Research Article
BibTex RIS Cite

Dependencies of Parameter and Load Toque Sensitivities of Electric Motor Outputs on Design Requirements

Year 2024, Volume: 16 Issue: 2, 692 - 706, 30.06.2024
https://doi.org/10.29137/umagd.1411916

Abstract

Sensitivity analysis is useful for parameter estimation and decision-making processes. It guides researchers in which input is more effective for controlling an output and which output provides more information to estimate a system parameter. This study is concerned with the sensitivities of the measurable states of electric motors to the model parameters and load torque. Its contribution is investigating the sensitivities’ dependencies on design requirements. It has been revealed that some design requirements such as rated voltage, power, and speed have no effect on most sensitivities to the motor parameters. A similar study on transformers is also included with similar results. The results evoke some optimization choices about adjusting the sensitivities since the search space dimension is reduced. They also yield some educational benefits. Since such a theoretical study requires precise measurements or disturbance-free information, experimental work could not be very useful. Therefore, either mathematical model analysis or simulations have been used to calculate the sensitivities. For the same reason, design requirements are considered from the algorithms determining the model parameters of electric machinery according to desired operating conditions for simulation purposes. Dependencies have been found analytically for dc motors but numerically for ac motors, and transformers.

References

  • Ahmed, W. A. E. M., Adel, M. M., Taha, M., & Saleh, A. A. (2021). PSO technique applied to sensorless field-oriented control PMSM drive with discretized RL-fractional integral. Alexandria Engineering Journal, 60(4), 4029-4040. https://doi.org/10.1016/j.aej.2021.02.049
  • Amin, R. U., & Aijun, L. (2017). Design of mixed sensitivity h∞ control for four-rotor hover vehicle. International Journal of Automation and Control, 11(1), 89–103. https://doi.org/10.1504/IJAAC.2017.080821
  • Boglietti, A., Cavagnino A., & Staton, D. A. (2004). TEFC induction motors thermal models: A parameter sensitivity analysis. IEEE Industry Applications Conference, 39th IAS Annual Meeting, Seattle, Washington USA, vol. 4, pp. 2469-2476, 3-7 October 2004. https://doi.org/10.1109/IAS.2004.1348822
  • Brandstetter, P., Neborak, I., & Kuchar, M. (2017). Analysis of Steady-State Error in Torque Current Component Control of PMSM Drive. Advances in Electrical and Computer Engineering, 17(2), 39-46. https://doi.org/10.4316/AECE.2017.02006
  • Bujoreanu, I. N. (2011). What If (Sensitivity Analysis). Journal of Defense Resources Management, 2(1), 45-50. http://www.jodrm.eu/issues/volume2_issue1/05_bujoreanu.pdf
  • Cenikli, M. B., & Akgüngör, A. P. (2020). Sabit Cisme Çarpmaya Bağlı Trafik Kazalarında Etkili Parametrelerin Faktöriyel Tasarım Yöntemi ile Belirlenmesi. Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi, 12(1), 148-157. https://doi.org/10.29137/umagd.618653
  • Chang, K.-H. (2014). Design Theory and Methods using CAD/CAE: The computer aided engineering design series. Academic Press, Elsevier, pp. 211-323.
  • Choudhary, T., Verma, T. N., Sahu, M. K., Rajak, U., & Sanyaj, S. (2023). Thermodynamic sensitivity analysis of SOFC integrated with blade cooled gas turbine hybrid cycle. Journal of Thermal Engineering, 9(1), 205-217. https://doi.org/10.18186/thermal.1245130
  • Denizhan, O., & Chew, M. S. (2018). Linkage mechanism optimization and sensitivity analysis of an automotive engine hood. International Journal of Automotive Science And Technology, 2(1), 7-16. https://doi.org/10.30939/ijastech..364438
