Review
BibTex RIS Cite

A Comprehensive Research on Ensuring Energy Efficiency in Rail Systems

Year 2024, Volume: 16 Issue: 1, 30 - 46, 31.01.2024

Abstract

Today, the increase in energy needs and the risk of depletion of some energy resources is a worrying situation for sustainable life. Therefore, energy efficiency and prevention of energy losses are crucial. Transportation is one of the sectors where energy is used most intensively. As in every field, it is aimed to prevent the excessive use of energy in this sector. One of the most important activities in this regard is to encourage public transportation, and in this sense, rail systems are frequently preferred in big cities. However, their energy consumption is increasing due to the increasingly widespread network structure of these systems. Therefore, energy efficiency studies on these systems have a significant impact on clean and sustainable life and attract the attention of researchers. Energy efficiency studies in rail systems show a wide variety due to their complicated structure. In this paper, the concepts of energy consumption and efficiency in rail systems, studies on this subject in the literature and the technologies and methods used have been examined. The outputs of the paper have been evaluated in terms of energy efficiency and an assessment have been made for the future.

References

  • Açıkbaş, S. & Söylemez, M.T. (2004). Energy loss comparison between 750 VDC and 1500 VDC power supply systems using rail power simulation. Computers in Railways IX, WIT Press, 2004.
  • Açıkbaş, S. & Söylemez, M.T. (2005). Energy efficiency and parallelization of catenary systems in rail public transportation. I. Energy Efficiency and Quality Symposium, Kocaeli.
  • Albrecht, T. (2004). Reducing power peaks and energy consumption in rail transit systems by simultaneous train running time control. Computers in Railways IX, 74(10): 885-894, 2004. doi:10.2495/CR040881.
  • Alekseeva, T.L., Ryabchyonok, N.L., Astrakhancev, L.A,, Mihalchuk N.L.& Tikhomirov, V.A. (2021). Improving the efficiency of the railway electric power system. IOP Conference Series: Materials Science and Engineering,1151, 2021.
  • Alfieri, L., Battistelli, L. & Pagano, M. (2019). Impact on railway infrastructure of wayside energy storage systems for regenerative braking management: A case study on a real Italian railway infrastructure. IET Electrical Systems in Transportation, 9(3):140-149. doi: 10.1049/iet-est.2019.0005
  • Amri, H., Hofstadter, R.N. & Kozek, M. (2011). Energy efficient design and simulation of a demand controlled heating and ventilation unit in a metro vehicle. Proc. IEEE Forum on Integrated and Sustainable Transportation Systems, 29 June-1 July, Austria.
  • Arıkan, Y., Şen, T. & Çam, E. (2021). Energy efficiency in rail systems with coasting control method using GA and ABC optimizations. Tehnički vjesnik, 28 (4): 1127-1135. doi: 10.17559/TV-20200511115919.
  • Arıkan, Y., Şen, T., & Çam, E. (2022). Actual-time modeling of a subway vehicle and optimal driving management with GA and ABC algorithms. Journal of Engineering Research, 10 (4A): 204-218. pp. 204-218, 2022. doi: 10.36909/jer.10205.
  • Barrero, R., Tackoen, X., & Mierlo, J.V. 2010. Stationary or onboard energy storage systems for energy consumption reduction in a metro network. Journal of Rail and Rapid Transit, 224 (3): 207-225. doi: 10.1243/09544097JRRT322
  • Bocharnikov, Y.V., Tobias, A. M., Roberts, C. ,Hillmansen, S., Goodman, C.J (2007). Optimal driving strategy for traction energy saving on DC suburban railways. IET Electric Power Applications, 1(5): 675-682. doi: 10.1049/iet-epa:20070005.
  • Bocharnikov, Y. V., Tobias, A.M., & Roberts, C. (2010). Reduction of train and net energy consumption using genetic algorithms for trajectory optimization IET Conference on Railway Traction Systems, 13-15 April, Birmingham, UK. doi: 10.1049/ic.2010.0038
  • Bonnett, C.F. (2005). Practical railway engineering. Imperial College Press.
  • BP, (2020). Statistical review of world energy 2020. https://www.bp.com/content/dam/bp/businesssites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2020-full-report.pdf.
  • Brenna, M., Foiadelli, F. & Longo M. (2016). Application of genetic algorithms for driverless subway train energy optimization. International Journal of Vehicular Technology, pp.1-14. doi: 10.1155/2016/8073523.
