Research Article
BibTex RIS Cite

Graft Copolymerization of Glycidyl Methacrylate/ Acrylamide Monomer Mixture onto Polyethylene Terephthalate Fibers; Characterization and Investigation of Some Properties

Year 2025, Volume: 17 Issue: 1, 163 - 181

Abstract

Polymers are highly important materials that are widely used in every aspect of our lives. Through grafting, polymers can be modified with desired monomers to acquire specific properties. Polyethylene terephthalate (PET) fibers possess many favorable characteristics such as cheap raw materials, low production costs, and high resistance to environmental effects. However, they also have disadvantages, such as limited water absorption capacity and dyeability due to their hydrophobic nature. This study aims to improve these negative aspects of PET using the graft copolymerization method. In the study, GMA (glycidyl methacrylate) and AAm (acrylamide) monomers containing different functional groups were grafted onto PET fibers using benzoyl peroxide (BPO) as the initiator. Additionally, lipase enzyme was immobilized on the grafted PET fibers, and the use of this immobilized enzyme in the hydrolysis of various types of oils was investigated. Ungrafted and grafted PET fibers were characterized using Scanning Electron Microscopy (SEM), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), and Fourier Transform Infrared Spectroscopy (FTIR) to investigate the effects of various parameters on the grafting process. The water retention and dyeability properties of the grafted PET fibers were also demonstrated.

Ethical Statement

Derginize göndermiş olduğumuz Glisidil Metakrilat / Akrilamit Monomer Karışımının Polietilen Tereftalat Liflere Aşılanması; Karakterizasyon ve Bazı Özelliklerinin İncelenmmesi başlıklı çalışmanın bize ait, özgün bir çalışma olduğunu, çalışmamızın hazırlık, veri toplama, analiz ve bilgilerin sunumu olmak üzere tüm aşamalarında bilimsel etik ilke ve kurallara uygun davrandığımızı, bu çalışma kapsamında elde edilen tüm veri ve bilgiler için kaynak gösterdiğimizi, bu kaynaklara kaynakçada yer verdiğimizi, Committee on Publication Ethics (COPE)' in tüm şartlarını ve koşullarını kabul ederek etik görev ve sorumluluklara riayet ettiğimizi beyan ederiz. Herhangi bir zamanda, çalışmamızla ilgili yaptığımız bu beyana aykırı bir durumun saptanması durumunda, ortaya çıkacak tüm ahlaki ve hukuki sonuçları kabul ettiğimizi bildiririz.

Supporting Institution

KIRIKKALE ÜNİVERSİTESİ BİLİMSEL ARAŞTIRMALAR VE KOORDİNASYON BİRİMİ

Project Number

Bu çalışma Kırıkkale Üniversitesi Bilimsel Araştırmalar Projeler ve Koordinasyon Birimi tarafından desteklenmiştir. (2012/6) nolu proje

Thanks

Tezime 2012/6 projesi kapsamında gereken finansal desteği sağlayan Kırıkkale Üniversitesi Bilimsel Araştırmaları ve Koordinasyon Birimine (BAP) teşekkür ederim.

