Biyouyumlu Malzemelerin Üretimi için 4D Eklemeli İmalat Cihazı Tasarımı ve Üretimi
Year 2023,
Volume: 15 Issue: 2, 840 - 847, 14.07.2023
Yunus Kartal
,
Deniz Doğan
,
Memik Taylan Daş
,
Ayşegül Ülkü Metin
Abstract
Bu çalışmanın amacı biyouyumlu malzemelerin üretimi için alışılagelmiş kartezyen eksenlerinin haricinde tablada bulunan ve ekseni etrafında dönen dördüncü eksene sahip dört boyutlu (4D) eklemeli imalat cihazı tasarımı ve üretimidir. Bu kapsamda çeşitli mekanik ve elektronik aksesuar veya bileşenlerin teorik ve teknik detayları verilmektedir. Çalışma kapsamındaki dört boyutlu yazıcı üretilen malzemelerin özelliklerinin atmosfer koşullarından etkilenmesini engellemek amacıyla izole bir ortamda çalışmaktadır. Tasarımı ve üretimi gerçekleştirilen cihazda ultraviyole ışın altında poli(2-hidroksietil metakrilat) üretilmiş ve mekanik özellikleri incelenmiştir.
Supporting Institution
TÜBİTAK Araştırma Destek Programları Başkanlığı (ARDEB)
Thanks
Bu çalışma Kırıkkale Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından desteklenmiştir. Proje numarası 2022/36.
Bu çalışma TÜBİTAK Araştırma Destek Programları Başkanlığı (ARDEB) tarafından desteklenmiştir. Proje numarası 123M213.
References
- Alsayed, A. A. (2021). Physics of Open Fractures: Reconsidering Tissue Viability, Contamination Risk and Importance of Wound Debridement. Journal of Applied Mathematics and Physics, 09(01), 176–182. https://doi.org/10.4236/jamp.2021.91012
- Attaran, M. (2017). The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing. Business Horizons, 60(5), 677–688. https://doi.org/10.1016/j.bushor.2017.05.011
- Barkane, A., Platnieks, O., Jurinovs, M., & Gaidukovs, S. (2020). Thermal stability of UV-cured vegetable oil epoxidized acrylate-based polymer system for 3D printing application. Polymer Degradation and Stability, 181, 109347. https://doi.org/10.1016/j.polymdegradstab.2020.109347
- Birkelid, A. H., Eikevåg, S. W., Elverum, C. W., & Steinert, M. (2022). High-performance polymer 3D printing – Open-source liquid cooled scalable printer design. HardwareX, 11, e00265. https://doi.org/10.1016/j.ohx.2022.e00265
- Eichholz, K. F., Gonçalves, I., Barceló, X., Federici, A. S., Hoey, D. A., & Kelly, D. J. (2022). How to design, develop and build a fully-integrated melt electrowriting 3D printer. Additive Manufacturing, 58(April). https://doi.org/10.1016/j.addma.2022.102998
- Garmabi, M. M., Shahi, P., Tjong, J., & Sain, M. (2022). 3D printing of polyphenylene sulfide for functional lightweight automotive component manufacturing through enhancing interlayer bonding. Additive Manufacturing, 56. https://doi.org/10.1016/j.addma.2022.102780
- Gopinatha, S., & Nagarajanb, N. (2015). Journal of Applied Research and Technology. Journal of Applied Research and Technology, 13, 374–381.
