Derleme
BibTex RIS Kaynak Göster

KÖMÜR ÖZELLİKLERİNİN TEMİZ KÖMÜR TEKNOLOJİLERİNE (GAZLAŞTIRMA, SIVILAŞTIRMA, KARBON ELYAF VE KOK ÜRETİMİ) ETKİSİ: DERLEME

Yıl 2022, Cilt: 4 Sayı: 2, 22 - 56, 31.12.2022

Öz

Kömür, petrol ve doğal gaz gibi diğer fosil yakıtlara göre Dünyada daha bol, coğrafi olarak daha homojen, madenciliğinin nispeten kolay ve düşük maliyetli olması nedeniyle geçmişten günümüze değin dünyada en fazla kullanılan ve tercih edilen enerji kaynağıdır. Bununla birlikte son 20 yılda küresel ölçekte etkileri artarak kendini gösteren fosil yakıtlara bağlı sera gazı etkileri ve çevresel felaketler bu kaynak için alternatif yakıtlar bulunması yanısıra kömürün temiz yakma teknolojileri geliştirilmesini de zorunlu kılmıştır. Temiz kömür teknolojileri, kömür madenciliğinden itibaren tüm kullanımında hem çevresel olarak kabul edilebilirliğini hem de verimliliğini artıran teknolojiler olarak tanımlanabilir. Son yıllarda dikkat çekici boyutta bilimsel araştırmaların ve sektörel uygulamaların yapıldığı birkaç uygulama özellikle dikkat çekicidir. Bahsedilen bu uygulamalardan olan kömürlerin gazlaştırma, sıvılaştırma, kok ve karbon elyaf üretimi için hammadde (kömür) seçiminde petrografik, petro-fiziksel ve mineralojik özellikler olmak üzere birçok bilimsel parametreye dikkat edilmesi gerekmektedir. Bu çalışmada gazlaştırma ve sıvılaştırma gibi temiz kömür teknoloji uygulamalarında kullanılacak kömürlerin organik bileşim ve mineral madde içeriği, kömürleşme derecesi, eser elementlerin dağılımı, yapısal bileşim ve gözenek yapısı özelliklerinin bu uygulamalara olan etkisinin açıklanması hedeflenmiştir.