  • Feng, Q., Nelms, R. M., & Hung, J. Y. (2006). Posicast-Based Digital Control of the Buck Converter. IEEE Transactions on Industrial Electronics, 53(3), 759–767. https://doi.org/10.1109/TIE.2006.874418
  • Grignion, D., Chen, X., Kar N., & Qian, H. (2014). Estimation of load disturbance torque for DC motor drive systems under robustness and sensitivity consideration. IEEE Transactions on Industrial Electronics, 61(2), 930-942. https://doi.org/10.1109/TIE.2013.2257138
  • Gupta, P., & Patra, A. (2005). Super-Stable Energy Based Switching Control Scheme for DC-DC Buck Converter Circuits. In Proceedings of the IEEE International Symposium on Circuits and Systems, Kobe, Japan, pp. 3063–3066, 23–26 May 2005. https://doi.org/10.1109/ISCAS.2005.1465274
  • Hayward, V., & Cruz-Hernández, J. M. (1998). Parameter Sensitivity Analysis for Design and Control of Force Transmission Systems. ASME J. of Dynamics Systems, Measurement and Control, 120(2), 241-249. https://doi.org/10.1115/1.2802415
  • Hiskens, I. A. (2001). Stability of Hybrid System Limit Cycles: Application to the Compass Gait Biped robot. In Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, FL, USA, pp. 774–779, 4–7 December 2001. https://doi.org/10.1109/CDC.2001.980200
  • Hung, J. Y. (2001). Parameter estimation using sensitivity points: Tutorial and experiment. IEEE Transactions on Industrial Electronics, 48(6), 1043-1047. https://doi.org/10.1109/41.969382
  • Karami-Shahnani, A., Nasiri-Zarandi, R., Abbaszadeh, K., & Jamalifard, A. (2021). Proposing an Effective Armature Winding for a Small DC Motor using Sensitivity Analysis Based Algorithm. 12th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC), Tabriz, Iran, pp. 1-5, 2-4 February 2021. https://doi.org/10.1109/PEDSTC52094.2021.9405854
  • Kazerooni, H., & Tsay, T. I. (1988). Compliance control and unstructured modeling of cooperating robots. In Proceedings of the IEEE International Conference on Robotics and Automation, vol.1, pp. 510-515, 24-29 April 1988. https://doi.org/10.1109/ROBOT.1988.12103
  • Knudsen, M., & Jensen, J. G. (1995). Estimation of nonlinear DC-motor models using a sensitivity approach. Proceedings of the Third European Control Conference ECC-95, vol. 1, pp. 319-324, September 1995.
  • Li, W., Cao, D., Jöst, D., Ringbeck, F., Kuipers, M., Frie, F., & Sauer, D. U. (2020). Parameter sensitivity analysis of electrochemical model-based battery management systems for lithium-ion batteries. Applied Energy, 269, 115104. https://doi.org/10.1016/j.apenergy.2020.115104
  • Li, X., & Zhou, K. (2009). A time domain approach to robust fault detection of linear time-varying systems. Automatica, 45(1), 94-102. https://doi.org/10.1016/j.automatica.2008.07.017
  • Lima, E.E.S., & Fernandes, L. F. D. J. (2000). Assessing eigenvalue sensitivities [power system control simulation]. IEEE Transactions on Power Systems, 15(1), 299-306. https://doi.org/10.1109/59.852136
  • Liu, N., & Zhou, K. (2007). Optimal solutions to multi-objective robust fault detection problems. Proc. 46th IEEE Conf. Decision Control, New Orleans, Louisiana USA, pp. 981–988, 12-14 December 2007. https://doi.org/10.1109/CDC.2007.4434123
  • Mahmouditabar, F., Vahedi, A., Mosavi, M. R., & Bafghi, M. H. B. (2020). Sensitivity analysis and multiobjective design optimization of flux switching permanent magnet motor using MLP-ANN modeling and NSGA-II algorithm. International Transactions on Electrical Energy Systems, 30(9), e12511. https://doi.org/10.1002/2050-7038.12511
