Research Article
BibTex RIS Cite

Investigation of Temperature and Stress Distributions in a Dental Implant Prosthesis

Year 2023, Volume: 15 Issue: 2, 584 - 597, 14.07.2023
https://doi.org/10.29137/umagd.1276612

Abstract

Todays, the increasing success rates, and intensity of use of implant applications have attracted attention in the field of dentistry to dental implants. In this study, the temperature and stress distribution in a dental implant was modeled in three dimensions using the commercial software Ansys, which uses the finite element method. The changes in the implant prosthesis were investigated by applying a 100N load to the model and a temperature of 45o C and 10o C, respectively. The temperature input condition was accepted as the temperature of freshly taken food/beverage from the stove for the highest temperature and the temperature of freshly taken out of the refrigerator for the lowest temperature. As a result of the analyzes (Fluid Flow), it was observed that the implant prosthesis didn’t conduct heat to the tooth root at 45o C and 10o C. As a result of the von Mises stress distribution and total deformation analysis under a load of 100 N, it was determined that the tensile and compressive strength was good (48.17 MPa), and most of the applied load was supported by the artificial tooth crown. The chewing force applied due to its structure from the tooth geometry causes non-homogeneous stress distribution in all axes. Thus, it reveals that mechanical compatibility is of great importance as well as biocompatibility. Titanium alloys (Ti-6Al-4V), which are frequently used in tooth crowns and tooth roots, cause differentiation in bone structure together with the formation of a protective oxide layer. Considering the loss of bone volume and resorption diseases, especially during the osteoporosis/menopause, it is possible that a problem may occur at the implant-bone interface.

References

  • Akça, K., Cehreli, M.C. & İplikçioglu, H. A. (2002). Comparison of Three-Dimensional Finite Element Stress Analysis With In vitro Strain Gauge Measurements on Dental Implants. International Journal of Prosthodontics, 15(2), 115-121. Ansys Fluent 15.0 User’s Guide, Ansys Inc., 2016.
  • Arpa, İ. (2021). Numerical Investigation of The Thermal Properties of Different Dental Prosthesis and Implant Materials. Dicle University. Master's Thesis.
  • Asar, V. and Burgaz, Y. (2009). The evaluation of the influence of implant supported cantilever bridges on stress distribution in different bone types. Gazi University, Journal of the Faculty of Dentistry, 26(1), 47-58.
  • Baştürk, K. and Zor., M. (2006). Effect of Veneer Geometry on Stress in an Implanted Human Jaw. Dokuz Eylül University Faculty of Engineering, Graduation Project.
  • Dalkız, M., Zor, M., Aykul, H., Toparlı, M., and Aksoy, S., (2002). The Three-Dimensional Finite Element Analysis of Fixed Bridge Restoration Supported by the Combination of Teeth and Osseointegrated Implants. Implant Dentistry, vol.11, no.3, 293-300.
  • Damlar, İ., Özyılmaz, E., Altan, A. Ve Özyılmaz, E. (2014). Investigation of Stress Distributions of Two Commercial Implant Systems by Three-Dimensional Finite Element Analysis Method. Süleyman Demirel University, Journal of Engineering Sciences and Design, 2(3), 175-180.
  • Dentanorm A.Ş, (2018). website access address http://www.hekimim.com/genel/genel_bilgi.hml
  • Göçer B. and Zor, M. (2010). Stress analysis of Dental Implant Systems. Dokuz Eylül University Faculty of Engineering, Graduation Project.
  • Hasan, I., Heinemann, F., Aitlahrach, M. ve Bourauel, C. (2010). Biomechanical Finite Element Analysis of Small Diameter and Short Dental Implant. Biomedical Technology, 55(6), 341-350.
  • Karakurt, M. (2018). Investigation of Stress Distribution on Implant, Abutment, Screw and Bone Using Finite Element Analysis Method of Fixed Implant Bridge Prosthesis Prepared with Different Superstructure Materials. Dicle University, Specialization Thesis in Dentistry.
  • Küçük, M., Çömlekoğlu, E.M., Zor, M., (2010). The Effect of Crown Geometry on Stress Distribution of a Single Implant Restoration: A Finite Element Analysis. Dokuz Eylül University Faculty of Medicine, Türkiye Klinikleri Journal of Dental Sciences, 16(2), 136-141.
  • Lutton and Ben-Nissan, B. (1998). Innovative Bio-ceramics. Mat. Tech., (Vol 27). Australia. Matweb material mechanical properties website access address http://www.matweb.com
  • Neldam, C.A. and Pinholt, E.M. (2010). State of the Art of Short Dental Implants: A Systematic Review of the Literature. Clinical Implant Dentistry and Related Research, 10, 1708-8208. Nobel Active™ Technical Story, Nobel BioCare Services AG, 2008.
  • Ormianer, Z., Feuerstein, O., Rawi, E., Nachum, S. and Weiss, E.I. (2009). In Vivo Variations in Dental Implant Temperatures During Hot Beverage Intake: A Pilot Study. Implant Dentistry, 18(1), 38-45.
  • Palmer R. (2007). Ti-unite Dental Implant Surface may be Superior to Machined Surface in Replacement of Failed Implants. The Journal of Evidence-based Dental Practice, 7(1), 8-9.
  • Raviv, E., Turcotte, A. ve Harel-Raviv, M. (2010). Short Dental Implants in Reduced Alveolar Bone Height. Quintessence International, 41(7), 575-579.
  • Şap, S., Şap, E. and Kırık, İ. (2019). The Use of Titanium and Alloys as A Biomaterial. III. International Battalgazi Multidisciplinary Studies Congress, pp., 1052-1059, Malatya, Türkiye, 21-23 Eylül.
  • Stevens, I.J. ve Alexander, J. (1971). Bone Implant. US Patent No. 3,579,831.
  • Subaşı, M. and Karataş, Ç. (2012). A Review on Implants Made of Titanium and Titanium Alloys. Journal of Polytechnic, 15(2), 87-103.
  • Taşdemir, İ. (2021). Numerical investigation of filler materials used in dentistry for dentals with advanced damage. Gümüşhane University. Master's Thesis.