- Guoqing, Z., Junxin, L., Jin, L., Xiaoyu, Z., & Anmin, W. (2019). 3D metal printer dust filter structural optimal design and key performance research. Materials and Design, 183, 108114. https://doi.org/10.1016/j.matdes.2019.108114
- Hachimi, T., Naboulsi, N., Majid, F., Rhanim, R., Mrani, I., & Rhanim, H. (2021). Design and Manufacturing of a 3D printer filaments extruder. Procedia Structural Integrity, 33(C), 907–916. https://doi.org/10.1016/j.prostr.2021.10.101
- Hong, S. Y., Kim, Y. C., Wang, M., Kim, H. I., Byun, D. Y., Nam, J. Do, Chou, T. W., Ajayan, P. M., Ci, L., & Suhr, J. (2018). Experimental investigation of mechanical properties of UV-Curable 3D printing materials. Polymer, 145, 88–94. https://doi.org/10.1016/j.polymer.2018.04.067
- Invernizzi, M., Natale, G., Levi, M., Turri, S., & Griffini, G. (2016). UV-assisted 3D printing of glass and carbon fiber-reinforced dual-cure polymer composites. Materials, 9(7). https://doi.org/10.3390/MA9070583
- Izadifar, M., Chapman, D., Babyn, P., Chen, X., & Kelly, M. E. (2018). UV-Assisted 3D Bioprinting of Nanoreinforced Hybrid Cardiac Patch for Myocardial Tissue Engineering. Tissue Engineering - Part C: Methods, 24(2), 74–88. https://doi.org/10.1089/ten.tec.2017.0346
- Kim, Y. C., Hong, S., Sun, H., Kim, M. G., Choi, K., Cho, J., Choi, H. R., Koo, J. C., Moon, H., Byun, D., Kim, K. J., Suhr, J., Kim, S. H., & Nam, J. Do. (2017). UV-curing kinetics and performance development of in situ curable 3D printing materials. European Polymer Journal, 93(May), 140–147. https://doi.org/10.1016/j.eurpolymj.2017.05.041
- Le Duigou, A., Grabow, M., Castro, M., Toumi, R., Ueda, M., Matsuzaki, R., Hirano, Y., Dirrenberger, J., Scarpa, F., D’Elia, R., Labstie, K., & Lafont, U. (2023). Thermomechanical performance of continuous carbon fibre composite materials produced by a modified 3D printer. Heliyon, 9(3), e13581. https://doi.org/10.1016/j.heliyon.2023.e13581
- Lee, S., Kim, Y., Park, D., & Kim, J. (2021). The thermal properties of a UV curable acrylate composite prepared by digital light processing 3D printing. Composites Communications, 26(May), 100796. https://doi.org/10.1016/j.coco.2021.100796
- Li, Y., Zhong, J., Wu, L., Weng, Z., Zheng, L., Peng, S., & Zhang, X. (2019). High performance POSS filled nanocomposites prepared via UV-curing based on 3D stereolithography printing. Composites Part A: Applied Science and Manufacturing, 117(July 2018), 276–286. https://doi.org/10.1016/j.compositesa.2018.11.024
- Mantelli, A., Romani, A., Suriano, R., Diani, M., Colledani, M., Sarlin, E., Turri, S., & Levi, M. (2021). Uv-assisted 3d printing of polymer composites from thermally and mechanically recycled carbon fibers. Polymers, 13(5), 1–15. https://doi.org/10.3390/polym13050726
- Minetola, P., Galati, M., Iuliano, L., Atzeni, E., & Salmi, A. (2018). The Use of Self-replicated Parts for Improving the Design and the Accuracy of a Low-cost 3D Printer. Procedia CIRP, 67, 203–208. https://doi.org/10.1016/j.procir.2017.12.200
- Ozkan, B., Sameni, F., Bianchi, F., Zarezadeh, H., Karmel, S., Engstrøm, D. S., & Sabet, E. (2022). 3D printing ceramic cores for investment casting of turbine blades, using LCD screen printers: The mixture design and characterisation. Journal of the European Ceramic Society, 42(2), 658–671. https://doi.org/10.1016/j.jeurceramsoc.2021.10.043
- Priavolou, C., Troullaki, K., Tsiouris, N., Giotitsas, C., & Kostakis, V. (2022). Tracing sustainable production from a degrowth and localisation perspective: A case of 3D printers. Journal of Cleaner Production, 376(August), 134291. https://doi.org/10.1016/j.jclepro.2022.134291
- Pruksawan, S., Chee, H. L., Wang, Z., Luo, P., Chong, Y. T., Thitsartarn, W., & Wang, F. K. (2022). Toughened Hydrogels for 3D Printing of Soft Auxetic Structures. Chemistry - An Asian Journal, 17(19). https://doi.org/10.1002/asia.202200677
- Rouf, S., Raina, A., Irfan Ul Haq, M., Naveed, N., Jeganmohan, S., & Farzana Kichloo, A. (2022). 3D printed parts and mechanical properties: Influencing parameters, sustainability aspects, global market scenario, challenges and applications. Advanced Industrial and Engineering Polymer Research, 5(3), 143–158. https://doi.org/10.1016/j.aiepr.2022.02.001
- SÜRMEN, H. K. (2019). Eklemeli İmalat (3B Baski):Teknoloji̇ler Ve Uygulamalar. Uludağ University Journal of The Faculty of Engineering, 24(2), 373–392. https://doi.org/10.17482/uumfd.519147
- Vavoulas, A., Vaiopoulos, N., Hedström, E., Xanthis, C. G., Sandalidis, H. G., & Aletras, A. H. (2016). Using a modified 3D-printer for mapping the magnetic field of RF coils designed for fetal and neonatal imaging. Journal of Magnetic Resonance, 269, 146–151. https://doi.org/10.1016/j.jmr.2016.06.005
- Vu, A. A., Burke, D. A., Bandyopadhyay, A., & Bose, S. (2021). Effects of surface area and topography on 3D printed tricalcium phosphate scaffolds for bone grafting applications. Additive Manufacturing, 39. https://doi.org/10.1016/j.addma.2021.101870
- Zi, B., Wang, N., Qian, S., & Bao, K. (2019). Design, stiffness analysis and experimental study of a cable-driven parallel 3D printer. Mechanism and Machine Theory, 132, 207–222. https://doi.org/10.1016/j.mechmachtheory.2018.11.003
Design and Manufacturing of 4D Additive Manufacturing Device For The Production of Biocompatible Materials
Year 2023,
Volume: 15 Issue: 2, 840 - 847, 14.07.2023
Yunus Kartal
,
Deniz Doğan
,
Memik Taylan Daş
,
Ayşegül Ülkü Metin
Abstract
The aim of this study is to design and manufacture a 4 Dimensional (4D) additive manufacturing device with a fourth axis rotating around its axis, in addition to conventional Cartesian axes, for the production of biocompatible materials. In this context, theoretical and technical details of various mechanical and electronic accessories or components are given. The four-dimensional printer within the scope of the study works in an isolated environment in order to prevent the properties of the produced materials from being affected by atmospheric conditions. In the device designed and manufactured, poly(2-hydroxyethyl methacrylate) was produced under ultraviolet light and its mechanical properties were investigated.