References

  • Adia, R., Muti, A. F., Rifkia, V., & Pradana, D. L. C. (2024). Lipase enzyme inhibitory activity of Jombang leaves extract (Taraxacum officinale F.H. Wigg). Jurnal Farmasi Galenika (Galenika Journal of Pharmacy), 10(1), 50-61. https://doi.org/10.22487/j24428744.2024.v10.i1.16454
  • Atia, K. S., Ismail, S. A., & Dessouki, A. M. (2003). Immobilization of β-amylase using polyacrylamide polymer derivatives. Journal of Chemical Technology & Biotechnology. https://doi.org/10.1002/jctb.875
  • Alakara, Ş., Karakişla, M., & Saçak, M. (2008). Preparation of Poly(ethylene terephthalate)-g-Methacrylamide Copolymers Initiated by Azobisizobutyronitrile: Characterization and Investigation of Some Properties. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 45(4), 276-280.
  • Al-Taweel, Sungur, S., (1995), Lipaz Enzimleri ile Yağların Modifikasyon Biyoteknolojisi, Gıda, 20 (5), 299-304
  • Arslan, M., & Günay, K. (2019). Synthesis and use of glycidyl methacrylate-g-poly (ethylene terephthalate) fiber containing iminodiacetate groups for the highly effective removal of basic dye. Journal of Materials Science and Engineering with Advanced Technology, 18(1-2), 1-19.
  • Arslan, M., & Günay, K. (2017). Synthesis and characterization of PET fibers grafted with binary mixture of 2-methylpropenoic acid and acrylonitrile by free radical: Its application in removal of cationic dye. Polymer Bulletin, 74(3), 1221-1236. DOI: 10.1007/s00289-016-1773-5
  • Azizinezhad, F. (2011). Kinetic Investigation of Grafting of Poly (ethylene terephthalate) Fibers with 2-Hydroxypropyl Methacrylate using 4, 4'-Azobis (4-cyanovaleric acid). Asian Journal of Chemistry, 23(2), 899.
  • Azizinezhad, F. (2014). Free radical grafting of 2-hydroxypropyl methacrylate/acrylic acid mixture onto poly (ethylene terephthalate) fibers. European Journal of Experimental Biology, 4(1), 560-567. ISSN: 2248-9215. CODEN (USA): EJEBAU.
  • Askar, M. K., Al-Kamaki, Y. S. S., & Hassan, A. (2023). Utilizing polyethylene terephthalate (PET) in concrete: A review. Polymers, 15(3320). DOI: 10.3390/polym15153320
  • Bozkaya, O., Günay, K., Arslan, M., & Gök, Z. G. (2021). Removal of anionic dyes with glycidyl methacrylate-grafted polyethylene terephthalate (PET) fibers modified with ethylenediamine. Research on Chemical Intermediates, 47(2075-2093). https://doi.org/10.1007/s11164-021-04398-7
  • Cheung, L. K. Y., Sanders, A. D., Houfani, A. A., Grahame, D. A. S., Bryksa, B. C., Dee, D. R., & Yada, R. Y. (2024). Factors affecting enzyme activity and design. In Improving and tailoring enzymes for food quality and functionality (2nd ed., pp. 17-57). Woodhead Publishing Series in Food Science, Technology and Nutrition. https://doi.org/10.1016/B978-0-443-15437-9.00012-4
  • Coşkun, R. (2008). Synthesis of functionalized poly(ethylene terephthalate) fibers by grafting of crotonic acid/methacrylamide monomer mixture. Reactive and Functional Polymers, 68(12), 1704-1714.
  • Coşkun, R., & Akdeniz, S. (2010). Functionalization of poly(ethylene terephthalate) fibers by grafting of maleic acid/methacrylamide monomer mixture. Fibers and Polymers, 11(pp. 1111-1118).
  • Çelik, M. (2004). Graft copolymerization of methacrylamide onto acrylic fibers initiated by benzoyl peroxide. Journal of Applied Polymer Science, 94(p. 1519).
  • Deo, P. H. T., Patel, N. K., & Patel, B. K. (2008). Eco-friendly flame retardant (FR) PET fibers through P-N synergism. Journal of Engineered Fibers and Fabrics, 3(cilt 3).
  • Dobrovolsky, V. N., Pacheco-Martinez, M. M., McDaniel, L. P., Pearce, M. G., & Ding, W. (2016). In vivo genotoxicity assessment of acrylamide and glycidyl methacrylate. Food and Chemical Toxicology, 87, 120-127. https://doi.org/10.1016/j.fct.2015.12.006
  • Fernandes, K. F., Lima, C. S., Pinho, H., & Collins, C. H. (2003). Immobilization of horseradish peroxidase onto polyaniline polymers. Process Biochemistry, 38(9), 1379-1384. https://doi.org/10.1016/S0032-9592(03)00021-9
  • Fernández-Pacheco, P., García-Béjar, B., Briones Pérez, A., & Arévalo-Villena, M. (2021). Free and immobilised β-glucosidases in oenology: Biotechnological characterisation and its effect on enhancement of wine aroma. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.723815
  • Khan, M. R. (2021). Immobilized enzymes: A comprehensive review. Bulletin of the National Research Centre, 45(207). https://doi.org/10.1186/s42269-021-00649-0
  • Kumar, D., Pandey, J., Raj, V., & Kumar, P. (2017). A review on the modification of polysaccharide through graft copolymerization for various potential applications. The Open Medicinal Chemistry Journal, 11(109-126). https://doi.org/10.2174/1874104501711010109
  • Kushwaha, P. K., & Kumar, R. (2010). Bamboo fiber reinforced thermosetting resin composites: Effect of graft copolymerization of fiber with methacrylamide. Journal of Applied Polymer Science, 117(4), 2398-2404. https://doi.org/10.1002/app.32466