  • Mert, S. O., Özçelik, F. Z., & Kök, C. (2020). Modelling, sensitivity and exergy analysis of triple-pressure heat recovery steam generator. MANAS Journal of Engineering, 8(2), 106-114. https://doi.org/10.51354/mjen.793611
  • Online Electric Motor and Transformer Design for Simulation Purposes. (2019). Available online: https://atasevinc.net/emd/motordesign.php (accessed on 3 April 2024).
  • Özçelik, M. A. (2018). A Comparison Study of the Optical Measurement Sensitivity of the Phototransistor and Photodiode. International Journal of Engineering Research and Development, 10(1), 78-84. https://doi.org/10.29137/umagd.419662
  • Pastura, M., Nuzzo, S., Franceschini, G., Sala, G., & Barater, D. (2020). Sensitivity analysis on the voltage distribution within windings of electrical machines fed by wide band gap converters. In 2020 International Conference on Electrical Machines (ICEM) (Vol. 1, pp. 1594-1600). IEEE. https://doi.org/10.1109/ICEM49940.2020.9270958
  • Prakosa, J. A., Gusrialdi, A., Kurniawan, E., Stotckaia, A. D., & Adinanta, H. (2022). Experimentally robustness improvement of DC motor speed control optimization by H-infinity of mixed-sensitivity synthesis. International Journal of Dynamics and Control, 10(6), 1968-1980. https://doi.org/10.1007/s40435-022-00956-y
  • Prakosa, J. A., Kurniawan, E., Sirenden, B. H., Adinanta, H., Afandi, M. I., Ula R. K., & Pratomo, H. (2021). Synthesis Method of Mixed Sensitivity for H-infinity Robust Control Optimization on DC Motor of Mechatronics Model. International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET), Virtual Conference, pp. 68-73, 23-24 November 2021. https://doi.org/10.1109/ICRAMET53537.2021.9650506
  • Prempraneerach, P., Hover, F. S., Triantafyllou, M. S., Chryssostomidis, C., & Karniadakis, G. E. (2008). Sensitivity Analysis and Low-Dimensional Stochastic Modeling of Shipboard Integrated Power Systems. Proceedings of the IEEE Power Electronics Specialists Conference, Rhodes, Greece, pp. 1999–2003, 15–19 June 2008. https://doi.org/10.1109/PESC.2008.4592237
  • Ribes-Mallada, U., Leyva, R., & Garcés, P. (2011). Sensitivity Analysis in DC-DC Converter Optimal Design. Proceedings of the IEEE International Symposium on Industrial Electronics, Gdansk, Poland, pp. 358–364, 27–30 June 2011. https://doi.org/10.1109/ISIE.2011.5984185
  • Raturi, A., Patel, R. V., & Singh, D. B. (2021). A sensitivity study for n similar partly enclosed with photovoltaic thermal flat plate collectors having series connection. Journal of Thermal Engineering, 9(1), 33-44. https://doi.org/10.18186/thermal.1242825
  • Rodriguez, A., Smith, S. T., & Potter, B. (2022). Sensitivity analysis for building energy audit calculation methods: Handling the uncertainties in small power load estimation. Energy, 238, 121511. https://doi.org/10.1016/j.energy.2021.121511
  • Sevinç, A. (2019). Model Parameters of Electric Motors for Desired Operating Conditions. Advances in Electrical and Computer Engineering, 19(2), 29-37. https://doi.org/10.4316/AECE.2019.02004
  • Srinivasan, G. K., Srinivasan, H. T., & Rivera M. (2020). Sensitivity analysis of exact tracking error dynamics passive output control for a flat/partially flat converter systems. Electronics, 9, 1942. https://doi.org/10.3390/electronics9111942
  • Ványi, G., & Pokorádi L. (2018). Sensitivity analysis of FMEA as possible ranking method in risk prioritization. UPB Sci. Bull., Series D, 80(3), 55-66. https://www.scientificbulletin.upb.ro/rev_docs_arhiva/rez0b1_209265.pdf
  • Wong, B. K. H., Chung, H. S. H., & Lee, S. T. S. (2000). Computation of the Cycle State-Variable Sensitivity Matrix of PWM DC/DC Converters and Its Applications. IEEE Trans. Circuits Syst. I: Fundamental Theory and Applications, 47, 1542–1548. https://doi.org/10.1109/81.886987