Kaynakça

  • [1] Dudley, B., BP Statistical Review of World Energy, Coal, 68th Edition. 02 2020, 02 tarihinde https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2019-coal.pdf, 2019.
  • [2] https://enerji.gov.tr/bilgi-merkezi-tabii-kaynaklar-komur, E.T. 06.11.2021)
  • [3] Okutan H. Kömür Gazlaştıma Teknolojisi: Ülkemiz İçin Çözüm Olabilir mi? TÜBA Temiz KömürTeknol. Çalıştayı ve Paneli. Ankara, 2017.
  • [4] Pişkin, S. ve Karaosmanoğlu, F. Kömürün Gazlaştırılması. Kömür Özellikleri Teknolojisi ve Çevre İlişkileri, Özgün Ofset Matbaacılık A.Ş., 59-70, İstanbul, 1998.
  • [5] Arslan V., Kömür Temizleme Teknolojileri ve CO2 Tutma Açısından Önemi konulu panel notları. TÜBA Temiz Kömür Teknol. Çalıştayı ve Paneli. TÜBA, 2017.
  • [6] Taylor GH, Teichmuller M, Davis A, Diessel CFK, Littke R, Robert P. Organic petrology, 3rd edn. Schweizerbart, Stuttgart, 1998.
  • [7] Holuszko ME, Mastalerz MD. Coal maceral chemistry and its implications for selectivity in coal flotability. Int J Coal Prep Utlil 35:99–110, 2015.
  • [8] Ziypak, M. Gazlaştırma Teknolojileri. Ankara: TKİ., 2015.
  • [9] (https://www.sasol.com/about-sasol/company-profile/overview).
  • [10] Tuncalı, E., et al. Türkiye Tersiyer Kömürlerinin Kimyasal ve Teknolojik Özellikleri (in Turkish). Ankara, Turkey: General Directorate of Mineral Research and Exploration Publication. Turkey: General Directorate of Mineral Research and Exploration Publication, 2002.
  • [11] Bayrak, Ö., & Aktan, M., Türkiye’nin kömür potansiyeli ve hedefler. In TÜBA Temiz Kömür Teknolojileri Çalıştayı ve Paneli. Ankara, 2017.
  • [12] Çakal GÖ, Yücel H, Gürüz AG., Physical and chemical properties of selected Turkish lignites and their pyrolysis and gasification rates determined by thermogravimetric analysis. J Anal Appl Pyrolysis 80:262–268, 2007.
  • [13] Breault, R.W., Gasification Processes Old and New: A Basic Review of the Major Technologies, Energies, 3(2), 216-240, 2010.
  • [14] Aktan, M., Kömür gazlaştırma ürünlerinin gerçek opsiyonlar yöntemi ile değerlemesi. Doktora Tezi. Ankara: Hacettepe Üniversitesi Fen Bilimleri Enstitüsü., 2020.
  • [15] Higmann, C., State of the gasification industry: Worldwide gasification and syngas databases 2016 update, Gasification and Syngas Technologies Conference, Vancouver, 2016.
  • [16] Mahinpey, N., & Gomez, A. Review of gasification fundamentals and new findings: Reactors, feedstock, and kinetic studies. Chemical Engineering Science, 148, 14–31. doi: 10.1016/j.ces.2016.03.037, 2016.
  • [17] Suarez-Ruiz I, Crelling JC. The role of petrology in coal utilization. In: Applied coal petrology, 1st edn. Academic Press, New York, 2008.
  • [18] Marzec A. Towards an understanding of the coal structure: a review. Fuel Process Technol 77:25–32, 2002.
  • [19] Ahamed MAA, Perera MSA, Matthai SK, Ranjith PG, Dong-yinc L., Coal composition and structural variation with rank and its influence on the coal-moisture interactions under coal seam temperature conditions—a review article. J Pet Sci Eng 180:901–917, 2019.
  • [20] Harris, D. J., & Roberts, D.G. Coal Gasification and Conversion. In The Coal Handbook: Towards Cleaner Production, vol. 2, pp. 427– 454, 2013.
  • [21] Pan J, Meng Z, Hou Q, Ju Y, Cao Y. Coal strength and Young’s modulus related to coal rank, compressional velocity and maceral composition. J Struct Geol 54:129–135, 2013.
  • [22] Singh AK, Mrityunjay KJ. Hydrocarbon potential of permian coals of south Karanpura coalfield, Jharkhand, India. Energy Sources Part A Recover Util Environ Effects 40(2):163–171, 2018a.
  • [23] Singh AK, Mrityunjay KJ. Interrelation between mechanical and petrographic characteristics of coals of Argada B seam: implication to comminution and utilization. Int J Coal Prep Util. 2018b.
  • [24] Li K, Khanna R, Zhang J, Barati M, Xu T, Yang T, Sahajwalla V. Comprehensive investigation of various structural features of bituminous coals using advanced analytical techniques. Energy Fuels 11(29):7178–7189, 2015.
  • [25] Ward CR. Analysis, origin and significance of mineral matter in coal: an updated review. Int J Coal Geol 165:1–27, 2016.
  • [26] Gao F, Kang H. Experimental study on the residual strength of coal under low confinement. Rock Mech Rock Eng 50:285–296, 2017.
  • [27] Xue Y, Ranjith PG, Gao F, Zhang D, Cheng H, Chong Z, Hou P. Mechanical behaviour and permeability evolution of gascontaining coal from unloading confining pressure tests. J Nat Gas Sci Eng 40:336–346, 2017.
  • [28] Devasahayam S, Sahajwalla V. Evaluation of coal for metallurgical applications. In: Osborne D (ed) The coal handbook: towards cleaner production, vol 2. Woodhead Publishing Limited, Sawston, pp 352–386, 2013.
  • [29] Jasienko S, Kimber GM, Patrick JW. Coal as raw material for carbon production: some new aspects [and discussion]. Philos Trans R Soc Lond Ser A Math Phys Sci 300(1453):171–182, 1981.
  • [30] Patrick JW. The coking of coal. Sci Prog 61(243):375–399, 1974.
  • [31] Diez MA, Alvarez RC, Barriocanal R. Coal for metallurgical coke production: predictions of coke quality and future requirements for cokemaking. Int J Coal Geol 50:389–412, 2002.
  • [32] Nomura S, Arima T, Kato K. Coal blending theory for dry coal charging process. Fuel 83:1771–1776, 2004.
  • [33] Matjie RH, French D, Ward CR, Pistorius PC, Li Z. Behaviour of coal mineral matter in sintering and slagging of ash during the gasification process. Fuel Process Technol 92(8):1426–1433, 2011.
  • [34] Creelman RA, Ward CR, Schumacher G, Juniper L. Relation between coal mineral matter and deposit mineralogy in PF furnances. Energy Fuel 27:5714–5724, 2013.
  • [35] Gupta S, Sahajwalla V, Chaubal P, Youmans T. Carbon structure of coke at high temperatures and its influence on coke fines in blast furnace dust. Metall Mater Trans B 36:385–394, 2005.
  • [36] van Krevelen VW. Typology, physics, chemistry, constitution, 3rd edn. Elsevier Science Publishers, Amsterdam, 1993.
  • [37] Miller BG. Introduction to coal utilization technologies. In: Clean coal engineering technology, 3rd edn, pp 147–229, 2017.
  • [38] Anon 2., Queensland high energy coals for the PCI market— advantages for low volatile coal. Retrieved from http://mines. industry.qld.gov.au/assets/coal-pdf/hi_energy, 2001.
  • [39] Bennett P, Holcombe D., Commissioned study on PCI research and future directions. Coal Technology. http//coaltech.com.au/CommissionedStudyonPCIResearchandFutureDirections.html. Accessed 21 March 2019, 1994.
  • [40] Kim B, Kotegawa T, Eom Y, An J, Hong I, Kato O, Nakabayashi K, Miyawaki J, Kim BC, Mochida I, Yoon S. Enhancing the tensile strength of isotropic pitch-based carbon fibers by improving the stabilization and carbonization properties of precursor pitch. Carbon 99:649–657, 2016a
  • [41] Kim J, Im U, Lee B, Peck D, Yoon S, Jung D. Pitch-based carbon fibers from coal tar or petroleum residue under the same processing condition. Carbon Lett 19:72–78, 2016b.
  • [42] Yang SJ, Nakabayashi K, Miyawaki J, Yoon SH. Preparation of pitch based carbon fibers using hyper-coal as a raw material. Carbon 106:28–36, 2016.
  • [43] Apicella B, Tregrossi A, Stanzione F, Ciajolo A, Russo C., Analysis of petroleum and coal tar pitches as large PAH. Chem Eng Trans 57:1–6, 2017.
  • [44] Hiremath N, Mays J, Bhat G. Recent Developments in carbon fibers and carbon nanotube-based fibers: a review. Polym Rev 57:339–368, 2017.
  • [45] Takanohashi T, Shishido T, Kawashima H, Saito I. Characterisation of hyper coals from coals of various ranks. Fuel 87(4–5):592–598, 2008.
  • [46] Lee SH, Lee SM, Im U, Kim S, Yoon S, Lee B, Peck D, Shul Y, Jung D. Preparation and characterization of high-spinnability isotropic pitch from 1-methylnaphthalene-extracted low-rank. Carbon 155:186–194, 2019.
  • [47] Kim BJ, Eom Y, Kato O, Miyawaki J, Kim BC, Mochida I, Yoon SH. Preparation of carbon fibers with excellent mechanical properties from isotropic pitches. Carbon 77:747–755, 2014.
  • [48] Zabihi O. Modeling of phenomenological mechanisms during thermal formation and degradation of an epoxy- based nanocomposite. Thermochim Acta 543:239–245, 2012.
  • [49] Huson MG. High performance pitch based carbon fibers. In: Bhat G (ed) Structure and properties of high performance fibers. Woodhead Publishing, Victoria, pp 31–78, 2017.
  • [50] Özer M, Basha OM, Stiegel G, Morsi B. Effect of coal natüre on the gasification process. In: Integrated gasification combined cycle (IGCC) technologies, pp 257–293, 2017.
  • [51] Alonso MJG, Borrego AG, Alvarez D, Parra JB, Mene´ndez R., Influence of pyrolysis temperature on char optical texture and reactivity. J Anal Appl Pyrolysis 58–59:887–909, 2001.
  • [52] Me´ndez LB, Borrego AG, Martinez-Tarazona MR, Mene´ndez R. Influence of petrographic and mineral matter composition of coal particles on their combustion reactivity. Fuel 82:1875–1882, 2003.
  • [53] Choudhury N, Biswas S, Sarkar P, Kumar M, Ghosal S, Mitra T. Influence of rank and macerals on the burnout behaviour of pulverized Indian coal. Int J Coal Geol 74:145–153, 2008.
  • [54] Miura K, Hashimoto K, Silveston PL, Factors affecting the reactivity of coal chars during gasification, and indices representing reactvity. Fuel 68:1461–1475, 1989.
  • [55] Ye DP, Agnew JB, Zhang DK. Gasification of a South Australian low-rank coal with carbon dioxide and steam: kinetics and reactivity studies. Fuel 77:1209–1219, 1998.
