Research Article
BibTex RIS Cite

Metakaolin Katkılı Sisal Lifle Güçlendirilmiş Kendiliğinden Yerleşen Betonların Bazı Özelliklerinin İncelenmesi

Year 2024, Volume: 16 Issue: 2, 735 - 747, 30.06.2024
https://doi.org/10.29137/umagd.1451024

Abstract

Beton en yaygın yapı malzemelerinden biridir. Beton yüksek durabilite, düşük maliyet gibi özellikleri ile ön plana çıkmaktadır. Ancak beton düşük eğilme ve çekme dayanımı, gözenekli yapı gibi olumsuz özellikleri de sahiptir. Bu nedenle betonun olumsuz özelliklerini geliştirmek için çeşitli çalışmalar devam etmektedir. Betonun içerisinde lif kullanımı son yıllarda betonun düşük mekanik özelliklerini yükseltmek için sıklıkla kullanılan bir yöntemdir. Lifler endüstriyel ve doğal yollarla elde edilmektedir. Doğal yollarla elde edilen liflerin kullanımı çevre dostu olması nedeniyle daha çok tercih edilmektedir.
Bu çalışmada, karışım hacminin %0,5, %1,0, %1,5 ve %2.0’ si kadar sisal lif eklenmiş betonun mekanik özellikleri incelenmiştir. Sisal lif ekli kendiliğinden yerleşen betonların işlenebilirliği, basınç dayanımı, eğilme dayanımı ve donma çözünme dayanımları incelenmiştir. Sonuç olarak betonun işlenebilirliğini ve donma çözünme dayanımını çok kaybetmeden diğer mekanik özelliklerini geliştiren bir lif oranı elde edilmiştir.