  • Carruthers, J.J., Calomfirescu, M., Ghys, P. & Prockat, J. (2009). The application of a systematic approach to material selection for the light weighting of metro vehicles. Proc. of the Institution of Mechanical Engineers Part F Journal of Rail and Rapid Transit, 223(5): 427-437. doi: 10.1243/09544097JRRT27
  • Chen, J., Lin, R., & Liu, Y. (2005). Optimization of an MRT train schedule: Reducing maximum traction power by using genetic algorithms. IEEE Transactions on Power Systems, 20(3):1366-1372. doi: 10.1109/TPWRS.2005.851939.
  • Chau, N.K.C., Wai, E.C.K. & Wing, K.C.K. (2008). Energy efficient technologies for railway escalators. Proc. International Conference on Railway Engineering, 25-28 March, Hong Kong.
  • Chow, W.K. (2002). Ventilation of enclosed train compartments in Hong Kong. Applied Energy, 71(3): 161-170. doi: 10.1016/S0306-2619(02)00008-9.
  • Ciccarelli, F., Iannuzzi, D & Tricoli, P. (2012). Control of metro-trains equipped with onboard supercapacitors for energy saving and reduction of power peak demand. Transportation Research Part C: Emerging Technologies, 24:36-49, doi: 10.1016/j.trc.2012.02.001.
  • Dominguez, M., Cardador, A.F., Cucala, A.P., Gonsalves, T. & Fernandez, A. (2014). Multi objective particle swarm optimization algorithm for the design of efficient ATO speed profiles in metro lines. Engineering Applications of Artificial Intelligence, 29: 43-53. doi: 10.1016/j.engappai.2013.12.015.
  • EIA, (2016). Transportation sector energy consumption 2016. https://www.eia.gov/outlooks/ieo/pdf/transportation.pdf.
  • Fazel, S.S, Firouzian, S., & Shandiz, B.K. (2014). Energy-efficient emplacement of reversible DC traction power substations in urban rail transport through regenerative energy recovery. International Journal of Railway Research, 1(2):11-22.
  • Feng, J., Ye, Z., Wang, C., Xu, M. & S. Labi, (2019). An integrated optimization model for energy saving in metro operations. IEEE Transactions on Intelligent Transportation Systems, 20(8):3059-3069. doi: 10.1109/TITS.2018.2871347.
  • Gelman, V. (2009). Braking energy recuperation. IEEE Vehicular Technology Magazine, 4(3): 82-89. doi: 10.1109/MVT.2009.933480
  • Gkortzas, I.P. (2016). Study on optimal train movement for minimum energy consumption. MSc Thesis, Malardalen University, Sweden.
  • Gonzalez-Gil, A., Palacin, R., Batty, P., Powell, J.P. (2014). A systems approach to reduce urban rail energy consumption. Energy Conversion and Management, 80: 509-524. doi: 10.1016/j.enconman.2014.01.060.
  • Hartland, D. (2012). Heating the countryside or saving the kilowatt hours. IMechE Railway division seminar gaining traction in energy efficiency, London.
  • Henning, P.H., Fuchs, H.D., Roux, A.D. &Mouton, H.D. (2008). A 1.5 MW seven-cell series-stacked converters as an active power filter and regeneration converter for a DC traction substation. IEEE Transactions on Power Electronics, 23(5): 2230-2236. doi: 10.1109/TPEL.2008.2001882.
  • Higgins, A., Kozan, E. & Ferreira, L. (1996). Optimal scheduling of trains on a single line track.Transportation Research Part B: Methodological, 30(2): 147-161. doi: 10.1016/0191-2615(95)00022-4.
  • Hoang, H., Polis, M., & Hauire A. (1975). Reducing energy consumption through trajectory optimization for a metro network. IEEE Transactions on Automatic Control, 20 (5): 590-595. doi: 10.1109/TAC.1975.1101058.
  • Hofer, J., Wilhelm, E. J. & Schenler, W. (2014). Comparing the mass, energy and cost effects of light weighting in conventional and electric passenger vehicles. Journal of Sustainable Development of Energy, Water and Environment Systems, 2(3): 284-295. doi: 10.13044/j.sdewes.2014.02.0023.
  • Howlett, P. (1990). An optimal strategy for the control of a train. Journal of the Australian Mathematical Society, Series B. Applied Mathematics, 31(4): 454-471.doi: 10.1016/0005-1098(95)00184-0.
  • Howlett, P. & Cheng, J. (1997). Optimal driving strategies for a train on a track with continuously varying gradient. Journal of the Australian Mathematical Society. Series B. Applied Mathematics, 38(3): 388-410. doi: 10.1017/S0334270000000746.
  • Ichikawa, K. (1968). Application of optimization theory for bounded state variable problems to the operation of train. Bulletin of Japan Society of Mechanical Engineers, 11 (47): 857-865.
  • IEA, (2019). World energy outlook 2019. https://www.iea.org/reports/world-energy-outlook-2019.
  • Kampeerawat W. & Koseki, T. (2017). A strategy for utilization of regenerative energy in urban railway system by application of smart train scheduling and wayside energy storage system. Energy Procedia, 138: 795-800, 2017. doi: 10.1016/j.egypro.2017.10.070.