  • [56] Küçükkbayrak S, Haykiri-Açma H, Ersoy-Meriçboyu A, Yaman S., Effect of lignite properties on reactivity of lignite. Energy Convers Manag 42:613–626, 2001.
  • [57] Irfan, M. F., Usman, M. R., & Kusakabe, K. Coal gasification in CO2 atmosphere and its kinetics since 1948: A brief review. Energy, 36(1), 12-40, 2011.
  • [58] Durie RA., Coal properties and their importance in the production of liquid fuels. Fuel 61(10):883–886, 1982.
  • [59] Shadle LJ, Berry DA, Syamlal M. Coal conversion processes, gasification. In: Kirk–Othmer encyclopedia of chemical technology, 2002.
  • [60] Fletcher TH. Gasification fundamentals. In: Wang T, Stiegel GJ (eds) Integrated gasification combined cycle (IGCC) technologies. Woodhead Publishing, Sawston, pp 223–256, 2017.
  • [61] Suarez-Ruiz I. Organic petrology: an overview. In: Al-Juboury A (ed) Petrology—new perspectives and applications, pp 199–224, 2012.
  • [62] Sun Q, Li W, Chen H, Li B. The CO2-gasification and kinetics of Shenmu maceral chars with and without catalyst. Fuel 83:1787–1793, 2004.
  • [63] Zhuo Y, Messenbock R, Peterson N, Dugwell DR, Kandiyoti R. High pressure gasification of coal in bench scale reactors; the effect pressure, gassifing medium and maceral content. In: International furnace and boilers, 5th European conference. INFUB, Rio Tonto, Portugal, 629–638, 2000.
  • [64] Mahagaokar U. Coal conversion processes, gasification. In: Kirk–Othmer encyclopedia of chemical technology, 2004.
  • [65] van Niekerk D, Pugmire RJ, Solum MS, Painter PC, Mathews JP. Structural characterization of vitrinite-rich and inertiniterich Permian-aged South African bituminous coals. Int J Coal Geol 76:290–300, 2008.
  • [66] Sun Q, Li W, Chen H, Li B. The variation of structural characteristics of macerals during pyrolysis. Fuel 82:669– 676, 2003.
  • [67] Arenillas A, Rubiera F, Pevida C, Ania CO, Pis JJ., Relationship between structure and reactivity of carbonaceous materials. J Therm Anal Calorim 76:593–602, 2004.
  • [68] Hurt R, Sun J-K, Lunden M. A kinetic model of carbon burnout in pulverized coal combustion. Combust Flame 113(1–2):181–197, 1998.
  • [69] Kajitani S, Suzuki N, Ashizawa M, Hara S. CO2 gasification rate analysis of coal char in entrained flow coal gasifier. Fuel 85:163–169, 2006.
  • [70] Jayaraman K, Gokalp I. Effect of char generation method on steam, CO2 and blended mixture gasification of high ash Turkish coals. Fuel 153:320–327, 2015.
  • [71] Hattingh BB, Everson RC, Neomagus HWJP, Bunt JR.Assessing the catalytic effect of coal ash constituents on the CO2 gasification rate of high ash, South African coal. Fuel Process Technol 92:2048–2054, 2011.
  • [72] Ballantyne TR, Ashman PJ, Mullinger PJ., A new method for determining the conversion of low-ash coals using synthetic ash as a tracer. Fuel 84:1980–1985, 2005.
  • [73] Radovic LR, Walker PL, Jenkins RG. Importance of catalyst dispersion in the gasification of lignite chars. J Catal 82(2):382–394, 1983.
  • [74] Zevenhoven-Onderwater M, Backman R, Skrifvars BJ, Hupa M. The ash chemistry in fluidised bed gasification of biomass fuels. Part I: predicting the chemistry of melting ashes and ash–bed material interaction. Fuel 80:1489– 1502, 2001.
  • [75] Hu G, Dam-Johansen K, Wedel S, Hansen JP. Decomposition and oxidation of pyrite. Prog Energy Combust Sci 32(3):295–314, 2006.
  • [76] Kosminski A, Ross D, Agnew J. Influence of gas environment on reactions between sodium and silicon minerals during gasification of low-rank coal. Fuel Process Technol 87:953–962, 2006a.
  • [77] Kosminski A, Ross D, Agnew J. Reactions between sodium and silica during gasification of a low-rank coal. Fuel Process Technol 87:1037–1049, 2006b.
  • [78] Kosminski A, Ross D, Agnew J., Transformations of sodium during gasification of low-rank coal. Fuel Process Technol 87:943–952, 2006c.
  • [79] Gupta S, Dubikova M, French D, Sahajwalla V. Effect of CO2 gasification on the transformations of coke minerals at high temperatures. Energy Fuels 21:1052–1061, 2007.
  • [80] Bai J, Li W, Li C-Z, Bai Z, Li B., Influences of minerals transformation on the reactivity of high temperature char gasification. Fuel Process Technol 91:404–409, 2010.
  • [81] Li S., Char–slag transition during pulverized coal gasification. Dissertation. University of Utah, 2010.
  • [82] Gupta SK, Wall TF, Creelman RA, Gupta RP., Ash fusion temperatures and the transformations of coal ash particles to slag. Fuel Process Technol 56(1–2):33–43, 1998.
  • [83] Lolja SA, Haxhi H, Dhimitri R, Drushku S, Malja A. Correlation between ash fusion temperatures and chemical composition in Albanian coal ashes. Fuel 81:2257–2261, 2002.
  • [84] Liu B, He Q, Jiang Z, Xu R, Hu B. Relationship between coal ash composition and ash fusion temperatures. Fuel 105:293–300, 2013.
  • [85] Groen J, Brooker D, Welch P, Oh M., Gasification slag rheology and crystallization in titanium-rich, iron–calcium–aluminosilicate glasses. Fuel Process Technol 56:103–127, 1998.
  • [86] Wang P, Massoudi M. Slag behavior in gasifiers. Part I: influence of coal properties and gasification conditions. Energies 6:784–806, 2013.
  • [87] Vamvuka D, Zografos D, Alevizos G. Control methods for mitigating biomass ash-related problems in fluidized beds. Bioresour Technol 99(9):3534–3544, 2008.
  • [88] van Dyk J, Waanders F. Manipulation of gasification coal feed in order to increase the ash fusion temperature of the coal enabling the gasifiers to operate at higher temperatures. Fuel 86:2728–2735, 2007.
  • [89] Speight JG. Gasification of unconventional feedstocks. https://doi.org/10.1016/C2013-0-14152-9, 2014.
  • [90] Dittus M, Johnson D., The hidden value of lignite coal. In: Gasification technologies conference, proceedings, pp 1–8, 2001.
  • [91] Keboletse, K.P., Ntuli, F. & Oladijo, O.P. Influence of coal properties on coal conversion processes-coal carbonization, carbon fiber production, gasification and liquefaction technologies: a review. Int J Coal Sci Technol 8, 817–843, 2021.
  • [92] Vasireddy SB, Morreale A, Cugini C, Song SJ. Clean liquid fuels from direct coal liquefaction: chemistry, catalysis, technological status and challenges. Energy Environ Sci 2:311–345, 2011.
  • [93] Heydari M, Rahman M, Rajender G., Effect of initial coal particle size on coal liquefaction conversion. Int J Oil Gas Coal Technol 12(1):63–80, 2016.
  • [94] Tissot BP, Welte D. Petroleum formation and occurrence, 2nd edn. Springer, Berlin, 1984.
  • [95] Zhou B, Shi L, Liu Q, Liu Z. Examination of structural models and bonding characteristics of coals. Fuel 184:799– 807, 2016.
  • [96] Zhu J, Liu J, Yang Y, Cheng J, Zhou J, Cen K. Fractal characteristics of pore structures in 13 coal specimens: relationship among fractal dimension, pore structure parameter and slurry ability of coal. Fuel Process Technol 149:256–258, 2016.
  • [97] Kalkreuth W, Roy C, Hebert M. Vaccume pyrolysis of Canadian PrinceMine coal—chemical and petrological analyses of feed coal and solid residues. Fuel 64:213–222, 1986.
  • [98] Hunt JM. Generation of gas and oil from coal and other terrestrial organic matter. Org Geochem 17(6):673–680, 1991.
  • [99] Peters KE, Snedden JW, Sulaeman A, Sarg JF, Enrico RJ. A new geochemical-sequence stratigraphic model for the Mahakam Delta and Makassar Slope, Kalimantan, Indonesia. AAPG Bull 84:12–44, 2000.
  • [100] Singh PK, Singh MP, Singh AK, Arora M, Naik AS. The prediction of the liquefaction behavior of the East Kalimantan coals of Indonesia: an appraisal through petrography of selected coal samples. Energy Sources Part A Recover Util Environ Effects 35(18):1728–1740, 2013.
  • [101] Mishra A, Gautam S, Sharma T. Effect of operating parameters on coal gasification. Int J Coal Sci Technol 5(2):113–125, 2018.
  • [102] Powell TG, Boreham CJ. Terrestrial sourced oils: Where do they exist and what are our limits of knowledge?—A geochemical perspective. In: Fleet AJ, Scott AC (eds) Coal and coal bearing strata as oil-prone source rocks. Geological Society of London, London, pp 11–29, 1994.
  • [103] Schlosberg RH. Chemistry of coal conversion. Springer, New York, 1985.
  • [104] Li X, Hu H, Jin L, Hu S, Wu B. Approach for promoting liquid yield in direct liquefaction of Shenhua coal. Fuel Process Technol 89(11):1090–1095, 2008a.
  • [105] Li X, Hu H, Zhu S, Hu S, Wu B, Meng M. Kinetics of coal liquefaction during heating-up and isothermal stages. Fuel 87(4–5):508–513, 2008b.
  • [106] Davis A, Spackman W, Given PH. The influence of the properties of coals on their conversion into clean fuels. Energy Sources 3:55–81, 1976.
  • [107] Falcon R, Ham AJ. The characteristics of Southern African coals. J S Afr Inst Min Metall 88(5):145–161, 1988.
  • [108] Zhao Y, Hu H, Jin L, He X, Wu B. Pyrolysis behaviour of vitrinite and inertinite from Chinese Pingshuo coal by TG-MS and in a fixed bed reactor. Fuel Process Technol 92:780–786, 2011.
  • [109] Chakravarty S, Mohanty A, Banerjee A, Tripathy R, Mandal GK, Basariya R, Sharma M. Composition, mineral matter characteristics and fusion behavior of some Indian coals. Fuel3 150:96–101, 2015.
  • [110] Singh AK, Singh PK, Singh MP, Banerjee PK. Utilization of the Permian coal deposits of West Bokaro, India: a petrochemical evaluation. Energy Sources Part A Recover Util Environ Effects 37:1081–1088, 2015.