References
- Alsayed, A. A. (2021). Physics of Open Fractures: Reconsidering Tissue Viability, Contamination Risk and Importance of Wound Debridement. Journal of Applied Mathematics and Physics, 09(01), 176–182. https://doi.org/10.4236/jamp.2021.91012
- Attaran, M. (2017). The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing. Business Horizons, 60(5), 677–688. https://doi.org/10.1016/j.bushor.2017.05.011
- Barkane, A., Platnieks, O., Jurinovs, M., & Gaidukovs, S. (2020). Thermal stability of UV-cured vegetable oil epoxidized acrylate-based polymer system for 3D printing application. Polymer Degradation and Stability, 181, 109347. https://doi.org/10.1016/j.polymdegradstab.2020.109347
- Birkelid, A. H., Eikevåg, S. W., Elverum, C. W., & Steinert, M. (2022). High-performance polymer 3D printing – Open-source liquid cooled scalable printer design. HardwareX, 11, e00265. https://doi.org/10.1016/j.ohx.2022.e00265
- Eichholz, K. F., Gonçalves, I., Barceló, X., Federici, A. S., Hoey, D. A., & Kelly, D. J. (2022). How to design, develop and build a fully-integrated melt electrowriting 3D printer. Additive Manufacturing, 58(April). https://doi.org/10.1016/j.addma.2022.102998
- Garmabi, M. M., Shahi, P., Tjong, J., & Sain, M. (2022). 3D printing of polyphenylene sulfide for functional lightweight automotive component manufacturing through enhancing interlayer bonding. Additive Manufacturing, 56. https://doi.org/10.1016/j.addma.2022.102780
- Gopinatha, S., & Nagarajanb, N. (2015). Journal of Applied Research and Technology. Journal of Applied Research and Technology, 13, 374–381.
- Guoqing, Z., Junxin, L., Jin, L., Xiaoyu, Z., & Anmin, W. (2019). 3D metal printer dust filter structural optimal design and key performance research. Materials and Design, 183, 108114. https://doi.org/10.1016/j.matdes.2019.108114
- Hachimi, T., Naboulsi, N., Majid, F., Rhanim, R., Mrani, I., & Rhanim, H. (2021). Design and Manufacturing of a 3D printer filaments extruder. Procedia Structural Integrity, 33(C), 907–916. https://doi.org/10.1016/j.prostr.2021.10.101
- Hong, S. Y., Kim, Y. C., Wang, M., Kim, H. I., Byun, D. Y., Nam, J. Do, Chou, T. W., Ajayan, P. M., Ci, L., & Suhr, J. (2018). Experimental investigation of mechanical properties of UV-Curable 3D printing materials. Polymer, 145, 88–94. https://doi.org/10.1016/j.polymer.2018.04.067
- Invernizzi, M., Natale, G., Levi, M., Turri, S., & Griffini, G. (2016). UV-assisted 3D printing of glass and carbon fiber-reinforced dual-cure polymer composites. Materials, 9(7). https://doi.org/10.3390/MA9070583
- Izadifar, M., Chapman, D., Babyn, P., Chen, X., & Kelly, M. E. (2018). UV-Assisted 3D Bioprinting of Nanoreinforced Hybrid Cardiac Patch for Myocardial Tissue Engineering. Tissue Engineering - Part C: Methods, 24(2), 74–88. https://doi.org/10.1089/ten.tec.2017.0346
- Kim, Y. C., Hong, S., Sun, H., Kim, M. G., Choi, K., Cho, J., Choi, H. R., Koo, J. C., Moon, H., Byun, D., Kim, K. J., Suhr, J., Kim, S. H., & Nam, J. Do. (2017). UV-curing kinetics and performance development of in situ curable 3D printing materials. European Polymer Journal, 93(May), 140–147. https://doi.org/10.1016/j.eurpolymj.2017.05.041
- Le Duigou, A., Grabow, M., Castro, M., Toumi, R., Ueda, M., Matsuzaki, R., Hirano, Y., Dirrenberger, J., Scarpa, F., D’Elia, R., Labstie, K., & Lafont, U. (2023). Thermomechanical performance of continuous carbon fibre composite materials produced by a modified 3D printer. Heliyon, 9(3), e13581. https://doi.org/10.1016/j.heliyon.2023.e13581
