: critical review, progress update, remaining challenges and prospects, International Materials Reviews, 58:6, 315-348, 2013. doi:10.1179/1743280413Y.0000000019.
  • Gorelov, V.P., (2019). High-Temperature Phase Transitions in ZrO2. Phys. Solid State 61, 1288–1293. doi:10.1134/S1063783419070096
  • Guo, H., Khor, K.A., Boey, Y.C., Miao, X., (2003). Laminated and functionally graded hydroxyapatite/yttria stabilized tetragonal zirconia composites fabricated by spark plasma sintering. Biomaterials 24, 667–675. doi:10.1016/S0142-9612(02)00381-2
  • Jones, R.L., (1997). Some Aspects of the Hot Corrosion of Thermal Barrier Coatings. J. Therm. Spray Technol. 6, 77–84. doi:10.1007/BF02646315
  • Kim, D.J., Shin, I.H., Koo, J.M., Seok, C.S., Lee, T.W., (2010). Failure mechanisms of coin-type plasma-sprayed thermal barrier coatings with thermal fatigue. Surf. Coat. Technol, 205, S451-S458. doi:10.1016/j.surfcoat.2010.08.130
  • Kulkarni, A., Gutleber, J., Sampath, S., Goland, A., Lindquist, W.B., Herman, H., Allen, A.J., Dowd, B., (2004). Studies of the microstructure and properties of dense ceramic coatings produced by high-velocity oxygen-fuel combustion spraying. Mater. Sci. Eng. A 369, 124–137. doi:10.1016/j.msea.2003.10.295
  • Kumar, N., Mahade, S., Ganvir, A., Joshi, S., (2021). Understanding the influence of microstructure on hot corrosion and erosion behavior of suspension plasma sprayed thermal barrier coatings. Surf. Coat. Technol. 419, 127306. doi:10.1016/j.surfcoat.2021.127306
  • Lamuta, C., Di Girolamo, G., Pagnotta, L. (2015). Microstructural, mechanical and tribological properties of nanostructured YSZ coatings produced with different APS process parameters. Ceramics International, 41(7), 8904-8914. doi:10.1016/j.ceramint.2015.03.148
  • Liu, D., Seraffon, M., Flewitt, P.E., Simms, N.J., Nicholls, J.R., Rickerby, D.S., (2013). Effect of substrate curvature on residual stresses and failure modes of an air plasma sprayed thermal barrier coating system. Journal of the European Ceramic Society, 33(15- 16), 3345-3357. doi:10.1016/j.jeurceramsoc.2013.05.018
  • Loganathan, A., Gandhi, A.S., (2012). Effect of phase transformations on the fracture toughness of t′ yttria stabilized zirconia. Mater. Sci. Eng. A 556, 927–935. doi:10.1016/j.msea.2012.07.095
  • Mahade, S., Jonnalagadda, K. P., Curry, N., Li, X. H., Björklund, S., Markocsan, N., Peng, R.L., (2017). Engineered architectures of gadolinium zirconate based thermal barrier coatings subjected to hot corrosion test. Surf. Coat. Technol, 328, 361-370. doi:10.1016/j.surfcoat.2017.09.005
  • Mehboob, G., Liu, M. J., Xu, T., Hussain, S., Mehboob, G., Tahir, A., (2020). A review on failure mechanism of thermal barrier coatings and strategies to extend their lifetime. Ceramics International, 46(7), 8497-8521. doi:10.1016/j.ceramint.2019.12.200
  • Mohammadi, M., Kobayashi, A., Javadpour, S., Jahromi, S.A.J., (2019). Evaluation of hot corrosion behaviors of Al2O3-YSZ composite TBC on gradient MCrAlY coatings in the presence of Na2SO4-NaVO3 salt. Vacuum, 167, 547-553, 2019. doi:10.1016/j.vacuum.2018.04.042
  • Ozgurluk, Y., Doleker, K.M., Ozkan, D., Ahlatci, H., Karaoglanli, A.C., (2019). Cyclic hot corrosion failure behaviors of EB-PVD TBC systems in the presence of sulfate and vanadate molten salts. Coatings, 9(3), 166. doi:10.3390/coatings9030166