Dependencies of Parameter and Load Toque Sensitivities of Electric Motor Outputs on Design Requirements

Year 2024, Volume: 16 Issue: 2, 692 - 706, 30.06.2024
https://doi.org/10.29137/umagd.1411916

Abstract

Sensitivity analysis is useful for parameter estimation and decision-making processes. It guides researchers in which input is more effective for controlling an output and which output provides more information to estimate a system parameter. This study is concerned with the sensitivities of the measurable states of electric motors to the model parameters and load torque. Its contribution is investigating the sensitivities’ dependencies on design requirements. It has been revealed that some design requirements such as rated voltage, power, and speed have no effect on most sensitivities to the motor parameters. A similar study on transformers is also included with similar results. The results evoke some optimization choices about adjusting the sensitivities since the search space dimension is reduced. They also yield some educational benefits. Since such a theoretical study requires precise measurements or disturbance-free information, experimental work could not be very useful. Therefore, either mathematical model analysis or simulations have been used to calculate the sensitivities. For the same reason, design requirements are considered from the algorithms determining the model parameters of electric machinery according to desired operating conditions for simulation purposes. Dependencies have been found analytically for dc motors but numerically for ac motors, and transformers.

References

  • Ahmed, W. A. E. M., Adel, M. M., Taha, M., & Saleh, A. A. (2021). PSO technique applied to sensorless field-oriented control PMSM drive with discretized RL-fractional integral. Alexandria Engineering Journal, 60(4), 4029-4040. https://doi.org/10.1016/j.aej.2021.02.049
  • Amin, R. U., & Aijun, L. (2017). Design of mixed sensitivity h∞ control for four-rotor hover vehicle. International Journal of Automation and Control, 11(1), 89–103. https://doi.org/10.1504/IJAAC.2017.080821
  • Boglietti, A., Cavagnino A., & Staton, D. A. (2004). TEFC induction motors thermal models: A parameter sensitivity analysis. IEEE Industry Applications Conference, 39th IAS Annual Meeting, Seattle, Washington USA, vol. 4, pp. 2469-2476, 3-7 October 2004. https://doi.org/10.1109/IAS.2004.1348822
  • Brandstetter, P., Neborak, I., & Kuchar, M. (2017). Analysis of Steady-State Error in Torque Current Component Control of PMSM Drive. Advances in Electrical and Computer Engineering, 17(2), 39-46. https://doi.org/10.4316/AECE.2017.02006
  • Bujoreanu, I. N. (2011). What If (Sensitivity Analysis). Journal of Defense Resources Management, 2(1), 45-50. http://www.jodrm.eu/issues/volume2_issue1/05_bujoreanu.pdf
  • Cenikli, M. B., & Akgüngör, A. P. (2020). Sabit Cisme Çarpmaya Bağlı Trafik Kazalarında Etkili Parametrelerin Faktöriyel Tasarım Yöntemi ile Belirlenmesi. Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi, 12(1), 148-157. https://doi.org/10.29137/umagd.618653
  • Chang, K.-H. (2014). Design Theory and Methods using CAD/CAE: The computer aided engineering design series. Academic Press, Elsevier, pp. 211-323.
  • Choudhary, T., Verma, T. N., Sahu, M. K., Rajak, U., & Sanyaj, S. (2023). Thermodynamic sensitivity analysis of SOFC integrated with blade cooled gas turbine hybrid cycle. Journal of Thermal Engineering, 9(1), 205-217. https://doi.org/10.18186/thermal.1245130
  • Denizhan, O., & Chew, M. S. (2018). Linkage mechanism optimization and sensitivity analysis of an automotive engine hood. International Journal of Automotive Science And Technology, 2(1), 7-16. https://doi.org/10.30939/ijastech..364438
  • Feng, Q., Nelms, R. M., & Hung, J. Y. (2006). Posicast-Based Digital Control of the Buck Converter. IEEE Transactions on Industrial Electronics, 53(3), 759–767. https://doi.org/10.1109/TIE.2006.874418