  • Lee, J., & Patel, R. (2022). Wastewater treatment by polymeric microspheres: A review. Polymers, 14(1890). https://doi.org/10.3390/polym14091890
  • Madrid, J. F., Nuesca, G. M., & Abad, L. V. (2013). Gamma radiation-induced grafting of glycidyl methacrylate (GMA) onto water hyacinth fibers. Radiation Physics and Chemistry, 85, 182-188. https://doi.org/10.1016/j.radphyschem.2012.10.006
  • Mashabi, R. A., Khan, Z. A., & Elwakeel, K. Z. (2022). Chitosan- or glycidyl methacrylate-based adsorbents for the removal of dyes from aqueous solutions: a review. Mater. Adv., 3(15), 5645-5671. DOI: 10.1039/D2MA00320A
  • Prachayawarakorn, J., & Kryratsamee, W. (2006). Dyeing properties of Bombyx mori silks grafted with methyl methacrylate and methacrylamide. Journal of Applied Polymer Science, 99(6), 3156-3162. https://doi.org/10.1002/app.23216
  • Priyan, S. R., Kumar, G. S., Lalithambigai, K., Shkir, M., Khan, A., Rajendran, R., & Arumugam, G. (2024). Microwave-assisted sol-gel synthesis of mesoporous NiO-decorated silica nanostructures utilizing biogenic silica source for supercapacitor applications. Journal of Alloys and Compounds, 976, 173206. https://doi.org/10.1016/j.jallcom.2023.173206
  • Rathod, K. D., Khedikar, I., & Dabhekar, K. (2021). Feasibility study of concrete by using polyethylene terephthalate fiber in enhancing the mechanical properties of concrete. IOP Conference Series: Materials Science and Engineering, 1197(1), 012041. https://doi.org/10.1088/1757-899X/1197/1/012041
  • Rezaei, B., Yari, P., Sanders, S. M., Wang, H., Chugh, V. K., Liang, S., Mostufa, S., Xu, K., Wang, J.-P., Gómez-Pastora, J., & Wu, K. (2023). Magnetic nanoparticles: A review on synthesis, characterization, functionalization, and biomedical applications. Small. Advance online publication. https://doi.org/10.1002/smll.202304848
  • Saçak, M. (1991). The modification of PET fibers with graft copolymerizations: A review. Communications Faculty of Sciences University of Ankara. Series B, 37(pp. 37-47).
  • Saeed, M., Ul Haq, R. S., Ahmed, S., Siddiqui, F., & Yi, J. (2024). Recent advances in carbon nanotubes, graphene and carbon fibers-based microwave absorbers. Journal of Alloys and Compounds, 970, 172625. https://doi.org/10.1016/j.jallcom.2023.172625
  • Seko, N., Ninh, N. T. Y., & Tamada, M. (2010). Emulsion grafting of glycidyl methacrylate onto polyethylene fiber. Radiation Physics and Chemistry, 79(1), 22-26. https://doi.org/10.1016/j.radphyschem.2009.08.014
  • Siddiqui, M.N., Redhwi, H.H., Al-Arfaj, A., Achilias, D. (2021). Chemical Recycling of PET in the Presence of the Bio-Based Polymers, PLA, PHB and PEF: A Review, Sustainability, 13, 10528
  • Stadler, R. H., & Gökmen, V. (2024). Acrylamide in Food (Second Edition), Chapter 1 - Acrylamide formation mechanisms. Pages 1-17. https://doi.org/10.1016/B978-0-323-99119-3.00017-5
  • Taştan, S., Günay, K., Arslan, M., & Yiğitoğlu, M. (2022). Effective adsorption of bovine serum albumin by polyethylene terephthalate (PET) fibers modified with glycidyl methacrylate grafting, hexamethylenediamine attachment and Cu2+ adsorption. Polymer Bulletin, 80(41). https://doi.org/10.1007/s00289-022-04613-4
  • Temoçin, Z. (2013). Covalent immobilization of Candida rugosa lipase on aldehyde functionalized hydrophobic support and the application for synthesis of oleic acid ester. Journal of Biomaterials Science, Polymer Edition, 24(14), 1618-1635. https://doi.org/10.1080/09205063.2013.786970
  • Temoçin, Z., & Yiğitoğlu, M. (2009). Studies on the activity and stability of immobilized horseradish peroxidase on poly(ethylene terephthalate) grafted acrylamide fiber. Bioprocess and Biosystems Engineering, 32(4), 467-474. https://doi.org/10.1007/s00449-008-0266-9
  • Xu, K., Zheng, Z., Huang, S., Chen, T., and Tang, Z. (2016). "Influence of glycidyl methacrylate grafting on the mechanical, water absorption, and thermal properties of recycled high-density polyethylene/rubber seed shell particle composites," BioRes, 11(1), 2617-2628.
  • Yamada, K., Kazama, Y., & Kimura, Y. (2023). Development of water-resistant autohesive strength of polyethylene plates with photografting of alkyl (meth)acrylates. Macromol, 3(3), 554–568. https://doi.org/10.3390/macromol3030032
  • Yiğitoğlu, M., & Arslan, M. (2007). 4-Vinyl pyridine and 2-hydroxyethylmethacrylate monomer mixture graft copolymerization onto poly(ethylene terephthalate) fibers using benzoyl peroxide. Polymer Bulletin, 58(pp. 785-798).
  • Yiğitoğlu, M., & Temoçin, Z. (2010). Immobilization of Candida rugosa lipase on glutaraldehyde-activated polyester fiber and its application for hydrolysis of some vegetable oils. Journal of Molecular Catalysis B: Enzymatic, 66(1-2), 130-135. https://doi.org/10.1016/j.molcatb.2010.04.007
  • Zamani, E., Shokrzadeh, M., Fallah, M., & Shaki, F. (2017). A review of acrylamide toxicity and its mechanism. Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Science, Sari, Iran.