  • Keskin, I. (2013). Railway track designing effects on energy consumption, Master Thesis, Istanbul Technical University, Istanbul.
  • Keskin K. and Karamancıoğlu, A. (2017). Energy-efficient train operation using nature-inspired algorithms. Journal of Advanced Transportation, 2017: 1-12. doi: 10.1155/2017/6173795.
  • Khodaparastan, M., Mohamed, A. & Brandauer, W. (2019). Recuperation of regenerative braking energy in electric rail transit systems. IEEE Transactions on Intelligent Transportation Systems, 20 (8): 2831-2847. doi: 10.1109/TITS.2018.2886809.
  • Kim, K.M.,Kim, K.T. & Han, M.S., (2011). A model and approaches for synchronized energy saving in timetabling. 9th World Congress on Railway Research, France.
  • Ko, H, Koseki, T., Miyateke, M. (2004). Application of dynamic programming to the optimization of the running profile of a train. Computers in Railways IX, 74: 1-10, doi: 10.2495/CR040111.
  • Li, W. & Sun, J. (2013). Numerical simulation and analysis of transport air conditioning system integrated with passenger compartment. Applied Thermal Engineering, 50(1): 37-45, 2013. doi: 10.1016/j.applthermaleng.2012.05.030.
  • Li, Z., Chen, L., Roberts, C., Zhao, N. (2018). Dynamic trajectory optimization design for railway driver advisor system. IEEE Intelligent Transportation Systems Magazine, 10(1): 121-132. doi: 10.1109/mits.2017.2776134.
  • Liu, H., Zhou, M., Guo, X., Zhang, Z., Ning, B. & Tang, T (2018). Timetable optimization for regenerative energy utilization in subway systems. IEEE Transactions on Intelligent Transportation Systems, 20(9):3247-3257. doi: 10.1109/TITS.2018.2873145.
  • Liu, W., Tang, T., Su, S., Yin, J., Cao, Y., Wang, C. (2019). Energy efficient train driving strategy with considering the step downhill segment. Processes, 7(2), 77. doi: 0.3390/pr7020077.
  • Lu, S. (2011). Optimizing power management strategies for railway traction systems, PhD thesis of Birmingham University, UK.
  • Ma, W., Liu, X., Li, L., Shi, X. & Zhou, C. (2009). Research on the waiting time of passengers and escalator energy consumption at the railway station. Energy and Buildings, 41(12): 1313-1318. doi: 10.1016/j.enbuild.2009.07.027.
  • Mandic, M., Uglesic, I. & Milardic, V. (2011). Method for optimization of energy consumption of electrical trains. International Review of Electrical Engineering, 6 (1):292-299.
  • Mellitt, B., Mouneimne, Z.S. & Goodman, C.J. (1984). Simulation study of DC transit systems with inverting substations. IEEE Proceedings B (Electric Power Applications, 131(2): 38-50. doi: 10.1049/ip-b.1984.0008.
  • Milroy, I.P. (1980). Aspects of Automatic Train Control. Ph.D. Dissertation, Loughborough University, United Kingdom, 1980
  • Montrone, T., Pellegrini P. & Nobili P. (2017). Energy consumption minimization problem in a railway network. Transportation Research Procedia, 22: 85-94. doi: 10.1016/j.trpro.2017.03.013.
  • Ordody, P. (2000). Thermal comfort in the passenger areas of the Budapest metro. Period Polytech Mech. Eng., 44(2):309-317.
  • Pektaş, I. (2021). Raylı sistemler sektör raporu 2021. https://www.anadoluraylisistemler.org/content/upload/document-files/rayli-sistemler-sektor-ra-20211224173243.pdf.
  • Pena-Alcaraz, M., Fernandez, A., Cucala, A.P., Ramos, A., & Pecharroman, R. (2011). Optimal underground timetable design based on power flow maximizing the use of regenerative-braking energy. Proceedings of the Institution of Mechanical Engineers Part F Journal of Rail and Rapid Transit, 226(4): 397-408. doi: 10.1177/0954409711429411.
  • Philipose A. & Rajesh, A. (2016). Investigation on energy efficient sensor node placement in railway systems. Engineering Science and Technology, 19(2): 754-768. doi: 10.1016/j.jestch.2015.10.009.
  • Qian, B., Yu, T., Bi, H. & Lei, B. (2019). Measurements of energy consumption and environment quality of high-speed railway stations in China. Energies, 13(1):168.
  • Ramos, A., Pena, M.T., Fernandez A., & Cucala, P. (2007). Mathematical programming approach to underground timetabling problem for maximizing time synchronization. International Conference on Industrial Engineering & Industrial Management, Spain.
  • Republic of Turkey Ministry of Energy and Natural Resources, 2023. https://enerji.gov.tr/bilgi-merkezi-enerji-elektrik.
  • Rocha, A., Araujo, A., Carvalho, A. & Sepulveda J. (2018). A new approach for real-time train energy efficiency optimization.Energies, 11: 11-21. doi: 10.3390/en11102660.