EFFECT OF COAL PROPERTIES ON CLEAN COAL TECHNOLOGIES (GASIFICATION, LIQUIDATION, COAL CARBONIZATION AND CARBON FIBER PRODUCTION): REVIEW

Yıl 2022, Cilt: 4 Sayı: 2, 22 - 56, 31.12.2022

Öz

Compared to other fossil fuels such as coal, oil and natural gas, it is the most used and preferred energy source in the world from past to present, due to its abundance, geographically more homogeneous, relatively easy and low cost mining. In addition to this, the greenhouse gas effects and environmental disasters due to fossil fuels, whose effects have increased on a global scale in the last 20 years, have necessitated the development of clean burning technologies for coal as well as the discovery of alternative fuels for this resource. Clean coal technologies can be defined as technologies that increase both its environmental acceptability and efficiency in all its use, starting from coal mining. A few applications in which remarkable scientific research and sectoral applications have been made in recent years are particularly noteworthy. It is necessary to pay attention to many scientific parameters, including petrographic, petro-physical and mineralogical properties, in the selection of raw materials (coal) for gasification, liquefaction, coke and carbon fiber production of coals, which are among these applications. In this study, it is aimed to explain the effects of organic composition and mineral matter content, carbonization degree, distribution of trace elements, structural composition and pore structure properties of coals to be used in clean coal technology applications such as gasification and liquefaction.