References

  • Afroughsabet, V., & Ozbakkaloglu, T. (2015). Mechanical and durability properties of high-strength concrete containing steel and polypropylene fibers. Construction and Building Materials, 94(2015), 73–82. https://doi.org/10.1016/j.conbuildmat.2015.06.051
  • Ahmad, J., Majdi, A., Deifalla, A. F., Ben Kahla, N., & El-Shorbagy, M. A. (2022). Concrete Reinforced with Sisal Fibers (SSF): Overview of Mechanical and Physical Properties. Crystals, 12(7), 952. https://doi.org/10.3390/cryst12070952
  • Ahmad, J., & Zhou, Z. (2022). Mechanical Properties of Natural as well as Synthetic Fiber Reinforced Concrete: A Review. Construction and Building Materials, 333, 127353. https://doi.org/10.1016/j.conbuildmat.2022.127353
  • Althoey, F., & Farnam, Y. (2019). The effect of using supplementary cementitious materials on damage development due to the formation of a chemical phase change in cementitious materials exposed to sodium chloride. Construction and Building Materials, 210, 685–695. https://doi.org/10.1016/j.conbuildmat.2019.03.230
  • Alvee, A. R., Malinda, R., Akbar, A. M., Ashar, R. D., Rahmawati, C., Alomayri, T., Raza, A., & Shaikh, F. U. A. (2022). Experimental study of the mechanical properties and microstructure of geopolymer paste containing nano-silica from agricultural waste and crystalline admixtures. Case Studies in Construction Materials, 16, e00792. https://doi.org/10.1016/j.cscm.2021.e00792
  • ASTM C666/C666M - 03. (2008). Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing.
  • Bangi, M. R., & Horiguchi, T. (2011). Pore pressure development in hybrid fibre-reinforced high strength concrete at elevated temperatures. Cement and Concrete Research, 41(11), 1150–1156. https://doi.org/10.1016/j.cemconres.2011.07.001
  • Çelik, Z., & Bingöl, A. F. (2020). Fracture properties and impact resistance of self-compacting fiber reinforced concrete (SCFRC). Materials and Structures/Materiaux et Constructions, 53. https://doi.org/10.1617/s11527-020-01487-8
  • Dhasmana, A., & Singh, S. (2023). Long-term mechanical characteristics of fibre reinforced metakaolin-based geopolymer concrete: A review. Materials Today: Proceedings, 93, 106–119. https://doi.org/10.1016/j.matpr.2023.07.030
  • Evangelista, L., & de Brito, J. (2010). Durability performance of concrete made with fine recycled concrete aggregates. Cement and Concrete Composites, 32(1), 9–14. https://doi.org/10.1016/j.cemconcomp.2009.09.005
  • Falliano, D., De Domenico, D., Ricciardi, G., & Gugliandolo, E. (2019). Improving the flexural capacity of extrudable foamed concrete with glass-fiber bi-directional grid reinforcement: An experimental study. Composite Structures, 209, 45–59. https://doi.org/10.1016/j.compstruct.2018.10.092
  • Gong, F., Sicat, E., Zhang, D., & Ueda, T. (2015). Stress analysis for concrete materials under multiple freeze-thaw cycles. Journal of Advanced Concrete Technology, 13(3), 124–134. https://doi.org/10.3151/jact.13.124
  • Huntzinger, D. N., & Eatmon, T. D. (2009). A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies. Journal of Cleaner Production, 17(7), 668–675. https://doi.org/10.1016/j.jclepro.2008.04.007
  • Ismail, Z. Z., & AL-Hashmi, E. A. (2008). Use of waste plastic in concrete mixture as aggregate replacement. Waste Management, 28(11), 2041–2047. https://doi.org/10.1016/j.wasman.2007.08.023