  • Roch-Dupre, D., Lopez-Lopez, A., Pecharroman, R.R., Cucala, A.P. & Cardador, A.F. (2017). Analysis of the demand charge in DC railway systems and reduction of its economic impact with energy storage systems. Electrical Power &Energy Systems, 93: 459-467. doi: 0.1016/j.ijepes.2017.06.022
  • Roch-Dupre, D., Cucala, A.P., Pecharroman, R.R., Lopez-Lopez, A. J. & Cardador, A.F. (2018). Evaluation of the impact that the traffic model used in railway electrical simulation has on the assessment of the installation of a reversible substation. Electrical Power& Energy Systems, 102: 201-210. doi: 10.1016/j.ijepes.2018.04.030.
  • Rupp, A., Baier, H., Mertiny, P. & Secanell, M. (2016). Analysis of a flywheel energy storage system for a light rail transit. Energy, 107: 625- 638. doi: 10.1016/j.energy.2016.04.051.
  • Steiner, M., Klohr, M. & Pagiela, S. (2007). Energy storage system with ultracaps on board of railway vehicles. 2007 European Conference on Power Electronics and Applications, 2-5 September, Denmark
  • Su, S., Li, X., Tang, T.& Gao, Z. (2013). A subway train timetable optimization approach based on energy efficient operation strategy. IEEE Transactions on Intelligent Transportation Systems, 14(2): 883-893. doi: 10.1109/TITS.2013.2244885.
  • Su, S., Tang, T. and Wang, Y. (2016). Evaluation of strategies to reducing traction energy consumption of metro systems using an optimal train control simulation model. Energies, 9(2): 1-19. doi: 10.3390/en9020105.
  • Wong, K.K. & Ho, T.K. (2004). Coast control for mass rapid transit railways with searching methods, IEE Electric Power Applications, 151(3): 365-376. doi: 10.1049/ip-epa:20040346.
  • Wong, K.K. & Ho, T.K. (2007). Dwell time and run-time control for DC mass rapid transit railways. IET Electric Power Applications, 1(6): 956-966. doi: 10.1049/iet-epa:20060132
  • World Energy Council, (2018). 2018 Outlook for energy: A view to 2040. https://www.aop.es/wp-content/uploads/2019/05/2018-Outlook-for-Energy-Exxon.pdf.
  • Wu, C., Lu, S., Xue, F., Jiang, L. & Chen, M. (2020). Optimal sizing of onboard energy storage devices for electrified railway systems. IEEE Transactions on Transportation Electrification, 6(3):1301-1311. doi: 10.13140/RG.2.2.34087.78243.
  • Xing, Z., Zhang Z., Guo, J., Qin, Y. & Jia, L. (2023). Rail train operation energy-saving optimization based on improved brute-force search. Applied Energy, 330(Part A):120345. doi:1 0.1016/j.apenergy.2022.120345.
  • Xu, X., Li, K. & Li, X. (2016). A multi-objective subway timetable optimization approach with minimum passenger time and energy consumption. Journal of Advanced Transportation, 50: 69-95. doi: 10.1002/atr.1317
  • Yang, X., Li, X., Ning, B. & Tang T. (2015). A survey on energy efficient train operation for urban rail transport. IEEE Transactions on Intelligent Transportation Systems, 17(1): 2-13. doi: 10.1109/TITS.2015.2447507.
  • Yang, X., Li, X., Ning, B. & Tang, T. (2015). An optimization method for train scheduling with minimum energy consumption and travel time in metro rail systems. Transportmetrica B: Transport Dynamics, 3(2):79-98. doi: 0.1080/21680566.2015.1007577.
  • Yang, J., Liu, M., Zhang, H., Zheng, W., You, S. & Cui, T. (2022). Ventilation and energy performance study on platform screen doors with adjustable vents in a subway station. Tunneling and Underground Space Technology, 120(10429). doi: 10.1016/j.tust.2021.104291.
  • Zhang, W., & Wei, J. (2012). The experimental research on Beijing subway air-conditioning system energy saving. Applied Mechanics and Materials, 170-173: 2494-2498.
  • Zhang, H., Cui, T., Liu, M., Zheng, W., Zhu, C., You, S. & Zhang, Y. (2017). Energy performance investigation of an innovative environmental control system in subway station. Building and Environment, 126: 68-81. doi: 10.1016/j.buildenv.2017.09.023.
  • Zhang, G., Tian, Z., Tricoli, P., Hillmansen, S., Wang, Y. & Liu, Z. (2019). Inverter operating characteristics optimization for DC traction power supply systems. IEEE Transactions on Vehicular Technology, 68(4):3400-3410. doi: 10.1109/TVT.2019.2899165.
  • Zhao, N., Roberts, C., Hillmansen, S., Tian, Z., Weston, P. & Chen, L. (2017). An integrated metro operation optimization to minimize energy consumption. Transportation Research Part C, 75: 168-182.doi: 0.1016/j.trc.2016.12.013.
  • Zhu, Y., Mao, B., Bai, Y., Chen, S. (2017). A bi-level model for single-line rail timetable design with consideration of demand and capacity. Transportation Research Part C: Emerging Technologies, 85: 211-233. doi: 10.1016/j.trc.2017.09.002