Glisidil Metakrilat/Akrilamid Monomer Karışımının Polietilen Tereftalat Liflere Aşılanması; Karakterizasyon ve Bazı Özelliklerinin İncelenmesi

Year 2025, Volume: 17 Issue: 1, 163 - 181

Abstract

Polimerler, hayatımızın her alanında yaygın olarak kullanılan çok önemli materyallerdir. Aşılama ile polimerler, istenilen özelliklere sahip monomerler ile modifiye edilebilirler. Polietilen tereftalat (PET) lifler, ucuz hammaddesi, düşük üretim maliyetleri ve çevresel etkilere karşı çok dayanıklı olma gibi birçok olumlu özelliğe sahip olmasının yanısıra, hidrofobik karakterli olmasından dolayı, su tutma kapasitesi ve boyana bilirliğinin sınırlı olması gibi dezavantajlara da sahiptir. Bu çalışmayla aşı kopolimerizasyon yöntemi kullanılarak, PET’in bu olumsuz yönlerinin iyileştirmesi amaçlanmıştır. Böylece PET liflerin; enzim immobilizasyonu, doku mühendisliği gibi birçok biyoteknolojik uygulamalarda kullanılabilecek bir materyalin sentezlenmesi hedeflenmiştir. Çalışmada PET liflere, farklı fonksiyonel gruplar içeren GMA (glisidil metakrilat) ve AAm (akrilamit) monomerleri, benzoil peroksit (BPO) başlatıcısı kullanılarak aşılanmıştır. Monomer karışımının PET liflere aşılanmasına birçok parametrenin etkisi araştırılmıştır. Aşılanmamış ve aşılanmış PET lifler; Taramalı elektron mikroskobu (SEM), diferansiyel taramalı kalorimetre (DSC), termogravimetrik analiz (TGA), Fourier Dönüşümlü Kızılötesi Spektroskopisi (FTIR) ile karakterize edilmiştir. Ayrıca aşılanmış PET liflerin, su tutma ve boyanabilme özellikleri de araştırılmıştır.