  • Kaplan, G., Yildizel, S. A., Memiş, S., & Öztürk, A. U. (2018). The Optimization of Calcareous Fly Ash-Added Cement Containing Grinding Aids and Strength-Improving Additives. Advances in Civil Engineering, 2018, 1–9. https://doi.org/10.1155/2018/8917059
  • Leone, M., Centonze, G., Colonna, D., Micelli, F., & Aiello, M. A. (2018). Fiber-reinforced concrete with low content of recycled steel fiber: Shear behaviour. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2017.11.101
  • Mastali, M., & Dalvand, A. (2017). Fresh and Hardened Properties of Self-Compacting Concrete Reinforced with Hybrid Recycled Steel–Polypropylene Fiber. Journal of Materials in Civil Engineering, 29(6). https://doi.org/10.1061/(asce)mt.1943-5533.0001851
  • Meena, A., Singh, N., & Singh, S. P. (2023). High-volume fly ash Self Consolidating Concrete with coal bottom ash and recycled concrete aggregates: Fresh, mechanical and microstructural properties. Journal of Building Engineering, 63, 105447. https://doi.org/10.1016/j.jobe.2022.105447
  • Melo Filho, J. de A., Silva, F. de A., & Toledo Filho, R. D. (2013). Degradation kinetics and aging mechanisms on sisal fiber cement composite systems. Cement and Concrete Composites, 40, 30–39. https://doi.org/10.1016/j.cemconcomp.2013.04.003
  • Mo, Z., Gao, X., & Su, A. (2021). Mechanical performances and microstructures of metakaolin contained UHPC matrix under steam curing conditions. Construction and Building Materials, 268, 121112. https://doi.org/10.1016/j.conbuildmat.2020.121112
  • Okeola, A., Abuodha, S., & Mwero, J. (2018). Experimental Investigation of the Physical and Mechanical Properties of Sisal Fiber-Reinforced Concrete. Fibers, 6(3), 53. https://doi.org/10.3390/fib6030053
  • Pehlivanlı, Z. O., Uzun, İ., & Demir, İ. (2015). Mechanical and microstructural features of autoclaved aerated concrete reinforced with autoclaved polypropylene, carbon, basalt and glass fiber. Construction and Building Materials, 96, 428–433. https://doi.org/10.1016/j.conbuildmat.2015.08.104
  • Ramanathan, P., Baskar, I., Muthupriya, P., & Venkatasubramani, R. (2013). Performance of self-compacting concrete containing different mineral admixtures. KSCE Journal of Civil Engineering, 17, 465–472. https://doi.org/10.1007/s12205-013-1882-8
  • Ren, G., Gao, X., & Zhang, H. (2022). Utilization of hybrid sisal and steel fibers to improve elevated temperature resistance of ultra-high performance concrete. Cement and Concrete Composites, 130, 104555. https://doi.org/10.1016/j.cemconcomp.2022.104555
  • Ren, G., Yao, B., Huang, H., & Gao, X. (2021). Influence of sisal fibers on the mechanical performance of ultra-high performance concretes. Construction and Building Materials, 286, 122958. https://doi.org/10.1016/j.conbuildmat.2021.122958
  • Sabir, B. ., Wild, S., & Bai, J. (2001). Metakaolin and calcined clays as pozzolans for concrete: a review. Cement and Concrete Composites, 23(6), 441–454. https://doi.org/10.1016/S0958-9465(00)00092-5
  • Sanjeev, J., & Sai Nitesh, K. J. N. (2020). Study on the effect of steel and glass fibers on fresh and hardened properties of vibrated concrete and self-compacting concrete. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.03.208
  • Soni, C., Kumar Patnaik, P., Kumar Mishra, S., Shekhar Panda, S., & Charan Rath, K. (2023). Sisal fiber and groundnut shell particulate reinforced hybrid epoxy composites: A study on mechanical and tribological properties. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.11.041