  • Özkan, D. (2022). MCrAlY İçerikli Bağ Kaplamaya Sahip Termal Bariyer Kaplamaların (TBCs) Mikroyapısal Özelliklerinin ve İzotermal Oksidasyon Davranışının İncelenmesi. Politeknik Dergisi, 25 (1) , 331-338. doi:10.2339/politeknik.885466
  • Parlakyigit, A.S., Ozkan, D., Oge, M., Ozgurluk, Y., Doleker, K.M., Gulmez, T., Karaoglanli, A.C., (2020). Formation and growth behavior of TGO layer in TBCs with HVOF sprayed NiCr bond coat. Emerging Materials Research, 9(2), 451-459.
  • Portinha, A., Teixeira, V., Carneiro, J., Martins, J., Costa, M.F., Vassen, R., Stoever, D., (2005). Characterization of thermal barrier coatings with a gradient in porosity. Surf. Coat. Technol. 195, 245–251. doi:10.1016/j.surfcoat.2004.07.094
  • Rabiei, A., Evans, A.G., (2000). Failure mechanisms associated with the thermally grown oxide in plasma sprayed thermal barrier coatings. Acta Mater. 48, 3963–3976. doi:10.1016/S1359-6454(00)00171-3
  • Rahimi, J., Sigaroodi, M.R.J., Poursaeidi, E., (2022). Thermal shock resistance of thermal barrier coating with different bondcoat types and diffusion pre-coating. Ceramics International. doi:10.1016/j.ceramint.2022.09.172
  • Shen, Z., Liu, G., Zhang, R., Dai, J., He, L., Mu, R., (2022). Thermal property and failure behavior of LaSmZrO thermal barrier coatings by EB-PVD. Iscience, 25(4), 104106. doi:10.1016/j.isci.2022.104106
  • Shi, J., Zhang, T., Sun, B., Wang, B., Zhang, X., Song, L., (2020). Isothermal oxidation and TGO growth behavior of NiCoCrAlYYSZ thermal barrier coatings on a Ni-based superalloy. Journal of Alloys and Compounds, 844, 156093. doi:10.1016/j.jallcom.2020.156093
  • Wei, ZY., Meng, GH., Chen, L., (2022). Progress in ceramic materials and structure design toward advanced thermal barrier coatings. J Adv Ceram 11, 985–1068. doi:10.1007/s40145-022-0581-7
  • Vaßen, R., Jarligo, M.O., Steinke, T., Mack, D. E., Stöver, D., (2010). Overview on advanced thermal barrier coatings Surf. Coat. Technol, 205(4), 938-942. doi:10.1016/j.surfcoat.2010.08.151
  • Vakilifard, H., Ghasemi, R., Rahimipour, M., (2017). Hot corrosion behaviour of plasma-sprayed functionally graded thermal barrier coatings in the presence of Na2SO4+V2O5 molten salt. Surf. Coat. Technol. 326, 238 246. doi:10.1016/j.surfcoat.2017.07.058
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Materials Engineering (Other)
Journal Section Articles
Authors

Derviş Özkan 0000-0002-4978-290X

Garip Erdogan 0000-0002-3924-9984

Gülfem Binal 0000-0003-4750-8787

Yasin Ozgurluk 0000-0003-1121-5018

Abdullah Cahit Karaoglanlı 0000-0002-1750-7989

Early Pub Date July 7, 2023
Publication Date July 14, 2023
Submission Date January 11, 2023
Published in Issue Year 2023 Volume: 15 Issue: 2

Cite

APA Özkan, D., Erdogan, G., Binal, G., Ozgurluk, Y., et al. (2023). Atmosferik Plazma Sprey (APS) Yöntemi ile Üretilmiş MCrAlY ve ZrO2+Y2O3 içerikli Termal Bariyer Kaplama (TBC) Sisteminin 750°C Sıcaklıktaki Oksidasyon ve Sıcak Korozyon Davranışlarının İncelenmesi. International Journal of Engineering Research and Development, 15(2), 404-415. https://doi.org/10.29137/umagd.1232816

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.