Project Number

Bu çalışma Kırıkkale Üniversitesi Bilimsel Araştırmalar Projeler ve Koordinasyon Birimi tarafından desteklenmiştir. (2012/6) nolu proje

References

  • Adia, R., Muti, A. F., Rifkia, V., & Pradana, D. L. C. (2024). Lipase enzyme inhibitory activity of Jombang leaves extract (Taraxacum officinale F.H. Wigg). Jurnal Farmasi Galenika (Galenika Journal of Pharmacy), 10(1), 50-61. https://doi.org/10.22487/j24428744.2024.v10.i1.16454
  • Atia, K. S., Ismail, S. A., & Dessouki, A. M. (2003). Immobilization of β-amylase using polyacrylamide polymer derivatives. Journal of Chemical Technology & Biotechnology. https://doi.org/10.1002/jctb.875
  • Alakara, Ş., Karakişla, M., & Saçak, M. (2008). Preparation of Poly(ethylene terephthalate)-g-Methacrylamide Copolymers Initiated by Azobisizobutyronitrile: Characterization and Investigation of Some Properties. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 45(4), 276-280.
  • Al-Taweel, Sungur, S., (1995), Lipaz Enzimleri ile Yağların Modifikasyon Biyoteknolojisi, Gıda, 20 (5), 299-304
  • Arslan, M., & Günay, K. (2019). Synthesis and use of glycidyl methacrylate-g-poly (ethylene terephthalate) fiber containing iminodiacetate groups for the highly effective removal of basic dye. Journal of Materials Science and Engineering with Advanced Technology, 18(1-2), 1-19.
  • Arslan, M., & Günay, K. (2017). Synthesis and characterization of PET fibers grafted with binary mixture of 2-methylpropenoic acid and acrylonitrile by free radical: Its application in removal of cationic dye. Polymer Bulletin, 74(3), 1221-1236. DOI: 10.1007/s00289-016-1773-5
  • Azizinezhad, F. (2011). Kinetic Investigation of Grafting of Poly (ethylene terephthalate) Fibers with 2-Hydroxypropyl Methacrylate using 4, 4'-Azobis (4-cyanovaleric acid). Asian Journal of Chemistry, 23(2), 899.
  • Azizinezhad, F. (2014). Free radical grafting of 2-hydroxypropyl methacrylate/acrylic acid mixture onto poly (ethylene terephthalate) fibers. European Journal of Experimental Biology, 4(1), 560-567. ISSN: 2248-9215. CODEN (USA): EJEBAU.
  • Askar, M. K., Al-Kamaki, Y. S. S., & Hassan, A. (2023). Utilizing polyethylene terephthalate (PET) in concrete: A review. Polymers, 15(3320). DOI: 10.3390/polym15153320
  • Bozkaya, O., Günay, K., Arslan, M., & Gök, Z. G. (2021). Removal of anionic dyes with glycidyl methacrylate-grafted polyethylene terephthalate (PET) fibers modified with ethylenediamine. Research on Chemical Intermediates, 47(2075-2093). https://doi.org/10.1007/s11164-021-04398-7
  • Cheung, L. K. Y., Sanders, A. D., Houfani, A. A., Grahame, D. A. S., Bryksa, B. C., Dee, D. R., & Yada, R. Y. (2024). Factors affecting enzyme activity and design. In Improving and tailoring enzymes for food quality and functionality (2nd ed., pp. 17-57). Woodhead Publishing Series in Food Science, Technology and Nutrition. https://doi.org/10.1016/B978-0-443-15437-9.00012-4
  • Coşkun, R. (2008). Synthesis of functionalized poly(ethylene terephthalate) fibers by grafting of crotonic acid/methacrylamide monomer mixture. Reactive and Functional Polymers, 68(12), 1704-1714.
  • Coşkun, R., & Akdeniz, S. (2010). Functionalization of poly(ethylene terephthalate) fibers by grafting of maleic acid/methacrylamide monomer mixture. Fibers and Polymers, 11(pp. 1111-1118).
  • Çelik, M. (2004). Graft copolymerization of methacrylamide onto acrylic fibers initiated by benzoyl peroxide. Journal of Applied Polymer Science, 94(p. 1519).
  • Deo, P. H. T., Patel, N. K., & Patel, B. K. (2008). Eco-friendly flame retardant (FR) PET fibers through P-N synergism. Journal of Engineered Fibers and Fabrics, 3(cilt 3).