  • Tolga Cogurcu, M. (2022). Investigation of mechanical properties of red pine needle fiber reinforced self-compacting ultra high performance concrete. Case Studies in Construction Materials, 16, e00970. https://doi.org/10.1016/j.cscm.2022.e00970
  • TS-EN-1170-1. (1999). Prekast beton ürünler-Cam elyaf takviyeli çimento için test yöntemi-Bölüm 1: Matrisin kıvamının ölçülmesi-Çökme testi yöntemi. Türk Standartları Enstitüsü.
  • TS-EN-12350-10. (2011). Beton-Taze beton deneyleri-Bölüm 10: Kendiliğinden yerleşen beton-L kutusu deneyi. Türk Standartları Enstitüsü.
  • TS-EN-12390-3. (2019). Beton-Sertleşmiş beton deneyleri-Bölüm 3: Deney numunelerinin basınç dayanımının tayini. TSE, Ankara, Türkiye.
  • TS-EN-12390-5. (2019). Beton-Sertleşmiş beton deneyleri-Bölüm 5: Deney numunelerinin eğilme dayanımının tayini. TSE, Ankara, Türkiye.
  • TS-EN-197-1. (2012). Çimento-Bölüm 1: Genel çimentolar-Bileşim, özellikler ve uygunluk kriterleri. TSE, Ankara, Türkiye.
  • TS 706 EN 12620. (2009). Aggregates for concrete. Turkish Standard.
  • TS EN 12350-8. (2019). Testing fresh concrete-Part 8: Self-compacting concrete-Slump flow test. Turkish Standard.
  • Villanueva, M. E., Müller, M. A., & Houska, B. (2024). Configuration-Constrained Tube MPC. Automatica, 163, 111543. https://doi.org/10.1016/j.automatica.2024.111543
  • Wang, X., Jin, Y., Huang, W., Li, X., & Ma, Q. (2023). Effect of hybrid basalt and sisal fibers on durability and mechanical properties of lightweight roadbed foam concrete. Case Studies in Construction Materials, 19, e02592. https://doi.org/10.1016/j.cscm.2023.e02592
  • Wang, X., Shen, X., Wang, H., Gao, C., & Zhang, T. (2016). Nuclear magnetic resonance analysis of freeze-thaw damage in natural pumice concrete. Materiales de Construcción, 66(322), e087. https://doi.org/10.3989/mc.2016.09014
  • Yildizel, Sadik Alper, Calis, G. (2019). Design and Optimization of Basalt Fiber Added Lightweight Pumice Concrete Using Taguchi Method. Revista Romana de Materiale/ Romanian Journal of Materials, 49(4), 544–553.
  • Yildizel, S. A., & Toktas, A. (2022). ABC algorithm-based optimization and evaluation of nano carbon black added multi-layer microwave absorbing ultra weight foam concrete. Materials Today Communications, 32, 104035. https://doi.org/10.1016/j.mtcomm.2022.104035
  • Yıldızel, S. A., Kaplan, G., & Öztürk, A. U. (2016). Cost Optimization of Mortars Containing Different Pigments and Their Freeze-Thaw Resistance Properties. Advances in Materials Science and Engineering, 2016, 1–6. https://doi.org/10.1155/2016/5346213
  • Yıldızel, S. A., Özkılıç, Y. O., Bahrami, A., Aksoylu, C., Başaran, B., Hakamy, A., & Arslan, M. H. (2023). Experimental investigation and analytical prediction of flexural behaviour of reinforced concrete beams with steel fibres extracted from waste tyres. Case Studies in Construction Materials, 19, e02227. https://doi.org/10.1016/j.cscm.2023.e02227
  • Zhang, A., Liu, K., Li, J., Song, R., & Guo, T. (2024). Static and dynamic tensile properties of ultra-high performance concrete (UHPC) reinforced with hybrid sisal fibers. Construction and Building Materials, 411, 134492. https://doi.org/10.1016/j.conbuildmat.2023.134492
  • Zhang, D., Tan, K. H., Dasari, A., & Weng, Y. (2020). Effect of natural fibers on thermal spalling resistance of ultra-high performance concrete. Cement and Concrete Composites, 109, 103512. https://doi.org/10.1016/j.cemconcomp.2020.103512