Kaynakça

  • [1] Dudley, B., BP Statistical Review of World Energy, Coal, 68th Edition. 02 2020, 02 tarihinde https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2019-coal.pdf, 2019.
  • [2] https://enerji.gov.tr/bilgi-merkezi-tabii-kaynaklar-komur, E.T. 06.11.2021)
  • [3] Okutan H. Kömür Gazlaştıma Teknolojisi: Ülkemiz İçin Çözüm Olabilir mi? TÜBA Temiz KömürTeknol. Çalıştayı ve Paneli. Ankara, 2017.
  • [4] Pişkin, S. ve Karaosmanoğlu, F. Kömürün Gazlaştırılması. Kömür Özellikleri Teknolojisi ve Çevre İlişkileri, Özgün Ofset Matbaacılık A.Ş., 59-70, İstanbul, 1998.
  • [5] Arslan V., Kömür Temizleme Teknolojileri ve CO2 Tutma Açısından Önemi konulu panel notları. TÜBA Temiz Kömür Teknol. Çalıştayı ve Paneli. TÜBA, 2017.
  • [6] Taylor GH, Teichmuller M, Davis A, Diessel CFK, Littke R, Robert P. Organic petrology, 3rd edn. Schweizerbart, Stuttgart, 1998.
  • [7] Holuszko ME, Mastalerz MD. Coal maceral chemistry and its implications for selectivity in coal flotability. Int J Coal Prep Utlil 35:99–110, 2015.
  • [8] Ziypak, M. Gazlaştırma Teknolojileri. Ankara: TKİ., 2015.
  • [9] (https://www.sasol.com/about-sasol/company-profile/overview).
  • [10] Tuncalı, E., et al. Türkiye Tersiyer Kömürlerinin Kimyasal ve Teknolojik Özellikleri (in Turkish). Ankara, Turkey: General Directorate of Mineral Research and Exploration Publication. Turkey: General Directorate of Mineral Research and Exploration Publication, 2002.
  • [11] Bayrak, Ö., & Aktan, M., Türkiye’nin kömür potansiyeli ve hedefler. In TÜBA Temiz Kömür Teknolojileri Çalıştayı ve Paneli. Ankara, 2017.
  • [12] Çakal GÖ, Yücel H, Gürüz AG., Physical and chemical properties of selected Turkish lignites and their pyrolysis and gasification rates determined by thermogravimetric analysis. J Anal Appl Pyrolysis 80:262–268, 2007.
  • [13] Breault, R.W., Gasification Processes Old and New: A Basic Review of the Major Technologies, Energies, 3(2), 216-240, 2010.
  • [14] Aktan, M., Kömür gazlaştırma ürünlerinin gerçek opsiyonlar yöntemi ile değerlemesi. Doktora Tezi. Ankara: Hacettepe Üniversitesi Fen Bilimleri Enstitüsü., 2020.
  • [15] Higmann, C., State of the gasification industry: Worldwide gasification and syngas databases 2016 update, Gasification and Syngas Technologies Conference, Vancouver, 2016.
  • [16] Mahinpey, N., & Gomez, A. Review of gasification fundamentals and new findings: Reactors, feedstock, and kinetic studies. Chemical Engineering Science, 148, 14–31. doi: 10.1016/j.ces.2016.03.037, 2016.
  • [17] Suarez-Ruiz I, Crelling JC. The role of petrology in coal utilization. In: Applied coal petrology, 1st edn. Academic Press, New York, 2008.
  • [18] Marzec A. Towards an understanding of the coal structure: a review. Fuel Process Technol 77:25–32, 2002.
  • [19] Ahamed MAA, Perera MSA, Matthai SK, Ranjith PG, Dong-yinc L., Coal composition and structural variation with rank and its influence on the coal-moisture interactions under coal seam temperature conditions—a review article. J Pet Sci Eng 180:901–917, 2019.
  • [20] Harris, D. J., & Roberts, D.G. Coal Gasification and Conversion. In The Coal Handbook: Towards Cleaner Production, vol. 2, pp. 427– 454, 2013.
  • [21] Pan J, Meng Z, Hou Q, Ju Y, Cao Y. Coal strength and Young’s modulus related to coal rank, compressional velocity and maceral composition. J Struct Geol 54:129–135, 2013.
  • [22] Singh AK, Mrityunjay KJ. Hydrocarbon potential of permian coals of south Karanpura coalfield, Jharkhand, India. Energy Sources Part A Recover Util Environ Effects 40(2):163–171, 2018a.
  • [23] Singh AK, Mrityunjay KJ. Interrelation between mechanical and petrographic characteristics of coals of Argada B seam: implication to comminution and utilization. Int J Coal Prep Util. 2018b.
  • [24] Li K, Khanna R, Zhang J, Barati M, Xu T, Yang T, Sahajwalla V. Comprehensive investigation of various structural features of bituminous coals using advanced analytical techniques. Energy Fuels 11(29):7178–7189, 2015.
  • [25] Ward CR. Analysis, origin and significance of mineral matter in coal: an updated review. Int J Coal Geol 165:1–27, 2016.
  • [26] Gao F, Kang H. Experimental study on the residual strength of coal under low confinement. Rock Mech Rock Eng 50:285–296, 2017.
  • [27] Xue Y, Ranjith PG, Gao F, Zhang D, Cheng H, Chong Z, Hou P. Mechanical behaviour and permeability evolution of gascontaining coal from unloading confining pressure tests. J Nat Gas Sci Eng 40:336–346, 2017.
  • [28] Devasahayam S, Sahajwalla V. Evaluation of coal for metallurgical applications. In: Osborne D (ed) The coal handbook: towards cleaner production, vol 2. Woodhead Publishing Limited, Sawston, pp 352–386, 2013.
  • [29] Jasienko S, Kimber GM, Patrick JW. Coal as raw material for carbon production: some new aspects [and discussion]. Philos Trans R Soc Lond Ser A Math Phys Sci 300(1453):171–182, 1981.
  • [30] Patrick JW. The coking of coal. Sci Prog 61(243):375–399, 1974.
  • [31] Diez MA, Alvarez RC, Barriocanal R. Coal for metallurgical coke production: predictions of coke quality and future requirements for cokemaking. Int J Coal Geol 50:389–412, 2002.
  • [32] Nomura S, Arima T, Kato K. Coal blending theory for dry coal charging process. Fuel 83:1771–1776, 2004.
  • [33] Matjie RH, French D, Ward CR, Pistorius PC, Li Z. Behaviour of coal mineral matter in sintering and slagging of ash during the gasification process. Fuel Process Technol 92(8):1426–1433, 2011.
  • [34] Creelman RA, Ward CR, Schumacher G, Juniper L. Relation between coal mineral matter and deposit mineralogy in PF furnances. Energy Fuel 27:5714–5724, 2013.
  • [35] Gupta S, Sahajwalla V, Chaubal P, Youmans T. Carbon structure of coke at high temperatures and its influence on coke fines in blast furnace dust. Metall Mater Trans B 36:385–394, 2005.
  • [36] van Krevelen VW. Typology, physics, chemistry, constitution, 3rd edn. Elsevier Science Publishers, Amsterdam, 1993.
  • [37] Miller BG. Introduction to coal utilization technologies. In: Clean coal engineering technology, 3rd edn, pp 147–229, 2017.
  • [38] Anon 2., Queensland high energy coals for the PCI market— advantages for low volatile coal. Retrieved from http://mines. industry.qld.gov.au/assets/coal-pdf/hi_energy, 2001.