  • Grignion, D., Chen, X., Kar N., & Qian, H. (2014). Estimation of load disturbance torque for DC motor drive systems under robustness and sensitivity consideration. IEEE Transactions on Industrial Electronics, 61(2), 930-942. https://doi.org/10.1109/TIE.2013.2257138
  • Gupta, P., & Patra, A. (2005). Super-Stable Energy Based Switching Control Scheme for DC-DC Buck Converter Circuits. In Proceedings of the IEEE International Symposium on Circuits and Systems, Kobe, Japan, pp. 3063–3066, 23–26 May 2005. https://doi.org/10.1109/ISCAS.2005.1465274
  • Hayward, V., & Cruz-Hernández, J. M. (1998). Parameter Sensitivity Analysis for Design and Control of Force Transmission Systems. ASME J. of Dynamics Systems, Measurement and Control, 120(2), 241-249. https://doi.org/10.1115/1.2802415
  • Hiskens, I. A. (2001). Stability of Hybrid System Limit Cycles: Application to the Compass Gait Biped robot. In Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, FL, USA, pp. 774–779, 4–7 December 2001. https://doi.org/10.1109/CDC.2001.980200
  • Hung, J. Y. (2001). Parameter estimation using sensitivity points: Tutorial and experiment. IEEE Transactions on Industrial Electronics, 48(6), 1043-1047. https://doi.org/10.1109/41.969382
  • Karami-Shahnani, A., Nasiri-Zarandi, R., Abbaszadeh, K., & Jamalifard, A. (2021). Proposing an Effective Armature Winding for a Small DC Motor using Sensitivity Analysis Based Algorithm. 12th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC), Tabriz, Iran, pp. 1-5, 2-4 February 2021. https://doi.org/10.1109/PEDSTC52094.2021.9405854
  • Kazerooni, H., & Tsay, T. I. (1988). Compliance control and unstructured modeling of cooperating robots. In Proceedings of the IEEE International Conference on Robotics and Automation, vol.1, pp. 510-515, 24-29 April 1988. https://doi.org/10.1109/ROBOT.1988.12103
  • Knudsen, M., & Jensen, J. G. (1995). Estimation of nonlinear DC-motor models using a sensitivity approach. Proceedings of the Third European Control Conference ECC-95, vol. 1, pp. 319-324, September 1995.
  • Li, W., Cao, D., Jöst, D., Ringbeck, F., Kuipers, M., Frie, F., & Sauer, D. U. (2020). Parameter sensitivity analysis of electrochemical model-based battery management systems for lithium-ion batteries. Applied Energy, 269, 115104. https://doi.org/10.1016/j.apenergy.2020.115104
  • Li, X., & Zhou, K. (2009). A time domain approach to robust fault detection of linear time-varying systems. Automatica, 45(1), 94-102. https://doi.org/10.1016/j.automatica.2008.07.017
  • Lima, E.E.S., & Fernandes, L. F. D. J. (2000). Assessing eigenvalue sensitivities [power system control simulation]. IEEE Transactions on Power Systems, 15(1), 299-306. https://doi.org/10.1109/59.852136
  • Liu, N., & Zhou, K. (2007). Optimal solutions to multi-objective robust fault detection problems. Proc. 46th IEEE Conf. Decision Control, New Orleans, Louisiana USA, pp. 981–988, 12-14 December 2007. https://doi.org/10.1109/CDC.2007.4434123
  • Mahmouditabar, F., Vahedi, A., Mosavi, M. R., & Bafghi, M. H. B. (2020). Sensitivity analysis and multiobjective design optimization of flux switching permanent magnet motor using MLP-ANN modeling and NSGA-II algorithm. International Transactions on Electrical Energy Systems, 30(9), e12511. https://doi.org/10.1002/2050-7038.12511
  • Mert, S. O., Özçelik, F. Z., & Kök, C. (2020). Modelling, sensitivity and exergy analysis of triple-pressure heat recovery steam generator. MANAS Journal of Engineering, 8(2), 106-114. https://doi.org/10.51354/mjen.793611
  • Online Electric Motor and Transformer Design for Simulation Purposes. (2019). Available online: https://atasevinc.net/emd/motordesign.php (accessed on 3 April 2024).
  • Özçelik, M. A. (2018). A Comparison Study of the Optical Measurement Sensitivity of the Phototransistor and Photodiode. International Journal of Engineering Research and Development, 10(1), 78-84. https://doi.org/10.29137/umagd.419662