Evaulation of Some Properties of Metakaolin Added and Sisal Fiber Reinforced Self-Compacting Concrete

Year 2024, Volume: 16 Issue: 2, 735 - 747, 30.06.2024
https://doi.org/10.29137/umagd.1451024

Abstract

Concrete is one of the most common building materials. Concrete stands out with its properties such as high durability and low cost. However, concrete also has negative properties such as low flexural and tensile strength and porous structure. Therefore, various studies are ongoing to improve the negative properties of concrete. The use of fiber in concrete is a frequently used method in recent years to increase the low mechanical properties of concrete. Fibers are obtained by industrial and natural means. The use of fibers obtained by natural means is more preferred due to their environmental friendliness.
In this study, the mechanical properties of concrete with sisal fiber added at 0.5%, 1.0%, 1.5% and 2.0% of the mixture volume were examined. Workability, compressive strength, flexural strength and freeze-thaw resistance of sisal fiber added self-compacting concretes were examined. As a result, a certain fiber ratio that improves the concrete's mechanical properties without losing much of its workability and freeze-thaw resistance was obtained.

References

  • Afroughsabet, V., & Ozbakkaloglu, T. (2015). Mechanical and durability properties of high-strength concrete containing steel and polypropylene fibers. Construction and Building Materials, 94(2015), 73–82. https://doi.org/10.1016/j.conbuildmat.2015.06.051
  • Ahmad, J., Majdi, A., Deifalla, A. F., Ben Kahla, N., & El-Shorbagy, M. A. (2022). Concrete Reinforced with Sisal Fibers (SSF): Overview of Mechanical and Physical Properties. Crystals, 12(7), 952. https://doi.org/10.3390/cryst12070952
  • Ahmad, J., & Zhou, Z. (2022). Mechanical Properties of Natural as well as Synthetic Fiber Reinforced Concrete: A Review. Construction and Building Materials, 333, 127353. https://doi.org/10.1016/j.conbuildmat.2022.127353
  • Althoey, F., & Farnam, Y. (2019). The effect of using supplementary cementitious materials on damage development due to the formation of a chemical phase change in cementitious materials exposed to sodium chloride. Construction and Building Materials, 210, 685–695. https://doi.org/10.1016/j.conbuildmat.2019.03.230
  • Alvee, A. R., Malinda, R., Akbar, A. M., Ashar, R. D., Rahmawati, C., Alomayri, T., Raza, A., & Shaikh, F. U. A. (2022). Experimental study of the mechanical properties and microstructure of geopolymer paste containing nano-silica from agricultural waste and crystalline admixtures. Case Studies in Construction Materials, 16, e00792. https://doi.org/10.1016/j.cscm.2021.e00792
  • ASTM C666/C666M - 03. (2008). Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing.
  • Bangi, M. R., & Horiguchi, T. (2011). Pore pressure development in hybrid fibre-reinforced high strength concrete at elevated temperatures. Cement and Concrete Research, 41(11), 1150–1156. https://doi.org/10.1016/j.cemconres.2011.07.001
  • Çelik, Z., & Bingöl, A. F. (2020). Fracture properties and impact resistance of self-compacting fiber reinforced concrete (SCFRC). Materials and Structures/Materiaux et Constructions, 53. https://doi.org/10.1617/s11527-020-01487-8
  • Dhasmana, A., & Singh, S. (2023). Long-term mechanical characteristics of fibre reinforced metakaolin-based geopolymer concrete: A review. Materials Today: Proceedings, 93, 106–119. https://doi.org/10.1016/j.matpr.2023.07.030
  • Evangelista, L., & de Brito, J. (2010). Durability performance of concrete made with fine recycled concrete aggregates. Cement and Concrete Composites, 32(1), 9–14. https://doi.org/10.1016/j.cemconcomp.2009.09.005
  • Falliano, D., De Domenico, D., Ricciardi, G., & Gugliandolo, E. (2019). Improving the flexural capacity of extrudable foamed concrete with glass-fiber bi-directional grid reinforcement: An experimental study. Composite Structures, 209, 45–59. https://doi.org/10.1016/j.compstruct.2018.10.092