  • [39] Bennett P, Holcombe D., Commissioned study on PCI research and future directions. Coal Technology. http//coaltech.com.au/CommissionedStudyonPCIResearchandFutureDirections.html. Accessed 21 March 2019, 1994.
  • [40] Kim B, Kotegawa T, Eom Y, An J, Hong I, Kato O, Nakabayashi K, Miyawaki J, Kim BC, Mochida I, Yoon S. Enhancing the tensile strength of isotropic pitch-based carbon fibers by improving the stabilization and carbonization properties of precursor pitch. Carbon 99:649–657, 2016a
  • [41] Kim J, Im U, Lee B, Peck D, Yoon S, Jung D. Pitch-based carbon fibers from coal tar or petroleum residue under the same processing condition. Carbon Lett 19:72–78, 2016b.
  • [42] Yang SJ, Nakabayashi K, Miyawaki J, Yoon SH. Preparation of pitch based carbon fibers using hyper-coal as a raw material. Carbon 106:28–36, 2016.
  • [43] Apicella B, Tregrossi A, Stanzione F, Ciajolo A, Russo C., Analysis of petroleum and coal tar pitches as large PAH. Chem Eng Trans 57:1–6, 2017.
  • [44] Hiremath N, Mays J, Bhat G. Recent Developments in carbon fibers and carbon nanotube-based fibers: a review. Polym Rev 57:339–368, 2017.
  • [45] Takanohashi T, Shishido T, Kawashima H, Saito I. Characterisation of hyper coals from coals of various ranks. Fuel 87(4–5):592–598, 2008.
  • [46] Lee SH, Lee SM, Im U, Kim S, Yoon S, Lee B, Peck D, Shul Y, Jung D. Preparation and characterization of high-spinnability isotropic pitch from 1-methylnaphthalene-extracted low-rank. Carbon 155:186–194, 2019.
  • [47] Kim BJ, Eom Y, Kato O, Miyawaki J, Kim BC, Mochida I, Yoon SH. Preparation of carbon fibers with excellent mechanical properties from isotropic pitches. Carbon 77:747–755, 2014.
  • [48] Zabihi O. Modeling of phenomenological mechanisms during thermal formation and degradation of an epoxy- based nanocomposite. Thermochim Acta 543:239–245, 2012.
  • [49] Huson MG. High performance pitch based carbon fibers. In: Bhat G (ed) Structure and properties of high performance fibers. Woodhead Publishing, Victoria, pp 31–78, 2017.
  • [50] Özer M, Basha OM, Stiegel G, Morsi B. Effect of coal natüre on the gasification process. In: Integrated gasification combined cycle (IGCC) technologies, pp 257–293, 2017.
  • [51] Alonso MJG, Borrego AG, Alvarez D, Parra JB, Mene´ndez R., Influence of pyrolysis temperature on char optical texture and reactivity. J Anal Appl Pyrolysis 58–59:887–909, 2001.
  • [52] Me´ndez LB, Borrego AG, Martinez-Tarazona MR, Mene´ndez R. Influence of petrographic and mineral matter composition of coal particles on their combustion reactivity. Fuel 82:1875–1882, 2003.
  • [53] Choudhury N, Biswas S, Sarkar P, Kumar M, Ghosal S, Mitra T. Influence of rank and macerals on the burnout behaviour of pulverized Indian coal. Int J Coal Geol 74:145–153, 2008.
  • [54] Miura K, Hashimoto K, Silveston PL, Factors affecting the reactivity of coal chars during gasification, and indices representing reactvity. Fuel 68:1461–1475, 1989.
  • [55] Ye DP, Agnew JB, Zhang DK. Gasification of a South Australian low-rank coal with carbon dioxide and steam: kinetics and reactivity studies. Fuel 77:1209–1219, 1998.
  • [56] Küçükkbayrak S, Haykiri-Açma H, Ersoy-Meriçboyu A, Yaman S., Effect of lignite properties on reactivity of lignite. Energy Convers Manag 42:613–626, 2001.
  • [57] Irfan, M. F., Usman, M. R., & Kusakabe, K. Coal gasification in CO2 atmosphere and its kinetics since 1948: A brief review. Energy, 36(1), 12-40, 2011.
  • [58] Durie RA., Coal properties and their importance in the production of liquid fuels. Fuel 61(10):883–886, 1982.
  • [59] Shadle LJ, Berry DA, Syamlal M. Coal conversion processes, gasification. In: Kirk–Othmer encyclopedia of chemical technology, 2002.
  • [60] Fletcher TH. Gasification fundamentals. In: Wang T, Stiegel GJ (eds) Integrated gasification combined cycle (IGCC) technologies. Woodhead Publishing, Sawston, pp 223–256, 2017.
  • [61] Suarez-Ruiz I. Organic petrology: an overview. In: Al-Juboury A (ed) Petrology—new perspectives and applications, pp 199–224, 2012.
  • [62] Sun Q, Li W, Chen H, Li B. The CO2-gasification and kinetics of Shenmu maceral chars with and without catalyst. Fuel 83:1787–1793, 2004.
  • [63] Zhuo Y, Messenbock R, Peterson N, Dugwell DR, Kandiyoti R. High pressure gasification of coal in bench scale reactors; the effect pressure, gassifing medium and maceral content. In: International furnace and boilers, 5th European conference. INFUB, Rio Tonto, Portugal, 629–638, 2000.
  • [64] Mahagaokar U. Coal conversion processes, gasification. In: Kirk–Othmer encyclopedia of chemical technology, 2004.
  • [65] van Niekerk D, Pugmire RJ, Solum MS, Painter PC, Mathews JP. Structural characterization of vitrinite-rich and inertiniterich Permian-aged South African bituminous coals. Int J Coal Geol 76:290–300, 2008.
  • [66] Sun Q, Li W, Chen H, Li B. The variation of structural characteristics of macerals during pyrolysis. Fuel 82:669– 676, 2003.
  • [67] Arenillas A, Rubiera F, Pevida C, Ania CO, Pis JJ., Relationship between structure and reactivity of carbonaceous materials. J Therm Anal Calorim 76:593–602, 2004.
  • [68] Hurt R, Sun J-K, Lunden M. A kinetic model of carbon burnout in pulverized coal combustion. Combust Flame 113(1–2):181–197, 1998.
  • [69] Kajitani S, Suzuki N, Ashizawa M, Hara S. CO2 gasification rate analysis of coal char in entrained flow coal gasifier. Fuel 85:163–169, 2006.
  • [70] Jayaraman K, Gokalp I. Effect of char generation method on steam, CO2 and blended mixture gasification of high ash Turkish coals. Fuel 153:320–327, 2015.
  • [71] Hattingh BB, Everson RC, Neomagus HWJP, Bunt JR.Assessing the catalytic effect of coal ash constituents on the CO2 gasification rate of high ash, South African coal. Fuel Process Technol 92:2048–2054, 2011.
  • [72] Ballantyne TR, Ashman PJ, Mullinger PJ., A new method for determining the conversion of low-ash coals using synthetic ash as a tracer. Fuel 84:1980–1985, 2005.
  • [73] Radovic LR, Walker PL, Jenkins RG. Importance of catalyst dispersion in the gasification of lignite chars. J Catal 82(2):382–394, 1983.
  • [74] Zevenhoven-Onderwater M, Backman R, Skrifvars BJ, Hupa M. The ash chemistry in fluidised bed gasification of biomass fuels. Part I: predicting the chemistry of melting ashes and ash–bed material interaction. Fuel 80:1489– 1502, 2001.
