Theoretical Article
BibTex RIS Cite

Şeker Tankı Sıvı Seviye Yönetimi için Durum Geri Besleme Kontrol Sistemi Tasarımı

Year 2022, Volume: 1 Issue: 2, 13 - 34, 29.12.2022

Abstract

Tank sıvı seviye sisteminin izlenmesi ve kontrolü şeker üretim sürecinin olmazsa olmazıdır. Durum geri besleme gibi gelişmiş kontrol yöntemleri kullanılarak daha hassas seviye kontrolü elde etmek ve üretim kalitesini artırmak mümkündür. Bu çalışmada, simetrik kök yer eğrisi tarafından dört farklı ağırlıklandırma faktörüne karşılık gelen dört farklı kutup konumu seti belirlenir. Ackermann formülü kullanılarak bu kutup takımları yerleştirilir. En başarılı küme seçilir ve bir ölçekleme faktörü eklenerek sistemin kararlı durum hatası sıfıra düşürülür. Önerilen denetleyicinin performansını değerlendirmek için, geleneksel kontrol yöntemlerinden biri olan oransal integral türev (PID) denetleyicisi ve önerilen tam durum geri beslemeli denetleyicinin (FSFC) simülasyon sonuçları karşılaştırılmıştır. Zaman alanı özellikleri, denetleyicilerin karakteristiklerini en iyi performansı verecek şekilde optimize etmek için kullanılır. Optimize edilmiş FSFC ve PID kontrolörleri, yükselme zamanı, yerleşme zamanı, yüzde aşım, tepe zamanı ve referans izleme hatası açısından kıyaslanır. Her iki kontrolör de sıfır referans izleme hatası sağlasa da, FSFC diğer tüm kriterlerde daha iyi performans gösterdiğinden, FSFC'nin PID kontrolöründen daha sağlam ve verimli olduğu bulundu.

References

  • Ahmad, S., Ali, S., & Tabasha, R. (2020). The design and implementation of a fuzzy gain-scheduled PID controller for the Festo MPS PA compact workstation liquid level control. Engineering Science and Technology, an International Journal, 23(2), 307–315.
  • Başçi, A., & Derdiyok, A. (2016). Implementation of an adaptive fuzzy compensator for coupled tank liquid level control system. Measurement, 91, 12–18.
  • Behrooz, F., Mariun, N., Marhaban, M. H., Mohd Radzi, M. A., & Ramli, A. R. (2018). Review of control techniques for HVAC systems—Nonlinearity approaches based on Fuzzy cognitive maps. Energies, 11(3), 495.
  • Engules, D., Hot, M., & Alikoc, B. (2015). Level control of a coupled-tank system via eigenvalue assignment and LQG control. 2015 23rd Mediterranean Conference on Control and Automation (MED), 1198–1203.
  • Huang, G. (2011). Model predictive control of VAV zone thermal systems concerning bi-linearity and gain nonlinearity. Control Engineering Practice, 19(7), 700–710.
  • Lahlouh, I., Rerhrhaye, F., Elakkary, A., & Sefiani, N. (2020). Experimental implementation of a new multi input multi output fuzzy-PID controller in a poultry house system. Heliyon, 6(8), e04645.
  • Meje, K., Bokopane, L., Kusakana, K., & Siti, M. (2020). Optimal power dispatch in a multisource system using fuzzy logic control. Energy Reports, 6, 1443–1449.
  • Messaouda, A., & Halal, F. (2007). Comparative analysis of PD classical control and PD fuzzy control in two liquid level tanks. IFAC Proceedings Volumes, 40(18), 487–491.
  • Naidu, D. S., & Rieger, C. G. (2011). Advanced control strategies for HVAC&R systems—An overview: Part II: Soft and fusion control. Hvac&R Research, 17(2), 144–158.
  • Noel, M. M., & Pandian, B. J. (2014). Control of a nonlinear liquid level system using a new artificial neural network based reinforcement learning approach. Applied Soft Computing, 23, 444–451.
  • Pfeiffer, C. F., Skeie, N.-O., & Perera, D. W. U. (2014). Control of temperature and energy consumption in buildings-a review.
  • Rehrl, J., & Horn, M. (2011). Temperature control for HVAC systems based on exact linearization and model predictive control. 2011 IEEE International Conference on Control Applications (CCA), 1119–1124.
  • Song, Y., Wu, S., & Yan, Y. Y. (2015). Control strategies for indoor environment quality and energy efficiency—a review. International Journal of Low-Carbon Technologies, 10(3), 305–312.
  • Söylemez, M. T., & Munro, N. (1999). Pole assignment for uncertain systems. IEE CONTROL ENGINEERING SERIES, 251–272.
  • Tolaimate, I., & Elalami, N. (2011). Robust Control Problem as H2 and H∞ control problem applied to the robust controller design of Active Queue Management routers for Internet Protocol. International Journal of Systems Applications, Engineering & Development, 6.