  • Gong, F., Sicat, E., Zhang, D., & Ueda, T. (2015). Stress analysis for concrete materials under multiple freeze-thaw cycles. Journal of Advanced Concrete Technology, 13(3), 124–134. https://doi.org/10.3151/jact.13.124
  • Huntzinger, D. N., & Eatmon, T. D. (2009). A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies. Journal of Cleaner Production, 17(7), 668–675. https://doi.org/10.1016/j.jclepro.2008.04.007
  • Ismail, Z. Z., & AL-Hashmi, E. A. (2008). Use of waste plastic in concrete mixture as aggregate replacement. Waste Management, 28(11), 2041–2047. https://doi.org/10.1016/j.wasman.2007.08.023
  • Kaplan, G., Yildizel, S. A., Memiş, S., & Öztürk, A. U. (2018). The Optimization of Calcareous Fly Ash-Added Cement Containing Grinding Aids and Strength-Improving Additives. Advances in Civil Engineering, 2018, 1–9. https://doi.org/10.1155/2018/8917059
  • Leone, M., Centonze, G., Colonna, D., Micelli, F., & Aiello, M. A. (2018). Fiber-reinforced concrete with low content of recycled steel fiber: Shear behaviour. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2017.11.101
  • Mastali, M., & Dalvand, A. (2017). Fresh and Hardened Properties of Self-Compacting Concrete Reinforced with Hybrid Recycled Steel–Polypropylene Fiber. Journal of Materials in Civil Engineering, 29(6). https://doi.org/10.1061/(asce)mt.1943-5533.0001851
  • Meena, A., Singh, N., & Singh, S. P. (2023). High-volume fly ash Self Consolidating Concrete with coal bottom ash and recycled concrete aggregates: Fresh, mechanical and microstructural properties. Journal of Building Engineering, 63, 105447. https://doi.org/10.1016/j.jobe.2022.105447
  • Melo Filho, J. de A., Silva, F. de A., & Toledo Filho, R. D. (2013). Degradation kinetics and aging mechanisms on sisal fiber cement composite systems. Cement and Concrete Composites, 40, 30–39. https://doi.org/10.1016/j.cemconcomp.2013.04.003
  • Mo, Z., Gao, X., & Su, A. (2021). Mechanical performances and microstructures of metakaolin contained UHPC matrix under steam curing conditions. Construction and Building Materials, 268, 121112. https://doi.org/10.1016/j.conbuildmat.2020.121112
  • Okeola, A., Abuodha, S., & Mwero, J. (2018). Experimental Investigation of the Physical and Mechanical Properties of Sisal Fiber-Reinforced Concrete. Fibers, 6(3), 53. https://doi.org/10.3390/fib6030053
  • Pehlivanlı, Z. O., Uzun, İ., & Demir, İ. (2015). Mechanical and microstructural features of autoclaved aerated concrete reinforced with autoclaved polypropylene, carbon, basalt and glass fiber. Construction and Building Materials, 96, 428–433. https://doi.org/10.1016/j.conbuildmat.2015.08.104
  • Ramanathan, P., Baskar, I., Muthupriya, P., & Venkatasubramani, R. (2013). Performance of self-compacting concrete containing different mineral admixtures. KSCE Journal of Civil Engineering, 17, 465–472. https://doi.org/10.1007/s12205-013-1882-8
  • Ren, G., Gao, X., & Zhang, H. (2022). Utilization of hybrid sisal and steel fibers to improve elevated temperature resistance of ultra-high performance concrete. Cement and Concrete Composites, 130, 104555. https://doi.org/10.1016/j.cemconcomp.2022.104555
  • Ren, G., Yao, B., Huang, H., & Gao, X. (2021). Influence of sisal fibers on the mechanical performance of ultra-high performance concretes. Construction and Building Materials, 286, 122958. https://doi.org/10.1016/j.conbuildmat.2021.122958
  • Sabir, B. ., Wild, S., & Bai, J. (2001). Metakaolin and calcined clays as pozzolans for concrete: a review. Cement and Concrete Composites, 23(6), 441–454. https://doi.org/10.1016/S0958-9465(00)00092-5
  • Sanjeev, J., & Sai Nitesh, K. J. N. (2020). Study on the effect of steel and glass fibers on fresh and hardened properties of vibrated concrete and self-compacting concrete. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.03.208
  • Soni, C., Kumar Patnaik, P., Kumar Mishra, S., Shekhar Panda, S., & Charan Rath, K. (2023). Sisal fiber and groundnut shell particulate reinforced hybrid epoxy composites: A study on mechanical and tribological properties. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.11.041
