Research Article
BibTex RIS Cite

The Impact of Different Volume/Capacity Ratios on Traffic Simulation Calibration Performance

Year 2024, Volume: 16 Issue: 2, 748 - 759, 30.06.2024
https://doi.org/10.29137/umagd.1455369

Abstract

Microsimulation models must be properly calibrated before being used for analysis. In the traditional calibration approach, a calibration variable that can typically be collected from the field, such as traffic volume or speed, is used. The calibration process is assumed to be completed by minimizing the difference between the calibration variable collected from the field and obtained from the model. However, it should be noted that this approach does not imply that the real vehicle tracking model parameters are exactly or very close to the microsimulation model parameters. On the other hand, since real vehicle tracking parameters cannot be obtained from the field, this approach is necessary. This study aims to develop a new approach to improve the accuracy of the traditional calibration approach. This approach involves creating an experiment set consisting of different vehicle tracking model parameters, modeling the road section to be simulated in the simulation environment, and conducting simulation-based optimization experiments to determine at which v/c ratio data should be collected from the field. In the study, SUMO (Simulation of Urban MObility) was used for microsimulation modeling, the Latin Hypercube method was preferred for creating the experiment set, and the Grey Wolf Algorithm was used for optimization. Experiments were conducted for road sections with different numbers of lanes, and the calibration performance at different v/c ratios was measured by the average of squared errors. The results confirmed that the calibration process performed at the appropriate v/c ratio was significantly more accurate than under other conditions. It is anticipated that this proposed approach will make significant contributions to the more accurate calibration of the planned road sections.