  • Pastura, M., Nuzzo, S., Franceschini, G., Sala, G., & Barater, D. (2020). Sensitivity analysis on the voltage distribution within windings of electrical machines fed by wide band gap converters. In 2020 International Conference on Electrical Machines (ICEM) (Vol. 1, pp. 1594-1600). IEEE. https://doi.org/10.1109/ICEM49940.2020.9270958
  • Prakosa, J. A., Gusrialdi, A., Kurniawan, E., Stotckaia, A. D., & Adinanta, H. (2022). Experimentally robustness improvement of DC motor speed control optimization by H-infinity of mixed-sensitivity synthesis. International Journal of Dynamics and Control, 10(6), 1968-1980. https://doi.org/10.1007/s40435-022-00956-y
  • Prakosa, J. A., Kurniawan, E., Sirenden, B. H., Adinanta, H., Afandi, M. I., Ula R. K., & Pratomo, H. (2021). Synthesis Method of Mixed Sensitivity for H-infinity Robust Control Optimization on DC Motor of Mechatronics Model. International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET), Virtual Conference, pp. 68-73, 23-24 November 2021. https://doi.org/10.1109/ICRAMET53537.2021.9650506
  • Prempraneerach, P., Hover, F. S., Triantafyllou, M. S., Chryssostomidis, C., & Karniadakis, G. E. (2008). Sensitivity Analysis and Low-Dimensional Stochastic Modeling of Shipboard Integrated Power Systems. Proceedings of the IEEE Power Electronics Specialists Conference, Rhodes, Greece, pp. 1999–2003, 15–19 June 2008. https://doi.org/10.1109/PESC.2008.4592237
  • Ribes-Mallada, U., Leyva, R., & Garcés, P. (2011). Sensitivity Analysis in DC-DC Converter Optimal Design. Proceedings of the IEEE International Symposium on Industrial Electronics, Gdansk, Poland, pp. 358–364, 27–30 June 2011. https://doi.org/10.1109/ISIE.2011.5984185
  • Raturi, A., Patel, R. V., & Singh, D. B. (2021). A sensitivity study for n similar partly enclosed with photovoltaic thermal flat plate collectors having series connection. Journal of Thermal Engineering, 9(1), 33-44. https://doi.org/10.18186/thermal.1242825
  • Rodriguez, A., Smith, S. T., & Potter, B. (2022). Sensitivity analysis for building energy audit calculation methods: Handling the uncertainties in small power load estimation. Energy, 238, 121511. https://doi.org/10.1016/j.energy.2021.121511
  • Sevinç, A. (2019). Model Parameters of Electric Motors for Desired Operating Conditions. Advances in Electrical and Computer Engineering, 19(2), 29-37. https://doi.org/10.4316/AECE.2019.02004
  • Srinivasan, G. K., Srinivasan, H. T., & Rivera M. (2020). Sensitivity analysis of exact tracking error dynamics passive output control for a flat/partially flat converter systems. Electronics, 9, 1942. https://doi.org/10.3390/electronics9111942
  • Ványi, G., & Pokorádi L. (2018). Sensitivity analysis of FMEA as possible ranking method in risk prioritization. UPB Sci. Bull., Series D, 80(3), 55-66. https://www.scientificbulletin.upb.ro/rev_docs_arhiva/rez0b1_209265.pdf
  • Wong, B. K. H., Chung, H. S. H., & Lee, S. T. S. (2000). Computation of the Cycle State-Variable Sensitivity Matrix of PWM DC/DC Converters and Its Applications. IEEE Trans. Circuits Syst. I: Fundamental Theory and Applications, 47, 1542–1548. https://doi.org/10.1109/81.886987
There are 37 citations in total.

Details

Primary Language English
Subjects Electrical Machines and Drives
Journal Section Articles
Authors

Ata Sevinç 0000-0002-4273-7532

Early Pub Date June 30, 2024
Publication Date June 30, 2024
Submission Date December 29, 2023
Acceptance Date April 5, 2024
Published in Issue Year 2024 Volume: 16 Issue: 2

Cite

APA Sevinç, A. (2024). Dependencies of Parameter and Load Toque Sensitivities of Electric Motor Outputs on Design Requirements. International Journal of Engineering Research and Development, 16(2), 692-706. https://doi.org/10.29137/umagd.1411916

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.