Raylı Sistemlerde Enerji Verimliliğinin Sağlanmasına Yönelik Kapsamlı Bir Araştırma

Year 2024, Volume: 16 Issue: 1, 30 - 46, 31.01.2024

Abstract

Günümüzde enerji ihtiyacının artması ve bazı enerji kaynaklarının tükenme riski, sürdürülebilir yaşam için endişe verici bir durumdur. Bu nedenle enerji verimliliği ve enerji kayıplarının önlenmesi çok önemlidir. Ulaşım, enerjinin en yoğun kullanıldığı sektörlerden biridir. Her alanda olduğu gibi bu sektörde de aşırı enerji kullanımının önüne geçilmesi amaçlanmaktadır. Bu konudaki en önemli faaliyetlerden biri de toplu ulaşımın teşvik edilmesi olup, bu anlamda büyük şehirlerde raylı sistemler sıklıkla tercih edilmektedir. Ancak bu sistemlerin giderek yaygınlaşan ağ yapılarından dolayı enerji tüketimleri de artmaktadır. Bu nedenle bu sistemler üzerinde yapılan enerji verimliliği çalışmaları, temiz ve sürdürülebilir yaşam üzerinde önemli bir etkiye sahiptir ve araştırmacıların ilgisini çekmektedir. Raylı sistemlerde enerji verimliliği çalışmaları, karmaşık yapılarından dolayı çeşitlilik göstermektedir. Bu çalışmada, raylı sistemlerde enerji tüketimi ve verimlilik kavramları, bu konuda literatürde yapılan çalışmalar ve kullanılan teknolojiler ve yöntemler incelenmiştir. Makale çıktıları enerji verimliliği açısından değerlendirilerek geleceğe yönelik bir değerlendirme yapılmıştır.