References

  • Amirjamshidi, G., & Roorda, M. J. (2019). Multi-objective calibration of traffic microsimulation models. Transportation Letters, 11(6), 311-319. https://doi.org/10.1080/19427867.2017.1343763
  • Antoniou, C., Azevedo, C. L., Lu, L., Pereira, F., & Ben-Akiva, M. (2015). W-SPSA in Practice: Approximation of Weight Matrices and Calibration of Traffic Simulation Models. Transportation Research Procedia, 7, 233-253. https://doi.org/10.1016/J.TRPRO.2015.06.013
  • Barceló, J. (2010). Models, Traffic Models, Simulation, and Traffic Simulation. Models, Traffic Models, Simulation, and Traffic Simulation. In Fundamentals of Traffic Simulation, 1st ed.; Springer: New York, NY, USA, 2010, Volume 1, 1-62. https://doi.org/10.1007/978-1-4419-6142-6_1
  • Bieker, L., Krajzewicz, D., Morra, A., Michelacci, C., & Cartolano, F. (2015). Traffic simulation for all: A real world traffic scenario from the city of Bologna. In Modeling Mobility with Open Data: 2nd SUMO Conference, Berlin, Germany, 15–16 May 2014; Springer: Berlin/Heidelberg, Germany, 47-60.
  • Chiappone, S., Giuffrè, O., Granà, A., Mauro, R., & Sferlazza, A. (2016). Traffic simulation models calibration using speed-density relationship: An automated procedure based on Genetic Algorithm. Expert Systems with Applications, 44, 147-155. https://doi.org/10.1016/J.ESWA.2015.09.024
  • Chowdhury, T. U., Park, P. Y., & Gingerich, K. (2022). Estimation of Appropriate Acceleration Lane Length for Safe and Efficient Truck Platooning Operation on Freeway Merge Areas. Sustainability 2022, 14, 12946. https://doi.org/10.3390/su141912946
  • Ciuffo, B., Punzo, V., & Montanino, M. (2014). Global sensitivity analysis techniques to simplify the calibration of traffic simulation  models. Methodology and application to the IDM car-following model. IET Intelligent Transport Systems, 8(5), (479–489). https://doi.org/10.1049/iet-its.2013.0064
  • Doğan E. (2022). Trafik Mikro-Simülasyon Model Kalibrasyonu için Özellik Seçim Algoritmalarının Karşılaştırılması. İnternational Journal of Engineering Research and Development, 14(2), 752-761. https://doi.org/10.29137/umagd.1096157
  • Guo, Y., Sayed, T., Zheng, L., & Essa, M. (2021). An extreme value theory based approach for calibration of microsimulation models for safety analysis. Simulation Modelling Practice and Theory 2021, 106, 102172. https://doi.org/10.1016/J.SIMPAT.2020.102172
  • Hourdakis, J., Michalopoulos, P. G., & Kottommannil, J. (2003). Practical Procedure for Calibrating Microscopic Traffic Simulation Models. Transportation research record, 1852(1), 130-139. https://doi.org/10.3141/1852-17
  • Ištoka Otković, I., Tollazzi, T., Šraml, M., & Varevac, D. (2023). Calibration of the Microsimulation Traffic Model Using Different Neural Network Applications. Future Transportation, 3(1), 150-168. https://www.mdpi.com/2673-7590/3/1/10
  • Karimi, M., & Alecsandru, C. (2019). Two-fold calibration approach for microscopic traffic simulation models. IET Intell. Transp. Syst. 2019, 13, 1507–1517. https://doi.org/10.1049/iet-its.2018.5369
  • Lee, J. B., & Ozbay, K. (2009). New calibration methodology for microscopic traffic simulation using enhanced simultaneous perturbation stochastic approximation approach. Transportation Research Record, 2124, 233-240. https://doi.org/10.3141/2124-23
  • Lopez, P. A., Behrisch, M., Bieker-Walz, L., Erdmann, J., Flotterod, Y. P., Hilbrich, R., Lucken, L., Rummel, J., Wagner, P., & Wiebner, E. (2018). Microscopic Traffic Simulation using SUMO. 2018 21st International Conference on Intelligent Transportation  Systems (ITSC), 2575-2582. https://doi.org/10.1109/ITSC.2018.8569938
  • McKay, M. D., Beckman, R. J., & Conover, W. J. (1979). A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code. Technometrics, 21(2), 239. https://doi.org/10.2307/1268522
  • Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey Wolf Optimizer. Advances in Engineering Software, 69, 46-61. https://doi.org/10.1016/J.ADVENGSOFT.2013.12.007
  • Nassrullah, Z., & Yousif, S. (2020). Development of a Microsimulation Model for Motorway Roadworks with Narrow Lanes. IEEE Transactions on Intelligent Transportation Systems, 21(4), 1536-1546. https://doi.org/10.1109/TITS.2019.2910159
  • Park, B., & Qi, H. (2005). Development and Evaluation of a Procedure for the Calibration of Simulation Models.Transportation Research Record: Journal of Transportation Research Board. https://doi.org/10.1177/0361198105193400122, 1934, 208-217. https://doi.org/10.1177/0361198105193400122
  • Paz, A., Molano, V., Martinez, E., Gaviria, C., & Arteaga, C. (2015). Calibration of traffic flow models using a memetic algorithm. Transportation Research Part C: Emerging Technologies, 55, 432-443. https://doi.org/10.1016/J.TRC.2015.03.001
  • Transport Research Board (2000), Highway Capacity Manual – HCM 2000, Transport  Research Board, National Research Council, Washington, D.C., 2000.
  • Yu, M., & (David) Fan, W. (2017). Calibration of microscopic traffic simulation models using metaheuristic algorithms. International Journal of Transportation Science and Technology, 6(1), 63-77. https://doi.org/10.1016/J.IJTST.2017.05.001

Farklı Akım/Kapasite Oranlarının Trafik Simülasyon Kalibrasyon Performansına Etkisi

Year 2024, Volume: 16 Issue: 2, 748 - 759, 30.06.2024
https://doi.org/10.29137/umagd.1455369