Bir Diş İmplant Protezinde Sıcaklık ve Gerilme Dağılımının İncelenmesi

Year 2023, Volume: 15 Issue: 2, 584 - 597, 14.07.2023
https://doi.org/10.29137/umagd.1276612

Abstract

Günümüzde, implant uygulamalarının artan başarı oranları ve kullanım sıklığı, diş hekimliği alanında dişsel implantlara çekmiştir. Bu çalışmada bir diş implant protezindeki sıcaklık ve gerilim dağılımı sonlu elemanlar yöntemini kullanan ticari yazılımı olan Ansys paket programı kullanılarak, üç boyutlu olarak modellenmiştir. Modele 100N’luk yük ve sırasıyla 45o C ve 10o C sıcaklık uygulanarak implant protezinde meydana gelen değişimler incelenmiştir. Sıcaklık giriş koşulu, en yüksek sıcaklık (45o C) için ocaktan yeni alınmış yiyecek/içecek ve en düşük sıcaklık (10o C) için ise buzdolabından yeni çıkarılmış içecek sıcaklığı olarak kabul edilmiştir. Yapılan analizler (Fluid Flow) sonucunda 45o C ve 10o C sıcaklıkta implant protezinin diş köküne ısıyı iletmediği görülmüştür. 100N ’luk yük altında ise von Mises gerilim dağılımı ve toplam deformasyon analiz sonucunda, çekme ve basma dayanımının iyi olduğu (48.17 MPa), uygulanan yükün büyük bir kısmının ise suni diş kronu tarafından karşılandığı belirlenmiştir. Diş geometrisinden yapısından dolayı uygulanan çiğneme kuvveti, tüm eksenlerde homojen olmayan gerilme dağılımına sebep olmaktadır. Bu durum biyouyumluluğun yanında mekanik uyumluluğunda büyük önem arz ettiğini ortaya koymaktadır. Suni diş kronu ve diş kökün de sıklıkla kullanılan titanyum alaşımları (Ti-6Al-4V) koruyucu oksit tabaka oluşturmasıyla birlikte kemik yapısında da farklılaşmaya sebebiyet vermektedir. Özellikle osteoporoz ve menopoz dönemlerinde kemik hacminde oluşan kayıplar ve kemik erimesi hastalıkları da göz önüne alındığında, implant-kemik arayüzünde sorun oluşabileceği muhtemeldir.