Design of a State-Feedback Control System for Sugar Tank Liquid Level Management

Year 2022, Volume: 1 Issue: 2, 13 - 34, 29.12.2022

Abstract

The monitor and control of the tank liquid level system are indispensable to the sugar production process. By employing advanced control methods such as state feedback, it is possible to obtain more precise level control and improve production quality. In this study, four distinct sets of pole locations corresponding to four distinct weighting factors are determined by the symmetric root locus (SRL). Using the Ackermann formula, pole sets are placed. The most successful set is chosen, and the system's steady-state error is reduced to zero by adding a scaling factor. In order to evaluate the performance of the proposed controller, simulation results for the proportional integral derivative (PID) controller, one of the traditional control methods, and the proposed full state feedback controller (FSFC) are compared. Time domain specifications are used to optimize the characteristics of the controllers to give the best performance. Optimized FSFC and PID controllers are benchmarked in terms of rise time, settling time, overshoot, peak time and tracking error. Although both controllers provide zero tracking error, FSFC was found to be more robust and efficient than the PID controller, as FSFC performed better in all other criteria.

References

  • Ahmad, S., Ali, S., & Tabasha, R. (2020). The design and implementation of a fuzzy gain-scheduled PID controller for the Festo MPS PA compact workstation liquid level control. Engineering Science and Technology, an International Journal, 23(2), 307–315.
  • Başçi, A., & Derdiyok, A. (2016). Implementation of an adaptive fuzzy compensator for coupled tank liquid level control system. Measurement, 91, 12–18.
  • Behrooz, F., Mariun, N., Marhaban, M. H., Mohd Radzi, M. A., & Ramli, A. R. (2018). Review of control techniques for HVAC systems—Nonlinearity approaches based on Fuzzy cognitive maps. Energies, 11(3), 495.
  • Engules, D., Hot, M., & Alikoc, B. (2015). Level control of a coupled-tank system via eigenvalue assignment and LQG control. 2015 23rd Mediterranean Conference on Control and Automation (MED), 1198–1203.
  • Huang, G. (2011). Model predictive control of VAV zone thermal systems concerning bi-linearity and gain nonlinearity. Control Engineering Practice, 19(7), 700–710.
  • Lahlouh, I., Rerhrhaye, F., Elakkary, A., & Sefiani, N. (2020). Experimental implementation of a new multi input multi output fuzzy-PID controller in a poultry house system. Heliyon, 6(8), e04645.
  • Meje, K., Bokopane, L., Kusakana, K., & Siti, M. (2020). Optimal power dispatch in a multisource system using fuzzy logic control. Energy Reports, 6, 1443–1449.
  • Messaouda, A., & Halal, F. (2007). Comparative analysis of PD classical control and PD fuzzy control in two liquid level tanks. IFAC Proceedings Volumes, 40(18), 487–491.
  • Naidu, D. S., & Rieger, C. G. (2011). Advanced control strategies for HVAC&R systems—An overview: Part II: Soft and fusion control. Hvac&R Research, 17(2), 144–158.
  • Noel, M. M., & Pandian, B. J. (2014). Control of a nonlinear liquid level system using a new artificial neural network based reinforcement learning approach. Applied Soft Computing, 23, 444–451.
  • Pfeiffer, C. F., Skeie, N.-O., & Perera, D. W. U. (2014). Control of temperature and energy consumption in buildings-a review.
  • Rehrl, J., & Horn, M. (2011). Temperature control for HVAC systems based on exact linearization and model predictive control. 2011 IEEE International Conference on Control Applications (CCA), 1119–1124.
  • Song, Y., Wu, S., & Yan, Y. Y. (2015). Control strategies for indoor environment quality and energy efficiency—a review. International Journal of Low-Carbon Technologies, 10(3), 305–312.
  • Söylemez, M. T., & Munro, N. (1999). Pole assignment for uncertain systems. IEE CONTROL ENGINEERING SERIES, 251–272.
  • Tolaimate, I., & Elalami, N. (2011). Robust Control Problem as H2 and H∞ control problem applied to the robust controller design of Active Queue Management routers for Internet Protocol. International Journal of Systems Applications, Engineering & Development, 6.
There are 15 citations in total.

Details

Primary Language English
Subjects Engineering, Food Engineering
Journal Section Research Articles
Authors

Berke Oğulcan Parlak

Hüseyin Ayhan Yavaşoğlu 0000-0001-8145-719X

Publication Date December 29, 2022
Published in Issue Year 2022 Volume: 1 Issue: 2

Cite

APA Parlak, B. O., & Yavaşoğlu, H. A. (2022). Design of a State-Feedback Control System for Sugar Tank Liquid Level Management. Uluslararası Sivas Bilim Ve Teknoloji Üniversitesi Dergisi, 1(2), 13-34.