  • Dobrovolsky, V. N., Pacheco-Martinez, M. M., McDaniel, L. P., Pearce, M. G., & Ding, W. (2016). In vivo genotoxicity assessment of acrylamide and glycidyl methacrylate. Food and Chemical Toxicology, 87, 120-127. https://doi.org/10.1016/j.fct.2015.12.006
  • Fernandes, K. F., Lima, C. S., Pinho, H., & Collins, C. H. (2003). Immobilization of horseradish peroxidase onto polyaniline polymers. Process Biochemistry, 38(9), 1379-1384. https://doi.org/10.1016/S0032-9592(03)00021-9
  • Fernández-Pacheco, P., García-Béjar, B., Briones Pérez, A., & Arévalo-Villena, M. (2021). Free and immobilised β-glucosidases in oenology: Biotechnological characterisation and its effect on enhancement of wine aroma. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.723815
  • Khan, M. R. (2021). Immobilized enzymes: A comprehensive review. Bulletin of the National Research Centre, 45(207). https://doi.org/10.1186/s42269-021-00649-0
  • Kumar, D., Pandey, J., Raj, V., & Kumar, P. (2017). A review on the modification of polysaccharide through graft copolymerization for various potential applications. The Open Medicinal Chemistry Journal, 11(109-126). https://doi.org/10.2174/1874104501711010109
  • Kushwaha, P. K., & Kumar, R. (2010). Bamboo fiber reinforced thermosetting resin composites: Effect of graft copolymerization of fiber with methacrylamide. Journal of Applied Polymer Science, 117(4), 2398-2404. https://doi.org/10.1002/app.32466
  • Lee, J., & Patel, R. (2022). Wastewater treatment by polymeric microspheres: A review. Polymers, 14(1890). https://doi.org/10.3390/polym14091890
  • Madrid, J. F., Nuesca, G. M., & Abad, L. V. (2013). Gamma radiation-induced grafting of glycidyl methacrylate (GMA) onto water hyacinth fibers. Radiation Physics and Chemistry, 85, 182-188. https://doi.org/10.1016/j.radphyschem.2012.10.006
  • Mashabi, R. A., Khan, Z. A., & Elwakeel, K. Z. (2022). Chitosan- or glycidyl methacrylate-based adsorbents for the removal of dyes from aqueous solutions: a review. Mater. Adv., 3(15), 5645-5671. DOI: 10.1039/D2MA00320A
  • Prachayawarakorn, J., & Kryratsamee, W. (2006). Dyeing properties of Bombyx mori silks grafted with methyl methacrylate and methacrylamide. Journal of Applied Polymer Science, 99(6), 3156-3162. https://doi.org/10.1002/app.23216
  • Priyan, S. R., Kumar, G. S., Lalithambigai, K., Shkir, M., Khan, A., Rajendran, R., & Arumugam, G. (2024). Microwave-assisted sol-gel synthesis of mesoporous NiO-decorated silica nanostructures utilizing biogenic silica source for supercapacitor applications. Journal of Alloys and Compounds, 976, 173206. https://doi.org/10.1016/j.jallcom.2023.173206
  • Rathod, K. D., Khedikar, I., & Dabhekar, K. (2021). Feasibility study of concrete by using polyethylene terephthalate fiber in enhancing the mechanical properties of concrete. IOP Conference Series: Materials Science and Engineering, 1197(1), 012041. https://doi.org/10.1088/1757-899X/1197/1/012041
  • Rezaei, B., Yari, P., Sanders, S. M., Wang, H., Chugh, V. K., Liang, S., Mostufa, S., Xu, K., Wang, J.-P., Gómez-Pastora, J., & Wu, K. (2023). Magnetic nanoparticles: A review on synthesis, characterization, functionalization, and biomedical applications. Small. Advance online publication. https://doi.org/10.1002/smll.202304848
  • Saçak, M. (1991). The modification of PET fibers with graft copolymerizations: A review. Communications Faculty of Sciences University of Ankara. Series B, 37(pp. 37-47).
  • Saeed, M., Ul Haq, R. S., Ahmed, S., Siddiqui, F., & Yi, J. (2024). Recent advances in carbon nanotubes, graphene and carbon fibers-based microwave absorbers. Journal of Alloys and Compounds, 970, 172625. https://doi.org/10.1016/j.jallcom.2023.172625