- Lee, S., Kim, Y., Park, D., & Kim, J. (2021). The thermal properties of a UV curable acrylate composite prepared by digital light processing 3D printing. Composites Communications, 26(May), 100796. https://doi.org/10.1016/j.coco.2021.100796
- Li, Y., Zhong, J., Wu, L., Weng, Z., Zheng, L., Peng, S., & Zhang, X. (2019). High performance POSS filled nanocomposites prepared via UV-curing based on 3D stereolithography printing. Composites Part A: Applied Science and Manufacturing, 117(July 2018), 276–286. https://doi.org/10.1016/j.compositesa.2018.11.024
- Mantelli, A., Romani, A., Suriano, R., Diani, M., Colledani, M., Sarlin, E., Turri, S., & Levi, M. (2021). Uv-assisted 3d printing of polymer composites from thermally and mechanically recycled carbon fibers. Polymers, 13(5), 1–15. https://doi.org/10.3390/polym13050726
- Minetola, P., Galati, M., Iuliano, L., Atzeni, E., & Salmi, A. (2018). The Use of Self-replicated Parts for Improving the Design and the Accuracy of a Low-cost 3D Printer. Procedia CIRP, 67, 203–208. https://doi.org/10.1016/j.procir.2017.12.200
- Ozkan, B., Sameni, F., Bianchi, F., Zarezadeh, H., Karmel, S., Engstrøm, D. S., & Sabet, E. (2022). 3D printing ceramic cores for investment casting of turbine blades, using LCD screen printers: The mixture design and characterisation. Journal of the European Ceramic Society, 42(2), 658–671. https://doi.org/10.1016/j.jeurceramsoc.2021.10.043
- Priavolou, C., Troullaki, K., Tsiouris, N., Giotitsas, C., & Kostakis, V. (2022). Tracing sustainable production from a degrowth and localisation perspective: A case of 3D printers. Journal of Cleaner Production, 376(August), 134291. https://doi.org/10.1016/j.jclepro.2022.134291
- Pruksawan, S., Chee, H. L., Wang, Z., Luo, P., Chong, Y. T., Thitsartarn, W., & Wang, F. K. (2022). Toughened Hydrogels for 3D Printing of Soft Auxetic Structures. Chemistry - An Asian Journal, 17(19). https://doi.org/10.1002/asia.202200677
- Rouf, S., Raina, A., Irfan Ul Haq, M., Naveed, N., Jeganmohan, S., & Farzana Kichloo, A. (2022). 3D printed parts and mechanical properties: Influencing parameters, sustainability aspects, global market scenario, challenges and applications. Advanced Industrial and Engineering Polymer Research, 5(3), 143–158. https://doi.org/10.1016/j.aiepr.2022.02.001
- SÜRMEN, H. K. (2019). Eklemeli İmalat (3B Baski):Teknoloji̇ler Ve Uygulamalar. Uludağ University Journal of The Faculty of Engineering, 24(2), 373–392. https://doi.org/10.17482/uumfd.519147
- Vavoulas, A., Vaiopoulos, N., Hedström, E., Xanthis, C. G., Sandalidis, H. G., & Aletras, A. H. (2016). Using a modified 3D-printer for mapping the magnetic field of RF coils designed for fetal and neonatal imaging. Journal of Magnetic Resonance, 269, 146–151. https://doi.org/10.1016/j.jmr.2016.06.005
- Vu, A. A., Burke, D. A., Bandyopadhyay, A., & Bose, S. (2021). Effects of surface area and topography on 3D printed tricalcium phosphate scaffolds for bone grafting applications. Additive Manufacturing, 39. https://doi.org/10.1016/j.addma.2021.101870
- Zi, B., Wang, N., Qian, S., & Bao, K. (2019). Design, stiffness analysis and experimental study of a cable-driven parallel 3D printer. Mechanism and Machine Theory, 132, 207–222. https://doi.org/10.1016/j.mechmachtheory.2018.11.003