References

  • Açıkbaş, S. & Söylemez, M.T. (2004). Energy loss comparison between 750 VDC and 1500 VDC power supply systems using rail power simulation. Computers in Railways IX, WIT Press, 2004.
  • Açıkbaş, S. & Söylemez, M.T. (2005). Energy efficiency and parallelization of catenary systems in rail public transportation. I. Energy Efficiency and Quality Symposium, Kocaeli.
  • Albrecht, T. (2004). Reducing power peaks and energy consumption in rail transit systems by simultaneous train running time control. Computers in Railways IX, 74(10): 885-894, 2004. doi:10.2495/CR040881.
  • Alekseeva, T.L., Ryabchyonok, N.L., Astrakhancev, L.A,, Mihalchuk N.L.& Tikhomirov, V.A. (2021). Improving the efficiency of the railway electric power system. IOP Conference Series: Materials Science and Engineering,1151, 2021.
  • Alfieri, L., Battistelli, L. & Pagano, M. (2019). Impact on railway infrastructure of wayside energy storage systems for regenerative braking management: A case study on a real Italian railway infrastructure. IET Electrical Systems in Transportation, 9(3):140-149. doi: 10.1049/iet-est.2019.0005
  • Amri, H., Hofstadter, R.N. & Kozek, M. (2011). Energy efficient design and simulation of a demand controlled heating and ventilation unit in a metro vehicle. Proc. IEEE Forum on Integrated and Sustainable Transportation Systems, 29 June-1 July, Austria.
  • Arıkan, Y., Şen, T. & Çam, E. (2021). Energy efficiency in rail systems with coasting control method using GA and ABC optimizations. Tehnički vjesnik, 28 (4): 1127-1135. doi: 10.17559/TV-20200511115919.
  • Arıkan, Y., Şen, T., & Çam, E. (2022). Actual-time modeling of a subway vehicle and optimal driving management with GA and ABC algorithms. Journal of Engineering Research, 10 (4A): 204-218. pp. 204-218, 2022. doi: 10.36909/jer.10205.
  • Barrero, R., Tackoen, X., & Mierlo, J.V. 2010. Stationary or onboard energy storage systems for energy consumption reduction in a metro network. Journal of Rail and Rapid Transit, 224 (3): 207-225. doi: 10.1243/09544097JRRT322
  • Bocharnikov, Y.V., Tobias, A. M., Roberts, C. ,Hillmansen, S., Goodman, C.J (2007). Optimal driving strategy for traction energy saving on DC suburban railways. IET Electric Power Applications, 1(5): 675-682. doi: 10.1049/iet-epa:20070005.
  • Bocharnikov, Y. V., Tobias, A.M., & Roberts, C. (2010). Reduction of train and net energy consumption using genetic algorithms for trajectory optimization IET Conference on Railway Traction Systems, 13-15 April, Birmingham, UK. doi: 10.1049/ic.2010.0038
  • Bonnett, C.F. (2005). Practical railway engineering. Imperial College Press.
  • BP, (2020). Statistical review of world energy 2020. https://www.bp.com/content/dam/bp/businesssites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2020-full-report.pdf.
  • Brenna, M., Foiadelli, F. & Longo M. (2016). Application of genetic algorithms for driverless subway train energy optimization. International Journal of Vehicular Technology, pp.1-14. doi: 10.1155/2016/8073523.
  • Carruthers, J.J., Calomfirescu, M., Ghys, P. & Prockat, J. (2009). The application of a systematic approach to material selection for the light weighting of metro vehicles. Proc. of the Institution of Mechanical Engineers Part F Journal of Rail and Rapid Transit, 223(5): 427-437. doi: 10.1243/09544097JRRT27
  • Chen, J., Lin, R., & Liu, Y. (2005). Optimization of an MRT train schedule: Reducing maximum traction power by using genetic algorithms. IEEE Transactions on Power Systems, 20(3):1366-1372. doi: 10.1109/TPWRS.2005.851939.
  • Chau, N.K.C., Wai, E.C.K. & Wing, K.C.K. (2008). Energy efficient technologies for railway escalators. Proc. International Conference on Railway Engineering, 25-28 March, Hong Kong.
  • Chow, W.K. (2002). Ventilation of enclosed train compartments in Hong Kong. Applied Energy, 71(3): 161-170. doi: 10.1016/S0306-2619(02)00008-9.
  • Ciccarelli, F., Iannuzzi, D & Tricoli, P. (2012). Control of metro-trains equipped with onboard supercapacitors for energy saving and reduction of power peak demand. Transportation Research Part C: Emerging Technologies, 24:36-49, doi: 10.1016/j.trc.2012.02.001.
  • Dominguez, M., Cardador, A.F., Cucala, A.P., Gonsalves, T. & Fernandez, A. (2014). Multi objective particle swarm optimization algorithm for the design of efficient ATO speed profiles in metro lines. Engineering Applications of Artificial Intelligence, 29: 43-53. doi: 10.1016/j.engappai.2013.12.015.
  • EIA, (2016). Transportation sector energy consumption 2016. https://www.eia.gov/outlooks/ieo/pdf/transportation.pdf.
  • Fazel, S.S, Firouzian, S., & Shandiz, B.K. (2014). Energy-efficient emplacement of reversible DC traction power substations in urban rail transport through regenerative energy recovery. International Journal of Railway Research, 1(2):11-22.
  • Feng, J., Ye, Z., Wang, C., Xu, M. & S. Labi, (2019). An integrated optimization model for energy saving in metro operations. IEEE Transactions on Intelligent Transportation Systems, 20(8):3059-3069. doi: 10.1109/TITS.2018.2871347.
  • Gelman, V. (2009). Braking energy recuperation. IEEE Vehicular Technology Magazine, 4(3): 82-89. doi: 10.1109/MVT.2009.933480
  • Gkortzas, I.P. (2016). Study on optimal train movement for minimum energy consumption. MSc Thesis, Malardalen University, Sweden.
  • Gonzalez-Gil, A., Palacin, R., Batty, P., Powell, J.P. (2014). A systems approach to reduce urban rail energy consumption. Energy Conversion and Management, 80: 509-524. doi: 10.1016/j.enconman.2014.01.060.
  • Hartland, D. (2012). Heating the countryside or saving the kilowatt hours. IMechE Railway division seminar gaining traction in energy efficiency, London.