References

  • Akça, K., Cehreli, M.C. & İplikçioglu, H. A. (2002). Comparison of Three-Dimensional Finite Element Stress Analysis With In vitro Strain Gauge Measurements on Dental Implants. International Journal of Prosthodontics, 15(2), 115-121. Ansys Fluent 15.0 User’s Guide, Ansys Inc., 2016.
  • Arpa, İ. (2021). Numerical Investigation of The Thermal Properties of Different Dental Prosthesis and Implant Materials. Dicle University. Master's Thesis.
  • Asar, V. and Burgaz, Y. (2009). The evaluation of the influence of implant supported cantilever bridges on stress distribution in different bone types. Gazi University, Journal of the Faculty of Dentistry, 26(1), 47-58.
  • Baştürk, K. and Zor., M. (2006). Effect of Veneer Geometry on Stress in an Implanted Human Jaw. Dokuz Eylül University Faculty of Engineering, Graduation Project.
  • Dalkız, M., Zor, M., Aykul, H., Toparlı, M., and Aksoy, S., (2002). The Three-Dimensional Finite Element Analysis of Fixed Bridge Restoration Supported by the Combination of Teeth and Osseointegrated Implants. Implant Dentistry, vol.11, no.3, 293-300.
  • Damlar, İ., Özyılmaz, E., Altan, A. Ve Özyılmaz, E. (2014). Investigation of Stress Distributions of Two Commercial Implant Systems by Three-Dimensional Finite Element Analysis Method. Süleyman Demirel University, Journal of Engineering Sciences and Design, 2(3), 175-180.
  • Dentanorm A.Ş, (2018). website access address http://www.hekimim.com/genel/genel_bilgi.hml
  • Göçer B. and Zor, M. (2010). Stress analysis of Dental Implant Systems. Dokuz Eylül University Faculty of Engineering, Graduation Project.
  • Hasan, I., Heinemann, F., Aitlahrach, M. ve Bourauel, C. (2010). Biomechanical Finite Element Analysis of Small Diameter and Short Dental Implant. Biomedical Technology, 55(6), 341-350.
  • Karakurt, M. (2018). Investigation of Stress Distribution on Implant, Abutment, Screw and Bone Using Finite Element Analysis Method of Fixed Implant Bridge Prosthesis Prepared with Different Superstructure Materials. Dicle University, Specialization Thesis in Dentistry.
  • Küçük, M., Çömlekoğlu, E.M., Zor, M., (2010). The Effect of Crown Geometry on Stress Distribution of a Single Implant Restoration: A Finite Element Analysis. Dokuz Eylül University Faculty of Medicine, Türkiye Klinikleri Journal of Dental Sciences, 16(2), 136-141.
  • Lutton and Ben-Nissan, B. (1998). Innovative Bio-ceramics. Mat. Tech., (Vol 27). Australia. Matweb material mechanical properties website access address http://www.matweb.com
  • Neldam, C.A. and Pinholt, E.M. (2010). State of the Art of Short Dental Implants: A Systematic Review of the Literature. Clinical Implant Dentistry and Related Research, 10, 1708-8208. Nobel Active™ Technical Story, Nobel BioCare Services AG, 2008.
  • Ormianer, Z., Feuerstein, O., Rawi, E., Nachum, S. and Weiss, E.I. (2009). In Vivo Variations in Dental Implant Temperatures During Hot Beverage Intake: A Pilot Study. Implant Dentistry, 18(1), 38-45.
  • Palmer R. (2007). Ti-unite Dental Implant Surface may be Superior to Machined Surface in Replacement of Failed Implants. The Journal of Evidence-based Dental Practice, 7(1), 8-9.
  • Raviv, E., Turcotte, A. ve Harel-Raviv, M. (2010). Short Dental Implants in Reduced Alveolar Bone Height. Quintessence International, 41(7), 575-579.
  • Şap, S., Şap, E. and Kırık, İ. (2019). The Use of Titanium and Alloys as A Biomaterial. III. International Battalgazi Multidisciplinary Studies Congress, pp., 1052-1059, Malatya, Türkiye, 21-23 Eylül.
  • Stevens, I.J. ve Alexander, J. (1971). Bone Implant. US Patent No. 3,579,831.
  • Subaşı, M. and Karataş, Ç. (2012). A Review on Implants Made of Titanium and Titanium Alloys. Journal of Polytechnic, 15(2), 87-103.
  • Taşdemir, İ. (2021). Numerical investigation of filler materials used in dentistry for dentals with advanced damage. Gümüşhane University. Master's Thesis.
There are 20 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Articles
Authors

İkram Taşdemir 0000-0002-6895-3858

Cemalettin Aygün 0000-0002-6033-3558

Early Pub Date July 7, 2023
Publication Date July 14, 2023
Submission Date April 4, 2023
Published in Issue Year 2023 Volume: 15 Issue: 2

Cite

APA Taşdemir, İ., & Aygün, C. (2023). Investigation of Temperature and Stress Distributions in a Dental Implant Prosthesis. International Journal of Engineering Research and Development, 15(2), 584-597. https://doi.org/10.29137/umagd.1276612

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.