Abstract

Mikro-simülasyon modelleri, analizler için kullanılmadan önce doğru şekilde kalibre edilmelidir. Geleneksel kalibrasyon yaklaşımında genellikle trafik hacmi veya hız gibi sahadan toplanabilen bir kalibrasyon değişkeni kullanılır. Kalibrasyon süreci, sahadan toplanan ve modelden elde edilen kalibrasyon değişkenine belirli bir miktardan daha fazla yaklaştırılmasıyla tamamlandığı varsayılır. Ancak, bu yaklaşımın, gerçek taşıt takip model parametrelerinin model parametreleriyle aynı olduğu anlamına gelmediği unutulmamalıdır. Ayrıca, gerçek taşıt takip parametrelerinin sahadan elde edilememesi bu yaklaşımı zorunlu kılar. Bu çalışma, geleneksel kalibrasyon yaklaşımının doğruluğunu artırmak için kullanılabilecek bir yöntem geliştirmeyi amaçlamaktadır. Bu yöntem, farklı taşıt takip model parametrelerinden oluşan bir deney setinin oluşturulmasını, simülasyonu yapılacak yol kesiminin simülasyon ortamında modellenmesini ve simülasyon tabanlı optimizasyon denemeleri yaparak, yol kesimi için sahadan hangi v/c oranında veri toplanması gerektiğini belirlemeyi içermektedir. Çalışma kapsamında yapılan deneylerde, mikro-simülasyon modellemesi için SUMO (Simulation of Urban MObility) kullanılmış, deney seti oluşturmak için Latin Hiper Küpü yöntemi tercih edilmiş ve optimizasyon için Gri Kurt Algoritması kullanılmıştır. Deneyler, farklı şerit sayısına sahip yol kesimleri için gerçekleştirilmiş ve her yol kesimi için farklı v/c oranlarında kalibrasyon performansı karesel hataların ortalamasıyla ölçülmüştür. Sonuçlar, uygun v/c oranında yapılan kalibrasyon işleminin diğer koşullara göre anlamlı düzeyde daha doğru olduğunu doğrulamıştır. Bu önerilen yaklaşımın, planlanan yol kesimlerinin daha doğru kalibrasyonuna önemli katkılar sağlayabileceği öngörülmektedir.