  • Henning, P.H., Fuchs, H.D., Roux, A.D. &Mouton, H.D. (2008). A 1.5 MW seven-cell series-stacked converters as an active power filter and regeneration converter for a DC traction substation. IEEE Transactions on Power Electronics, 23(5): 2230-2236. doi: 10.1109/TPEL.2008.2001882.
  • Higgins, A., Kozan, E. & Ferreira, L. (1996). Optimal scheduling of trains on a single line track.Transportation Research Part B: Methodological, 30(2): 147-161. doi: 10.1016/0191-2615(95)00022-4.
  • Hoang, H., Polis, M., & Hauire A. (1975). Reducing energy consumption through trajectory optimization for a metro network. IEEE Transactions on Automatic Control, 20 (5): 590-595. doi: 10.1109/TAC.1975.1101058.
  • Hofer, J., Wilhelm, E. J. & Schenler, W. (2014). Comparing the mass, energy and cost effects of light weighting in conventional and electric passenger vehicles. Journal of Sustainable Development of Energy, Water and Environment Systems, 2(3): 284-295. doi: 10.13044/j.sdewes.2014.02.0023.
  • Howlett, P. (1990). An optimal strategy for the control of a train. Journal of the Australian Mathematical Society, Series B. Applied Mathematics, 31(4): 454-471.doi: 10.1016/0005-1098(95)00184-0.
  • Howlett, P. & Cheng, J. (1997). Optimal driving strategies for a train on a track with continuously varying gradient. Journal of the Australian Mathematical Society. Series B. Applied Mathematics, 38(3): 388-410. doi: 10.1017/S0334270000000746.
  • Ichikawa, K. (1968). Application of optimization theory for bounded state variable problems to the operation of train. Bulletin of Japan Society of Mechanical Engineers, 11 (47): 857-865.
  • IEA, (2019). World energy outlook 2019. https://www.iea.org/reports/world-energy-outlook-2019.
  • Kampeerawat W. & Koseki, T. (2017). A strategy for utilization of regenerative energy in urban railway system by application of smart train scheduling and wayside energy storage system. Energy Procedia, 138: 795-800, 2017. doi: 10.1016/j.egypro.2017.10.070.
  • Keskin, I. (2013). Railway track designing effects on energy consumption, Master Thesis, Istanbul Technical University, Istanbul.
  • Keskin K. and Karamancıoğlu, A. (2017). Energy-efficient train operation using nature-inspired algorithms. Journal of Advanced Transportation, 2017: 1-12. doi: 10.1155/2017/6173795.
  • Khodaparastan, M., Mohamed, A. & Brandauer, W. (2019). Recuperation of regenerative braking energy in electric rail transit systems. IEEE Transactions on Intelligent Transportation Systems, 20 (8): 2831-2847. doi: 10.1109/TITS.2018.2886809.
  • Kim, K.M.,Kim, K.T. & Han, M.S., (2011). A model and approaches for synchronized energy saving in timetabling. 9th World Congress on Railway Research, France.
  • Ko, H, Koseki, T., Miyateke, M. (2004). Application of dynamic programming to the optimization of the running profile of a train. Computers in Railways IX, 74: 1-10, doi: 10.2495/CR040111.
  • Li, W. & Sun, J. (2013). Numerical simulation and analysis of transport air conditioning system integrated with passenger compartment. Applied Thermal Engineering, 50(1): 37-45, 2013. doi: 10.1016/j.applthermaleng.2012.05.030.
  • Li, Z., Chen, L., Roberts, C., Zhao, N. (2018). Dynamic trajectory optimization design for railway driver advisor system. IEEE Intelligent Transportation Systems Magazine, 10(1): 121-132. doi: 10.1109/mits.2017.2776134.
  • Liu, H., Zhou, M., Guo, X., Zhang, Z., Ning, B. & Tang, T (2018). Timetable optimization for regenerative energy utilization in subway systems. IEEE Transactions on Intelligent Transportation Systems, 20(9):3247-3257. doi: 10.1109/TITS.2018.2873145.
  • Liu, W., Tang, T., Su, S., Yin, J., Cao, Y., Wang, C. (2019). Energy efficient train driving strategy with considering the step downhill segment. Processes, 7(2), 77. doi: 0.3390/pr7020077.
  • Lu, S. (2011). Optimizing power management strategies for railway traction systems, PhD thesis of Birmingham University, UK.
  • Ma, W., Liu, X., Li, L., Shi, X. & Zhou, C. (2009). Research on the waiting time of passengers and escalator energy consumption at the railway station. Energy and Buildings, 41(12): 1313-1318. doi: 10.1016/j.enbuild.2009.07.027.
  • Mandic, M., Uglesic, I. & Milardic, V. (2011). Method for optimization of energy consumption of electrical trains. International Review of Electrical Engineering, 6 (1):292-299.
  • Mellitt, B., Mouneimne, Z.S. & Goodman, C.J. (1984). Simulation study of DC transit systems with inverting substations. IEEE Proceedings B (Electric Power Applications, 131(2): 38-50. doi: 10.1049/ip-b.1984.0008.
  • Milroy, I.P. (1980). Aspects of Automatic Train Control. Ph.D. Dissertation, Loughborough University, United Kingdom, 1980
  • Montrone, T., Pellegrini P. & Nobili P. (2017). Energy consumption minimization problem in a railway network. Transportation Research Procedia, 22: 85-94. doi: 10.1016/j.trpro.2017.03.013.
  • Ordody, P. (2000). Thermal comfort in the passenger areas of the Budapest metro. Period Polytech Mech. Eng., 44(2):309-317.
  • Pektaş, I. (2021). Raylı sistemler sektör raporu 2021. https://www.anadoluraylisistemler.org/content/upload/document-files/rayli-sistemler-sektor-ra-20211224173243.pdf.
  • Pena-Alcaraz, M., Fernandez, A., Cucala, A.P., Ramos, A., & Pecharroman, R. (2011). Optimal underground timetable design based on power flow maximizing the use of regenerative-braking energy. Proceedings of the Institution of Mechanical Engineers Part F Journal of Rail and Rapid Transit, 226(4): 397-408. doi: 10.1177/0954409711429411.
  • Philipose A. & Rajesh, A. (2016). Investigation on energy efficient sensor node placement in railway systems. Engineering Science and Technology, 19(2): 754-768. doi: 10.1016/j.jestch.2015.10.009.
  • Qian, B., Yu, T., Bi, H. & Lei, B. (2019). Measurements of energy consumption and environment quality of high-speed railway stations in China. Energies, 13(1):168.