  • [75] Hu G, Dam-Johansen K, Wedel S, Hansen JP. Decomposition and oxidation of pyrite. Prog Energy Combust Sci 32(3):295–314, 2006.
  • [76] Kosminski A, Ross D, Agnew J. Influence of gas environment on reactions between sodium and silicon minerals during gasification of low-rank coal. Fuel Process Technol 87:953–962, 2006a.
  • [77] Kosminski A, Ross D, Agnew J. Reactions between sodium and silica during gasification of a low-rank coal. Fuel Process Technol 87:1037–1049, 2006b.
  • [78] Kosminski A, Ross D, Agnew J., Transformations of sodium during gasification of low-rank coal. Fuel Process Technol 87:943–952, 2006c.
  • [79] Gupta S, Dubikova M, French D, Sahajwalla V. Effect of CO2 gasification on the transformations of coke minerals at high temperatures. Energy Fuels 21:1052–1061, 2007.
  • [80] Bai J, Li W, Li C-Z, Bai Z, Li B., Influences of minerals transformation on the reactivity of high temperature char gasification. Fuel Process Technol 91:404–409, 2010.
  • [81] Li S., Char–slag transition during pulverized coal gasification. Dissertation. University of Utah, 2010.
  • [82] Gupta SK, Wall TF, Creelman RA, Gupta RP., Ash fusion temperatures and the transformations of coal ash particles to slag. Fuel Process Technol 56(1–2):33–43, 1998.
  • [83] Lolja SA, Haxhi H, Dhimitri R, Drushku S, Malja A. Correlation between ash fusion temperatures and chemical composition in Albanian coal ashes. Fuel 81:2257–2261, 2002.
  • [84] Liu B, He Q, Jiang Z, Xu R, Hu B. Relationship between coal ash composition and ash fusion temperatures. Fuel 105:293–300, 2013.
  • [85] Groen J, Brooker D, Welch P, Oh M., Gasification slag rheology and crystallization in titanium-rich, iron–calcium–aluminosilicate glasses. Fuel Process Technol 56:103–127, 1998.
  • [86] Wang P, Massoudi M. Slag behavior in gasifiers. Part I: influence of coal properties and gasification conditions. Energies 6:784–806, 2013.
  • [87] Vamvuka D, Zografos D, Alevizos G. Control methods for mitigating biomass ash-related problems in fluidized beds. Bioresour Technol 99(9):3534–3544, 2008.
  • [88] van Dyk J, Waanders F. Manipulation of gasification coal feed in order to increase the ash fusion temperature of the coal enabling the gasifiers to operate at higher temperatures. Fuel 86:2728–2735, 2007.
  • [89] Speight JG. Gasification of unconventional feedstocks. https://doi.org/10.1016/C2013-0-14152-9, 2014.
  • [90] Dittus M, Johnson D., The hidden value of lignite coal. In: Gasification technologies conference, proceedings, pp 1–8, 2001.
  • [91] Keboletse, K.P., Ntuli, F. & Oladijo, O.P. Influence of coal properties on coal conversion processes-coal carbonization, carbon fiber production, gasification and liquefaction technologies: a review. Int J Coal Sci Technol 8, 817–843, 2021.
  • [92] Vasireddy SB, Morreale A, Cugini C, Song SJ. Clean liquid fuels from direct coal liquefaction: chemistry, catalysis, technological status and challenges. Energy Environ Sci 2:311–345, 2011.
  • [93] Heydari M, Rahman M, Rajender G., Effect of initial coal particle size on coal liquefaction conversion. Int J Oil Gas Coal Technol 12(1):63–80, 2016.
  • [94] Tissot BP, Welte D. Petroleum formation and occurrence, 2nd edn. Springer, Berlin, 1984.
  • [95] Zhou B, Shi L, Liu Q, Liu Z. Examination of structural models and bonding characteristics of coals. Fuel 184:799– 807, 2016.
  • [96] Zhu J, Liu J, Yang Y, Cheng J, Zhou J, Cen K. Fractal characteristics of pore structures in 13 coal specimens: relationship among fractal dimension, pore structure parameter and slurry ability of coal. Fuel Process Technol 149:256–258, 2016.
  • [97] Kalkreuth W, Roy C, Hebert M. Vaccume pyrolysis of Canadian PrinceMine coal—chemical and petrological analyses of feed coal and solid residues. Fuel 64:213–222, 1986.
  • [98] Hunt JM. Generation of gas and oil from coal and other terrestrial organic matter. Org Geochem 17(6):673–680, 1991.
  • [99] Peters KE, Snedden JW, Sulaeman A, Sarg JF, Enrico RJ. A new geochemical-sequence stratigraphic model for the Mahakam Delta and Makassar Slope, Kalimantan, Indonesia. AAPG Bull 84:12–44, 2000.
  • [100] Singh PK, Singh MP, Singh AK, Arora M, Naik AS. The prediction of the liquefaction behavior of the East Kalimantan coals of Indonesia: an appraisal through petrography of selected coal samples. Energy Sources Part A Recover Util Environ Effects 35(18):1728–1740, 2013.
  • [101] Mishra A, Gautam S, Sharma T. Effect of operating parameters on coal gasification. Int J Coal Sci Technol 5(2):113–125, 2018.
  • [102] Powell TG, Boreham CJ. Terrestrial sourced oils: Where do they exist and what are our limits of knowledge?—A geochemical perspective. In: Fleet AJ, Scott AC (eds) Coal and coal bearing strata as oil-prone source rocks. Geological Society of London, London, pp 11–29, 1994.
  • [103] Schlosberg RH. Chemistry of coal conversion. Springer, New York, 1985.
  • [104] Li X, Hu H, Jin L, Hu S, Wu B. Approach for promoting liquid yield in direct liquefaction of Shenhua coal. Fuel Process Technol 89(11):1090–1095, 2008a.
  • [105] Li X, Hu H, Zhu S, Hu S, Wu B, Meng M. Kinetics of coal liquefaction during heating-up and isothermal stages. Fuel 87(4–5):508–513, 2008b.
  • [106] Davis A, Spackman W, Given PH. The influence of the properties of coals on their conversion into clean fuels. Energy Sources 3:55–81, 1976.
  • [107] Falcon R, Ham AJ. The characteristics of Southern African coals. J S Afr Inst Min Metall 88(5):145–161, 1988.
  • [108] Zhao Y, Hu H, Jin L, He X, Wu B. Pyrolysis behaviour of vitrinite and inertinite from Chinese Pingshuo coal by TG-MS and in a fixed bed reactor. Fuel Process Technol 92:780–786, 2011.
  • [109] Chakravarty S, Mohanty A, Banerjee A, Tripathy R, Mandal GK, Basariya R, Sharma M. Composition, mineral matter characteristics and fusion behavior of some Indian coals. Fuel3 150:96–101, 2015.
  • [110] Singh AK, Singh PK, Singh MP, Banerjee PK. Utilization of the Permian coal deposits of West Bokaro, India: a petrochemical evaluation. Energy Sources Part A Recover Util Environ Effects 37:1081–1088, 2015.
Toplam 110 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Enerji Sistemleri Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Nazan Yalçın Erik 0000-0001-7849-8660