References

  • Amirjamshidi, G., & Roorda, M. J. (2019). Multi-objective calibration of traffic microsimulation models. Transportation Letters, 11(6), 311-319. https://doi.org/10.1080/19427867.2017.1343763
  • Antoniou, C., Azevedo, C. L., Lu, L., Pereira, F., & Ben-Akiva, M. (2015). W-SPSA in Practice: Approximation of Weight Matrices and Calibration of Traffic Simulation Models. Transportation Research Procedia, 7, 233-253. https://doi.org/10.1016/J.TRPRO.2015.06.013
  • Barceló, J. (2010). Models, Traffic Models, Simulation, and Traffic Simulation. Models, Traffic Models, Simulation, and Traffic Simulation. In Fundamentals of Traffic Simulation, 1st ed.; Springer: New York, NY, USA, 2010, Volume 1, 1-62. https://doi.org/10.1007/978-1-4419-6142-6_1
  • Bieker, L., Krajzewicz, D., Morra, A., Michelacci, C., & Cartolano, F. (2015). Traffic simulation for all: A real world traffic scenario from the city of Bologna. In Modeling Mobility with Open Data: 2nd SUMO Conference, Berlin, Germany, 15–16 May 2014; Springer: Berlin/Heidelberg, Germany, 47-60.
  • Chiappone, S., Giuffrè, O., Granà, A., Mauro, R., & Sferlazza, A. (2016). Traffic simulation models calibration using speed-density relationship: An automated procedure based on Genetic Algorithm. Expert Systems with Applications, 44, 147-155. https://doi.org/10.1016/J.ESWA.2015.09.024
  • Chowdhury, T. U., Park, P. Y., & Gingerich, K. (2022). Estimation of Appropriate Acceleration Lane Length for Safe and Efficient Truck Platooning Operation on Freeway Merge Areas. Sustainability 2022, 14, 12946. https://doi.org/10.3390/su141912946
  • Ciuffo, B., Punzo, V., & Montanino, M. (2014). Global sensitivity analysis techniques to simplify the calibration of traffic simulation  models. Methodology and application to the IDM car-following model. IET Intelligent Transport Systems, 8(5), (479–489). https://doi.org/10.1049/iet-its.2013.0064
  • Doğan E. (2022). Trafik Mikro-Simülasyon Model Kalibrasyonu için Özellik Seçim Algoritmalarının Karşılaştırılması. İnternational Journal of Engineering Research and Development, 14(2), 752-761. https://doi.org/10.29137/umagd.1096157
  • Guo, Y., Sayed, T., Zheng, L., & Essa, M. (2021). An extreme value theory based approach for calibration of microsimulation models for safety analysis. Simulation Modelling Practice and Theory 2021, 106, 102172. https://doi.org/10.1016/J.SIMPAT.2020.102172
  • Hourdakis, J., Michalopoulos, P. G., & Kottommannil, J. (2003). Practical Procedure for Calibrating Microscopic Traffic Simulation Models. Transportation research record, 1852(1), 130-139. https://doi.org/10.3141/1852-17
  • Ištoka Otković, I., Tollazzi, T., Šraml, M., & Varevac, D. (2023). Calibration of the Microsimulation Traffic Model Using Different Neural Network Applications. Future Transportation, 3(1), 150-168. https://www.mdpi.com/2673-7590/3/1/10
  • Karimi, M., & Alecsandru, C. (2019). Two-fold calibration approach for microscopic traffic simulation models. IET Intell. Transp. Syst. 2019, 13, 1507–1517. https://doi.org/10.1049/iet-its.2018.5369
  • Lee, J. B., & Ozbay, K. (2009). New calibration methodology for microscopic traffic simulation using enhanced simultaneous perturbation stochastic approximation approach. Transportation Research Record, 2124, 233-240. https://doi.org/10.3141/2124-23
  • Lopez, P. A., Behrisch, M., Bieker-Walz, L., Erdmann, J., Flotterod, Y. P., Hilbrich, R., Lucken, L., Rummel, J., Wagner, P., & Wiebner, E. (2018). Microscopic Traffic Simulation using SUMO. 2018 21st International Conference on Intelligent Transportation  Systems (ITSC), 2575-2582. https://doi.org/10.1109/ITSC.2018.8569938
  • McKay, M. D., Beckman, R. J., & Conover, W. J. (1979). A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code. Technometrics, 21(2), 239. https://doi.org/10.2307/1268522
  • Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey Wolf Optimizer. Advances in Engineering Software, 69, 46-61. https://doi.org/10.1016/J.ADVENGSOFT.2013.12.007
  • Nassrullah, Z., & Yousif, S. (2020). Development of a Microsimulation Model for Motorway Roadworks with Narrow Lanes. IEEE Transactions on Intelligent Transportation Systems, 21(4), 1536-1546. https://doi.org/10.1109/TITS.2019.2910159
  • Park, B., & Qi, H. (2005). Development and Evaluation of a Procedure for the Calibration of Simulation Models.Transportation Research Record: Journal of Transportation Research Board. https://doi.org/10.1177/0361198105193400122, 1934, 208-217. https://doi.org/10.1177/0361198105193400122
  • Paz, A., Molano, V., Martinez, E., Gaviria, C., & Arteaga, C. (2015). Calibration of traffic flow models using a memetic algorithm. Transportation Research Part C: Emerging Technologies, 55, 432-443. https://doi.org/10.1016/J.TRC.2015.03.001
  • Transport Research Board (2000), Highway Capacity Manual – HCM 2000, Transport  Research Board, National Research Council, Washington, D.C., 2000.
  • Yu, M., & (David) Fan, W. (2017). Calibration of microscopic traffic simulation models using metaheuristic algorithms. International Journal of Transportation Science and Technology, 6(1), 63-77. https://doi.org/10.1016/J.IJTST.2017.05.001
There are 21 citations in total.

Details

Primary Language Turkish
Subjects Transportation and Traffic
Journal Section Articles
Authors

Gülnur Kandemir 0000-0003-0565-9042

Erdem Doğan 0000-0001-7802-641X

Early Pub Date June 30, 2024
Publication Date June 30, 2024
Submission Date March 19, 2024
Acceptance Date May 14, 2024
Published in Issue Year 2024 Volume: 16 Issue: 2

Cite

APA Kandemir, G., & Doğan, E. (2024). Farklı Akım/Kapasite Oranlarının Trafik Simülasyon Kalibrasyon Performansına Etkisi. International Journal of Engineering Research and Development, 16(2), 748-759. https://doi.org/10.29137/umagd.1455369

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.