  • Ramos, A., Pena, M.T., Fernandez A., & Cucala, P. (2007). Mathematical programming approach to underground timetabling problem for maximizing time synchronization. International Conference on Industrial Engineering & Industrial Management, Spain.
  • Republic of Turkey Ministry of Energy and Natural Resources, 2023. https://enerji.gov.tr/bilgi-merkezi-enerji-elektrik.
  • Rocha, A., Araujo, A., Carvalho, A. & Sepulveda J. (2018). A new approach for real-time train energy efficiency optimization.Energies, 11: 11-21. doi: 10.3390/en11102660.
  • Roch-Dupre, D., Lopez-Lopez, A., Pecharroman, R.R., Cucala, A.P. & Cardador, A.F. (2017). Analysis of the demand charge in DC railway systems and reduction of its economic impact with energy storage systems. Electrical Power &Energy Systems, 93: 459-467. doi: 0.1016/j.ijepes.2017.06.022
  • Roch-Dupre, D., Cucala, A.P., Pecharroman, R.R., Lopez-Lopez, A. J. & Cardador, A.F. (2018). Evaluation of the impact that the traffic model used in railway electrical simulation has on the assessment of the installation of a reversible substation. Electrical Power& Energy Systems, 102: 201-210. doi: 10.1016/j.ijepes.2018.04.030.
  • Rupp, A., Baier, H., Mertiny, P. & Secanell, M. (2016). Analysis of a flywheel energy storage system for a light rail transit. Energy, 107: 625- 638. doi: 10.1016/j.energy.2016.04.051.
  • Steiner, M., Klohr, M. & Pagiela, S. (2007). Energy storage system with ultracaps on board of railway vehicles. 2007 European Conference on Power Electronics and Applications, 2-5 September, Denmark
  • Su, S., Li, X., Tang, T.& Gao, Z. (2013). A subway train timetable optimization approach based on energy efficient operation strategy. IEEE Transactions on Intelligent Transportation Systems, 14(2): 883-893. doi: 10.1109/TITS.2013.2244885.
  • Su, S., Tang, T. and Wang, Y. (2016). Evaluation of strategies to reducing traction energy consumption of metro systems using an optimal train control simulation model. Energies, 9(2): 1-19. doi: 10.3390/en9020105.
  • Wong, K.K. & Ho, T.K. (2004). Coast control for mass rapid transit railways with searching methods, IEE Electric Power Applications, 151(3): 365-376. doi: 10.1049/ip-epa:20040346.
  • Wong, K.K. & Ho, T.K. (2007). Dwell time and run-time control for DC mass rapid transit railways. IET Electric Power Applications, 1(6): 956-966. doi: 10.1049/iet-epa:20060132
  • World Energy Council, (2018). 2018 Outlook for energy: A view to 2040. https://www.aop.es/wp-content/uploads/2019/05/2018-Outlook-for-Energy-Exxon.pdf.
  • Wu, C., Lu, S., Xue, F., Jiang, L. & Chen, M. (2020). Optimal sizing of onboard energy storage devices for electrified railway systems. IEEE Transactions on Transportation Electrification, 6(3):1301-1311. doi: 10.13140/RG.2.2.34087.78243.
  • Xing, Z., Zhang Z., Guo, J., Qin, Y. & Jia, L. (2023). Rail train operation energy-saving optimization based on improved brute-force search. Applied Energy, 330(Part A):120345. doi:1 0.1016/j.apenergy.2022.120345.
  • Xu, X., Li, K. & Li, X. (2016). A multi-objective subway timetable optimization approach with minimum passenger time and energy consumption. Journal of Advanced Transportation, 50: 69-95. doi: 10.1002/atr.1317
  • Yang, X., Li, X., Ning, B. & Tang T. (2015). A survey on energy efficient train operation for urban rail transport. IEEE Transactions on Intelligent Transportation Systems, 17(1): 2-13. doi: 10.1109/TITS.2015.2447507.
  • Yang, X., Li, X., Ning, B. & Tang, T. (2015). An optimization method for train scheduling with minimum energy consumption and travel time in metro rail systems. Transportmetrica B: Transport Dynamics, 3(2):79-98. doi: 0.1080/21680566.2015.1007577.
  • Yang, J., Liu, M., Zhang, H., Zheng, W., You, S. & Cui, T. (2022). Ventilation and energy performance study on platform screen doors with adjustable vents in a subway station. Tunneling and Underground Space Technology, 120(10429). doi: 10.1016/j.tust.2021.104291.
  • Zhang, W., & Wei, J. (2012). The experimental research on Beijing subway air-conditioning system energy saving. Applied Mechanics and Materials, 170-173: 2494-2498.
  • Zhang, H., Cui, T., Liu, M., Zheng, W., Zhu, C., You, S. & Zhang, Y. (2017). Energy performance investigation of an innovative environmental control system in subway station. Building and Environment, 126: 68-81. doi: 10.1016/j.buildenv.2017.09.023.
  • Zhang, G., Tian, Z., Tricoli, P., Hillmansen, S., Wang, Y. & Liu, Z. (2019). Inverter operating characteristics optimization for DC traction power supply systems. IEEE Transactions on Vehicular Technology, 68(4):3400-3410. doi: 10.1109/TVT.2019.2899165.
  • Zhao, N., Roberts, C., Hillmansen, S., Tian, Z., Weston, P. & Chen, L. (2017). An integrated metro operation optimization to minimize energy consumption. Transportation Research Part C, 75: 168-182.doi: 0.1016/j.trc.2016.12.013.
  • Zhu, Y., Mao, B., Bai, Y., Chen, S. (2017). A bi-level model for single-line rail timetable design with consideration of demand and capacity. Transportation Research Part C: Emerging Technologies, 85: 211-233. doi: 10.1016/j.trc.2017.09.002
There are 79 citations in total.

Details

Primary Language English
Subjects Power Plants
Journal Section Articles
Authors

Yağmur Arıkan 0000-0003-0947-2832

Özge Pinar Akkaş 0000-0001-5704-4678

Ertuğrul Çam 0000-0001-6491-9225

Publication Date January 31, 2024
Submission Date August 22, 2023
Published in Issue Year 2024 Volume: 16 Issue: 1

Cite

APA Arıkan, Y., Akkaş, Ö. P., & Çam, E. (2024). A Comprehensive Research on Ensuring Energy Efficiency in Rail Systems. International Journal of Engineering Research and Development, 16(1), 30-46.

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.