Yayımlanma Tarihi 31 Aralık 2022
Gönderilme Tarihi 18 Kasım 2021
Yayımlandığı Sayı Yıl 2022 Cilt: 4 Sayı: 2

Kaynak Göster

APA Yalçın Erik, N. (2022). KÖMÜR ÖZELLİKLERİNİN TEMİZ KÖMÜR TEKNOLOJİLERİNE (GAZLAŞTIRMA, SIVILAŞTIRMA, KARBON ELYAF VE KOK ÜRETİMİ) ETKİSİ: DERLEME. Uluslararası Batı Karadeniz Mühendislik Ve Fen Bilimleri Dergisi, 4(2), 22-56.
AMA Yalçın Erik N. KÖMÜR ÖZELLİKLERİNİN TEMİZ KÖMÜR TEKNOLOJİLERİNE (GAZLAŞTIRMA, SIVILAŞTIRMA, KARBON ELYAF VE KOK ÜRETİMİ) ETKİSİ: DERLEME. UMÜFED. Aralık 2022;4(2):22-56.
Chicago Yalçın Erik, Nazan. “KÖMÜR ÖZELLİKLERİNİN TEMİZ KÖMÜR TEKNOLOJİLERİNE (GAZLAŞTIRMA, SIVILAŞTIRMA, KARBON ELYAF VE KOK ÜRETİMİ) ETKİSİ: DERLEME”. Uluslararası Batı Karadeniz Mühendislik Ve Fen Bilimleri Dergisi 4, sy. 2 (Aralık 2022): 22-56.
EndNote Yalçın Erik N (01 Aralık 2022) KÖMÜR ÖZELLİKLERİNİN TEMİZ KÖMÜR TEKNOLOJİLERİNE (GAZLAŞTIRMA, SIVILAŞTIRMA, KARBON ELYAF VE KOK ÜRETİMİ) ETKİSİ: DERLEME. Uluslararası Batı Karadeniz Mühendislik ve Fen Bilimleri Dergisi 4 2 22–56.
IEEE N. Yalçın Erik, “KÖMÜR ÖZELLİKLERİNİN TEMİZ KÖMÜR TEKNOLOJİLERİNE (GAZLAŞTIRMA, SIVILAŞTIRMA, KARBON ELYAF VE KOK ÜRETİMİ) ETKİSİ: DERLEME”, UMÜFED, c. 4, sy. 2, ss. 22–56, 2022.
ISNAD Yalçın Erik, Nazan. “KÖMÜR ÖZELLİKLERİNİN TEMİZ KÖMÜR TEKNOLOJİLERİNE (GAZLAŞTIRMA, SIVILAŞTIRMA, KARBON ELYAF VE KOK ÜRETİMİ) ETKİSİ: DERLEME”. Uluslararası Batı Karadeniz Mühendislik ve Fen Bilimleri Dergisi 4/2 (Aralık 2022), 22-56.
JAMA Yalçın Erik N. KÖMÜR ÖZELLİKLERİNİN TEMİZ KÖMÜR TEKNOLOJİLERİNE (GAZLAŞTIRMA, SIVILAŞTIRMA, KARBON ELYAF VE KOK ÜRETİMİ) ETKİSİ: DERLEME. UMÜFED. 2022;4:22–56.
MLA Yalçın Erik, Nazan. “KÖMÜR ÖZELLİKLERİNİN TEMİZ KÖMÜR TEKNOLOJİLERİNE (GAZLAŞTIRMA, SIVILAŞTIRMA, KARBON ELYAF VE KOK ÜRETİMİ) ETKİSİ: DERLEME”. Uluslararası Batı Karadeniz Mühendislik Ve Fen Bilimleri Dergisi, c. 4, sy. 2, 2022, ss. 22-56.
Vancouver Yalçın Erik N. KÖMÜR ÖZELLİKLERİNİN TEMİZ KÖMÜR TEKNOLOJİLERİNE (GAZLAŞTIRMA, SIVILAŞTIRMA, KARBON ELYAF VE KOK ÜRETİMİ) ETKİSİ: DERLEME. UMÜFED. 2022;4(2):22-56.