  • Tolga Cogurcu, M. (2022). Investigation of mechanical properties of red pine needle fiber reinforced self-compacting ultra high performance concrete. Case Studies in Construction Materials, 16, e00970. https://doi.org/10.1016/j.cscm.2022.e00970
  • TS-EN-1170-1. (1999). Prekast beton ürünler-Cam elyaf takviyeli çimento için test yöntemi-Bölüm 1: Matrisin kıvamının ölçülmesi-Çökme testi yöntemi. Türk Standartları Enstitüsü.
  • TS-EN-12350-10. (2011). Beton-Taze beton deneyleri-Bölüm 10: Kendiliğinden yerleşen beton-L kutusu deneyi. Türk Standartları Enstitüsü.
  • TS-EN-12390-3. (2019). Beton-Sertleşmiş beton deneyleri-Bölüm 3: Deney numunelerinin basınç dayanımının tayini. TSE, Ankara, Türkiye.
  • TS-EN-12390-5. (2019). Beton-Sertleşmiş beton deneyleri-Bölüm 5: Deney numunelerinin eğilme dayanımının tayini. TSE, Ankara, Türkiye.
  • TS-EN-197-1. (2012). Çimento-Bölüm 1: Genel çimentolar-Bileşim, özellikler ve uygunluk kriterleri. TSE, Ankara, Türkiye.
  • TS 706 EN 12620. (2009). Aggregates for concrete. Turkish Standard.
  • TS EN 12350-8. (2019). Testing fresh concrete-Part 8: Self-compacting concrete-Slump flow test. Turkish Standard.
  • Villanueva, M. E., Müller, M. A., & Houska, B. (2024). Configuration-Constrained Tube MPC. Automatica, 163, 111543. https://doi.org/10.1016/j.automatica.2024.111543
  • Wang, X., Jin, Y., Huang, W., Li, X., & Ma, Q. (2023). Effect of hybrid basalt and sisal fibers on durability and mechanical properties of lightweight roadbed foam concrete. Case Studies in Construction Materials, 19, e02592. https://doi.org/10.1016/j.cscm.2023.e02592
  • Wang, X., Shen, X., Wang, H., Gao, C., & Zhang, T. (2016). Nuclear magnetic resonance analysis of freeze-thaw damage in natural pumice concrete. Materiales de Construcción, 66(322), e087. https://doi.org/10.3989/mc.2016.09014
  • Yildizel, Sadik Alper, Calis, G. (2019). Design and Optimization of Basalt Fiber Added Lightweight Pumice Concrete Using Taguchi Method. Revista Romana de Materiale/ Romanian Journal of Materials, 49(4), 544–553.
  • Yildizel, S. A., & Toktas, A. (2022). ABC algorithm-based optimization and evaluation of nano carbon black added multi-layer microwave absorbing ultra weight foam concrete. Materials Today Communications, 32, 104035. https://doi.org/10.1016/j.mtcomm.2022.104035
  • Yıldızel, S. A., Kaplan, G., & Öztürk, A. U. (2016). Cost Optimization of Mortars Containing Different Pigments and Their Freeze-Thaw Resistance Properties. Advances in Materials Science and Engineering, 2016, 1–6. https://doi.org/10.1155/2016/5346213
  • Yıldızel, S. A., Özkılıç, Y. O., Bahrami, A., Aksoylu, C., Başaran, B., Hakamy, A., & Arslan, M. H. (2023). Experimental investigation and analytical prediction of flexural behaviour of reinforced concrete beams with steel fibres extracted from waste tyres. Case Studies in Construction Materials, 19, e02227. https://doi.org/10.1016/j.cscm.2023.e02227
  • Zhang, A., Liu, K., Li, J., Song, R., & Guo, T. (2024). Static and dynamic tensile properties of ultra-high performance concrete (UHPC) reinforced with hybrid sisal fibers. Construction and Building Materials, 411, 134492. https://doi.org/10.1016/j.conbuildmat.2023.134492
  • Zhang, D., Tan, K. H., Dasari, A., & Weng, Y. (2020). Effect of natural fibers on thermal spalling resistance of ultra-high performance concrete. Cement and Concrete Composites, 109, 103512. https://doi.org/10.1016/j.cemconcomp.2020.103512
There are 45 citations in total.

Details

Primary Language Turkish
Subjects Construction Materials
Journal Section Articles
Authors

Mehmet Uzun 0000-0002-6347-1243

Early Pub Date June 30, 2024
Publication Date June 30, 2024
Submission Date March 11, 2024
Acceptance Date May 10, 2024
Published in Issue Year 2024 Volume: 16 Issue: 2

Cite

APA Uzun, M. (2024). Metakaolin Katkılı Sisal Lifle Güçlendirilmiş Kendiliğinden Yerleşen Betonların Bazı Özelliklerinin İncelenmesi. International Journal of Engineering Research and Development, 16(2), 735-747. https://doi.org/10.29137/umagd.1451024

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.