  • Seko, N., Ninh, N. T. Y., & Tamada, M. (2010). Emulsion grafting of glycidyl methacrylate onto polyethylene fiber. Radiation Physics and Chemistry, 79(1), 22-26. https://doi.org/10.1016/j.radphyschem.2009.08.014
  • Siddiqui, M.N., Redhwi, H.H., Al-Arfaj, A., Achilias, D. (2021). Chemical Recycling of PET in the Presence of the Bio-Based Polymers, PLA, PHB and PEF: A Review, Sustainability, 13, 10528
  • Stadler, R. H., & Gökmen, V. (2024). Acrylamide in Food (Second Edition), Chapter 1 - Acrylamide formation mechanisms. Pages 1-17. https://doi.org/10.1016/B978-0-323-99119-3.00017-5
  • Taştan, S., Günay, K., Arslan, M., & Yiğitoğlu, M. (2022). Effective adsorption of bovine serum albumin by polyethylene terephthalate (PET) fibers modified with glycidyl methacrylate grafting, hexamethylenediamine attachment and Cu2+ adsorption. Polymer Bulletin, 80(41). https://doi.org/10.1007/s00289-022-04613-4
  • Temoçin, Z. (2013). Covalent immobilization of Candida rugosa lipase on aldehyde functionalized hydrophobic support and the application for synthesis of oleic acid ester. Journal of Biomaterials Science, Polymer Edition, 24(14), 1618-1635. https://doi.org/10.1080/09205063.2013.786970
  • Temoçin, Z., & Yiğitoğlu, M. (2009). Studies on the activity and stability of immobilized horseradish peroxidase on poly(ethylene terephthalate) grafted acrylamide fiber. Bioprocess and Biosystems Engineering, 32(4), 467-474. https://doi.org/10.1007/s00449-008-0266-9
  • Xu, K., Zheng, Z., Huang, S., Chen, T., and Tang, Z. (2016). "Influence of glycidyl methacrylate grafting on the mechanical, water absorption, and thermal properties of recycled high-density polyethylene/rubber seed shell particle composites," BioRes, 11(1), 2617-2628.
  • Yamada, K., Kazama, Y., & Kimura, Y. (2023). Development of water-resistant autohesive strength of polyethylene plates with photografting of alkyl (meth)acrylates. Macromol, 3(3), 554–568. https://doi.org/10.3390/macromol3030032
  • Yiğitoğlu, M., & Arslan, M. (2007). 4-Vinyl pyridine and 2-hydroxyethylmethacrylate monomer mixture graft copolymerization onto poly(ethylene terephthalate) fibers using benzoyl peroxide. Polymer Bulletin, 58(pp. 785-798).
  • Yiğitoğlu, M., & Temoçin, Z. (2010). Immobilization of Candida rugosa lipase on glutaraldehyde-activated polyester fiber and its application for hydrolysis of some vegetable oils. Journal of Molecular Catalysis B: Enzymatic, 66(1-2), 130-135. https://doi.org/10.1016/j.molcatb.2010.04.007
  • Zamani, E., Shokrzadeh, M., Fallah, M., & Shaki, F. (2017). A review of acrylamide toxicity and its mechanism. Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Science, Sari, Iran.
There are 41 citations in total.

Details

Primary Language English
Subjects Polymer Technologies
Journal Section Articles
Authors

Arif Soysal 0009-0000-9070-7541

Mustafa Yiğitoğlu 0000-0002-6024-9129

Project Number Bu çalışma Kırıkkale Üniversitesi Bilimsel Araştırmalar Projeler ve Koordinasyon Birimi tarafından desteklenmiştir. (2012/6) nolu proje
Early Pub Date March 3, 2025
Publication Date
Submission Date May 20, 2024
Acceptance Date July 27, 2024
Published in Issue Year 2025 Volume: 17 Issue: 1

Cite

APA Soysal, A., & Yiğitoğlu, M. (2025). Graft Copolymerization of Glycidyl Methacrylate/ Acrylamide Monomer Mixture onto Polyethylene Terephthalate Fibers; Characterization and Investigation of Some Properties. International Journal of Engineering Research and Development, 17(1), 163-181. https://doi.org/10.29137/umagd.1487188

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.